

LockBit Attempts to Stay Afloat with a New

Version
Appendix

Technical Appendix: LockBit-NG-Dev Detailed

Analysis

The new LockBit version we analyzed was packed using the MPRESS packer, possibly to

evade static file detections. After unpacking, we can see that this new version seems to have

been written in .NET and possibly compiled using CoreRT, which is different from the usual

C/C++ language used for past versions.

Figure 1. Shows the use of MPRESS packer using the Detect-It-Easy tool

Like past versions, it still has an embedded configuration that dictates the routines it can

perform. The configuration, which is in JSON format, is decrypted at runtime and includes

information like date range for execution, the ransom note filename and content, unique

IDs for the ransomware, the RSA public key, and some other flags and lists for its other

routines. A table with the full configuration options is included at the end of this brief.

Figure 2. Decrypted configuration in JSON format

After decrypting the configuration, LockBit will then create a mutex using the value of ID

field from the configuration as the mutex name. If the mutex already exists, the process will

exit to avoid multiple instances of execution.

Figure 3. Mutex checking routine

One of the new behaviors of LockBit is its ability to check if the current date is within the

date range set in the configuration. If the date is not within this range, the process will

terminate. The analyzed sample only works between a specified start and end date. This is

probably LockBit’s way to limit affiliates from reusing their ransomware, forcing them to

purchase a new version from the operators once the date expires. This can also be

considered an anti-analysis and anti-sandbox technique — however, it is relatively simple

for an analyst to bypass this during reverse engineering. On the other hand, it could would

be more difficult for an affiliate to patch the binary before using it against a victim.

Figure 4. Checking if the current date is within the valid date range

Similar to other ransomware, it terminates processes and stops services that may be

accessing files it is attempting to encrypt or security-related processes and services that

may hinder the execution of the ransomware to ensure the proper encryption of files,. To

do so, it first needs to check if the StopProcesses or StopServices flags are true in the

configuration. If true, it will terminate processes from the list of process names under the

ProcessesToStop field and services from the list of services in the ServicesToStop field in the

configuration.

Figure 5. Routine checking if processes and services will be stopped

LockBit also inhibits recovery from shadow copies and backups by performing the following

routines before encryption:

It checks if DeleteVolumeShadowCopies is true in the configuration, and if it is, deletes shadow

copies by executing the following command:

“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe vssadmin Delete

Shadows /All /Quite”

To delete the Windows backups, it checks if DeleteWindowsSystemBackups is true in the

configuration, and if it is, it executes the following command:

“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe wbadmin DELETE

BACKUP –keepVersions:0 -quiet”

Figure 6. Routine executing PowerShell commands to delete shadow copies and backups

One of the routines it possesses that was also in past versions is the ability to rename the

encrypted files with random filenames. It does this by checking if the ChangeFilename field is

true in the configuration, then it generates a random filename using a randomizer function.

The original file name will then be placed within the content of the file after the encrypted

blob. For files that are not encrypted with full encrypt mode, it will just be appended on the

file. Meanwhile, those encrypted via full encrypt mode will have filenames that will be

included in the RSA encrypted buffer.

Figure 7. File encrypted with Intermittent mode has the original filename in its content

Figure 8. File encrypted with full encrypted mode has the original filename in the RSA

encrypted buffer

LockBit has three encryption modes: fast, intermittent and full. Files are usually encrypted

under fast mode to speed up encryption (an option commonly favored by affiliates), but it

can be configured to perform different modes based on file extensions.

The sample we analyzed has set “.txt” file extensions to full encryption mode, while “.csv”

and “.sql” are encrypted with intermittent mode. The three modes to encrypt files are as

follows:

• Fast encrypts the first 0x1000 bytes of the file (files listed in Fast Set will use

Buffersize value to determine the size to encrypt).

• Intermittent only encrypts a certain percentage of the file based on the value set in

the configuration under the Percent field. Also, the field Segmentation determines the

distance between encrypted blocks.

• Full encrypts the whole file.

Like other ransomware, LockBit-NG-Dev avoids encrypting certain directories, files and file

extensions. These files are listed in the configuration under the DirectoryList, FileSet, and

NoneSet fields. Also, the configuration fields IncludeFiles, IncludeDirectories, and

IncludeExtensions need to be set to false. It also has a regex option for the files and

directories to avoid under the fields FilesRegexQueryString and DirectoriesRegexQueryString.

For network encryption, if EnableNetworkShares is true, it also encrypts files on available

network shares.

LockBit-NG-Dev encrypts files using the AES algorithm and encrypts the AES key using the

embedded RSA public key that can also be found in the configuration. The AES keys are

randomly generated for each file to be encrypted.

The ransom note content and file name are also in the configuration. It can also be set in

the configuration if the ransom note will be dropped on all directories or only in specific

directories by exact path/s that match a regular expression.

