
Secrets Sprawl
2025

T H E S T A T E O F

Data analysis by GitGuardian

T A B L E O F C O N T E N T S

How Leaky Was 2024 4

AI-Enhanced Detection: Revealing the Full Scope of Credential Exposure 5

58% of All Detected Secrets Are Generic 7

GitHub’s Push Protection: A Promising Initiative, But Not a Silver Bullet 9

Private Repositories 8 Times More Likely To Contain Secrets 12

Fastest Growing Services 17

Mapping the SDLC: Where Leaks Happen 18

Collaboration Tools: The Overlooked Frontier of Secrets Sprawl 18

100,000+ Valid Secrets on Docker Hub 21

Copilot increases secrets incidence rate by 40% 25

Detected but Not Fixed: The Alarming Persistence of Exposed Credentials 27

Secrets Managers: Not a Complete Solution 28

Excessive Permissions Make Secret Leaks More Severe 31

Bridging the remediation gap 33

Understanding the Impact: Real-World Risks of Secrets Sprawl 34

Primary Risk Categories and Attack Vectors 34

The Cascade Effect: From Minor Leak to Major Breach 38

Critical Timeline Statistics 39

Risk Amplification Factors 39

About GitGuardian 40

Appendix 41

Definitions 41

Methodology 43

The State of Secrets Sprawl 2025

DATA ANALYSIS BY GITGUARDIAN

From day one, GitGuardian has been committed to protecting developer environments from secrets

sprawl, a dedication that has established us as the #1 application on GitHub Marketplace. For over

seven years, our real-time scanning of public GitHub events through our Good Samaritan program has

enabled us to proactively notify developers when credentials are exposed. In 2024 alone, we sent

1.9 million pro bono alert emails to developers who inadvertently leaked sensitive credentials.

70%
of valid secrets detected in public

repositories in 2022 remain active today

15%
of commit authors

leaked a secret

4.6% 35%
o f a l l p u b l i c r e p o s i t o r i e s c o n t a i n a s e c r e t of all private repositories

contain hardcoded secrets

38%
of incidents in collaboration and project

management tools (Slack, Jira or Confluence) were

classified as highly critical or urgent, compared to

31% in Source Code Management Systems (SCMs)

https://www.gitguardian.com/good-samaritan

THE STATE OF SECRETS SPRAWL 2025

4

MENU

How Leaky Was 2024
Long-lived plaintext credentials have been involved in most breaches over the last several years.

When valid credentials, such as API keys, passwords, and authentication tokens, leak, attackers

at any skill level can gain initial access or perform rapid lateral movement through systems.

In 2024, we found 23,770,171 new hardcoded secrets added to public GitHub repositories.

This figure represents a 25% surge in the total number of secrets from the previous year.

This marks a substantial increase in the number of secrets found and continues

the disturbing trend: secrets sprawl is steadily worsening over time.

Despite GitHub’s efforts to prevent certain credential leaks during the push stage, which did

indeed reduce incidents involving specific secrets (secrets following known patterns for specific

services), the platform’s measures have not effectively addressed the growing prevalence of

generic secrets. It is within this category that we observed the most significant year-over-year

surge in plaintext credentials.

The danger of the continued rise of secrets leakage is very real. Over the past 10 years, stolen

credentials have been used in 31% of all breaches, according to Verizon’s 2024 Data Breach

Investigations Report. It is an attacker’s favorite way to gain an initial foothold and to move laterally

through environments. At the same time, IBM’s Cost of a Data Breach report makes it clear how time-

consuming this issue is for the enterprise. Breaches involving stolen or compromised credentials take

an average of 292 days to identify and remediate, more than any other attack vector.

New secrets detected on GitHub (millions)

Data analysis by GitGuardian

https://www.verizon.com/business/resources/Te3/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/Te3/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.ibm.com/reports/data-breach

THE STATE OF SECRETS SPRAWL 2025

5

MENU

AI-Enhanced Detection: Revealing the Full
Scope of Credential Exposure
The 2025 State of Secrets Sprawl report marks a significant milestone in secrets detection,

unveiling a more comprehensive picture of the secrets sprawl landscape. For the first time,

thanks to our innovative machine learning models, such as the one powering False Positive

Remover, GitGuardian can now confidently identify and validate more generic secrets.

Historically, GitGuardian took a conservative stance on generic secrets to avoid a large number

of potential false positive results. Our secrets detection engine was intentionally calibrated for

high precision, ensuring that when a secret was flagged, it was almost certainly a real secret.

Any doubt meant leaving it out.

Our past focus was concentrated on the most commonly used enterprise-specific secrets,

such as API keys and service-specific credentials, but these are just the tip of the iceberg.

The true magnitude of the secrets sprawl problem lies in the vast ocean of generic secrets,

such as usernames & passwords and unstructured credentials.

As an example, here’s a Base64 basic auth string:

“Authorization”: “Basic aW50ZXJuc2hpcDpjZGk=”

Or an example of a database credential:

connect_to_db(host=”136.12.43.86”, port=8130,
username=”root”,
password=”m42ploz2wd”)

This ML-driven shift not only enables us to find more secrets but also helps us categorize them

much more effectively. Doing so we ensure they are genuine secrets, strengthening both recall

and precision. The result provides a more accurate, holistic understanding of how and where

secrets are spreading.

https://blog.gitguardian.com/ai-false-positive-remover-v2/
https://blog.gitguardian.com/ai-false-positive-remover-v2/
https://blog.gitguardian.com/comparing-secrets-detection-solutions/#:~:text=miss%20exposed%20secrets.-,Precision,-%3A%20Indicates%20how%20often
https://blog.gitguardian.com/comparing-secrets-detection-solutions/#:~:text=miss%20exposed%20secrets.-,Precision,-%3A%20Indicates%20how%20often

THE STATE OF SECRETS SPRAWL 2025

6

MENU

The Department of The Treasury breach

In December 2024, Chinese state-sponsored attackers breached the U.S. Treasury

Department by exploiting a compromised API key belonging to BeyondTrust, a technical

support provider. The API key gave attackers valid credentials to remotely access

Treasury workstations and unclassified documents through BeyondTrust’s Remote

Support SaaS platform. The incident highlights how a single leaked API key in the supply

chain can allow threat actors to bypass security measures and gain unauthorized access

to sensitive government systems.

Data analysis by GitGuardian

Secrets by detector nature

https://blog.gitguardian.com/what-happened-in-the-u-s-department-of-the-treasury-breach-a-detailed-summary/
https://blog.gitguardian.com/what-happened-in-the-u-s-department-of-the-treasury-breach-a-detailed-summary/

THE STATE OF SECRETS SPRAWL 2025

7

MENU

58% of All Detected Secrets Are Generic
This leap in technology not only enhances our detection capabilities but

also reveals that generic secrets represent a far more extensive threat than

previously recognized.

One of the most troubling findings from our analysis is the sharp increase in

the number of generic secrets found in public repositories. In 2024, 58% of all

detected secrets were generic, a jump from 49% in 2023.

Unlike API keys or OAuth tokens that follow recognizable patterns, generic

secrets lack a standardized structure, making them far more difficult to

detect and remediate. These can include:

 • Hardcoded passwords embedded in source code

 • Database connection strings

 • Custom authentication tokens

 • Encryption keys stored in plaintext

Since generic secrets do not match predefined patterns, they often bypass

automated protection mechanisms like GitHub’s built-in secret scanning.

This is the fastest-growing and most concerning category of exposed credentials.

GitHub continues to grow, with over 1.4 billion new public commits added in

2024, marking a 20% increase in the previous year’s growth. 4.6% of all public

repositories in 2024 contained a secret.

THE STATE OF SECRETS SPRAWL 2025

8

MENU

A Story From the Field

Initial repository commits represent a frequently overlooked risk vector. In one

documented incident, what appeared to be a routine initial commit (git add .)

inadvertently included over 21,000 files:

$ git add .
$ git commit -m “Initial commit” && git push

21986 files changed +3,235,683 -0 lines changed

Further investigation revealed that the developer’s .bash_history had been included

in this commit, containing multiple instances of repository cloning operations with

embedded GitHub personal access tokens.

This case demonstrates how generic secrets, particularly those embedded in command

histories or configuration files, can be unintentionally exposed through common

development workflows.

2022 2023 2024
0

20

80

60

40

62.7 M

2.9 M

66.4 M

3.2 M

57.1 M

2.2 M

Data analysis by GitGuardian

Contains secrets

No secrets

Active public repositories containing secrets

THE STATE OF SECRETS SPRAWL 2025

9

MENU

GitHub’s Push Protection: A Promising
Initiative, But Not a Silver Bullet
Although the number of specific secrets leaked this past year continued to rise,

the rate of increase slowed compared to previous years. This change can be

attributed, in part, to GitHub’s introduction of Push Protection since our last

report. This feature automatically prevents developers from pushing code

containing certain known credential patterns to public repositories.