An option exists wherein the ransom note would first be dropped on target directories (or

all traversed directories) before encryption begins. If this is enabled, dropping the same text

file on multiple directories could be flagged by behavior monitoring tools as a suspicious

routine and may terminate the execution process before the actual encryption begins.

Figure 9. Checking if the ransom note will be dropped before encryption

Finally, if Self-delete is true in the configuration, it will remove traces of the ransomware by

zeroing out its contents using the following command:

powershell.exe -Stop-Process -Id {process id} -Force; fsutil.exe file setZeroData offset=0

length=9999999999 “{Path of ransomware}”

Fig 10. Checking if “Self-delete” field is true

Figure 11. Executing commands via PowerShell

Full configuration
Field Description

MinDate Minimum Date where ransomware will execute (format.

MM/DD/YYYY)

MaxDate Maximum Date where ransomware will execute (format.

MM/DD/YYYY)

AppendedExtension Extension that will be appended on encrypted files (ex.

locked_for_LockBit)

NoteFilename Filename of the ransom note

ID Unique identifier for the ransomware

ChangeFilename If true, change filename of encrypted files to a random

one.

EncryptNetworkShares if true, include network drives in encryption

SkipHiddenFiles if true, will not encrypt files with attribute hidden

DeleteVolumeShadowCopies If true, delete shadow copies by executing vssadmin

command

DeleteWindowsSystemBackups If true, delete windows backup by executing wbadmin

command

EfficiencyMode Flag to check if will use enough or more resources during

encryption

SelfDelete If true, overwrite contents of ransomware with null bytes

DropNoteBeforeEncryption If true, ransom note will be dropped first before

encrypting

DropNoteInEveryDirectory if true, drop ransom note on every directory

DropNoteInSpecificDirectories if true, drop note only on the specified directory in field

DirectoriesToDropNoteIn

DirectoriesToDropNoteIn List of file path to drop ransom note in

RegexDropNoteInSpecificDirectories if true, drop note on directory if it matches the regex

expressions under the

DirectoriesToDropNoteInRegexQueryString

DirectoriesToDropNoteInRegexQueryString List of regex expression of desired directories to drop

ransom note

StopProcesses If true, terminate processes under the ProcessesToStop

field.

ProcessesToStop List of process names to stop

StopServices If true, stop services under the ServicesToStop field.

ServicesToStop List of service name to stop

IncludeFiles If true, include the files under FileSet in encryption

routine, otherwise avoid encrypting if set to false

FileSet List of files that would be excluded in encryption if

IncludeFiles is set to false.

RegexIncludeFiles If true, include the files that matches the regular

expression under FilesRegexQueryString in encryption

routine, otherwise avoid encrypting if set to false

FilesRegexQueryString Regular expression of files to include or avoid in

encryption

IncludeDirectories If true, include the directories under DirectoryList in

encryption routine, otherwise avoid encrypting if set to

false

DirectoryList List of directories that would be excluded in encryption if

IncludeDirectories is set to false

RegexIncludeDirectories If true, include the directories that matches the regular

expression under DirectoriesRegexQueryString in

encryption routine, otherwise avoid encrypting if set to

false

DirectoriesRegexQueryString Regular expression of directories to include or avoid in

encryption

IncludeExtensions If true, include the files with extension under NoneSet in

encryption routine, otherwise avoid encrypting if set to

false

NoneSet List of file extension to avoid during encryption, if

IncludeExtensions is False

FastSet List of extension of files that are targeted to only be

encrypted with the first x bytes where x is value set in

BufferSize

IntermitttentSet List of extension of files that would only be partially

encrypted depending on the value of Percent

FullSet List of extension of files that would be fully encrypted

regardless of size

BufferSize Size to encrypt for files listed in FastSet (ex. 4096)

Percent Percentage value of intermittent encryption to perform

Segmentation Value to compute offset of blocks to encrypt under

Intermittent Encryption (ex. 256)

PublicKey RSA public key.

Table 1. Full configuration settings

Indicators of Compromise

Detected as Ransom.Win64.LOCKBIT.YXDLS

SHA256

f56cba51a4e86f3be5208dfce598d0d6a86cbbc820b214d5d5df7d327e580b82

TLSH

T1615533707F603835DB3BD27B546D0D8892FB39789A198BFAC0661F87185691F0907A8F

Trend Micro, a global cybersecurity leader, helps make the world safe for exchanging digital information. Fueled

by decades of security expertise, global threat research, and continuous innovation, our unified cybersecurity

platform protects hundreds of thousands of organizations and millions of individuals across clouds, networks,

devices, and endpoints.

With 7,000 employees across 56 countries, and the world’s most advanced global threat research and

intelligence, Trend Micro enables organizations to simplify and secure their connected world.

TrendMicro.com

©2024 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or

registered trademarks of Trend Micro, Incorporated. All other company and/or product names may be trademarks or registered

trademarks of their owners.

https://www.trendmicro.com/