Push Protection has proven highly effective for some specific keys. For instance,

following its by-default enablement for free users at the beginning of 2024,

we observed a sharp decline in the number of leaked OpenAI secrets and GitHub

App keys. The consistent prefixes of these keys, ‘sk-’ and ‘ghu_’ respectively,

make them easily detectable using simple pattern matching techniques.

Data analysis by GitGuardian

OpenAI Secrets

THE STATE OF SECRETS SPRAWL 2025

10

MENU

However, many other credentials, such as MySQL and MongoDB, lack a

standardized prefix, making them more challenging to identify. For these

credentials and other patterns not yet included in GitHub’s filtering system,

we have not witnessed a significant reduction in the number of detected secrets.

GitHub OAuth App Keys

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

11

MENU

0

10000

20000

30000

40000

50000

2023-01

2023-07

2024-01

2024-07

Prefixing is not the whole story, though. Even for many secrets that do have a

prefix, such as Google API Keys, we have seen an increase, especially at the end

of the reporting period.

Data analysis by GitGuardian

Data analysis by GitGuardian

MongoDB Credentials were not impacted by GitHub Push Protection

MySQL credentials were not impacted by GitHub Push Protection

THE STATE OF SECRETS SPRAWL 2025

12

MENU

GitHub’s Push Protection represents a major step forward in preventing the exposure of

hardcoded credentials, but it remains far from a complete solution:

 • Push Protection does not detect and stop generic secrets, the fastest-growing secret category.

 • Push protection is free for public repositories but is only available for private repositories

with a paid plan. If a private repository becomes public, all the hardcoded secrets

developers previously committed will be exposed.

 • Developers can also bypass push protections with a few clicks, marking them as a "test

credential" or simply saying they will fix it later.

Push protection is certainly helping with the education of developers and is showing evidence

of starting to curb the issue of API key leakage. Nevertheless, GitHub’s solution is limited by

its focus on maximizing developer velocity rather than ensuring security.

Private Repositories 8 Times More Likely
To Contain Secrets
This year, we compared our findings from public GitHub with anonymized customer data.

The data shows developers treat secrets in

public code differently than in private code.

The trend suggests that organizations may be

relying on “security through obscurity,” assuming

that because their repositories are private,

the secrets contained within them are safe.

0

5000

10000

15000

20000

25000

2023-01

2023-07

2024-01

2024-07

Google API Keys were not impacted by GitHub Push Protection

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

13

MENU

Attackers who gain access to these internal repositories can easily widen their

footprint, moving laterally and with no resistance between systems.

A Story From the Field

Repository metadata represents an often overlooked source of credential exposure.

While commit content may be scrutinized for secrets, the metadata itself can contain

sensitive information. In one particularly concerning case, a developer had inadvertently

configured their email address as their password in their Git configuration.

When examining the commit’s API response:

{
 “sha”: “fe11116eabd916d818c7f1cb07d0f08eccc761cb”,
 “commit”: {

Data analysis by GitGuardian

Private vs public repositories

THE STATE OF SECRETS SPRAWL 2025

14

MENU

 “author”: {
 “name”: “Developer Name”,
 “email”: “3lGzQ/JdFkdyb!”,
 “date”: “2024-01-01T06:66:66Z”
 }
 }
}

The “email” field contained the developer’s actual password rather than an email

address. This password was valid and provided access to the developer’s account,

demonstrating how even carefully reviewed code can expose credentials through

tangential metadata.

Some examples of our findings for certain kinds of secrets

MongoDB, the very popular open-source document database, credentials

are again the leakiest secrets this year, making up 18.8% of detected secrets

in public repositories while only showing up in 3.9% in private repositories.

Telegram bot tokens made up 6.3% of the secrets we found in public but

a negligible amount in private repositories, which makes sense as most

enterprises are not using Telegram as part of their workflow.

Data analysis by GitGuardian

Top 10 specific secrets leaked on public GitHub in 2024

THE STATE OF SECRETS SPRAWL 2025

15

MENU

However, when we turn to credentials for paid and enterprise platforms, such as

AWS IAM keys, they appear as plaintext in 8% of the private repos we

researched but appear in only 1.5% of public repos. The most common plaintext

credentials found were ODBC Connect Strings used with Microsoft SQL Server,

making up 10% of all specific secrets detected in private repos but making up

less than 0.5% of all secrets found on GitHub publicly.

Okta is another interesting secret that rarely gets leaked publicly, showing up

only a few hundred times in our scans. However, Okta keys make up a full 1.7% of

all the keys found in private.

Generic secrets are proportionally more prevalent in private repositories than

in public ones. Generic secrets represent 74.4% of all secret types in private

repositories, compared to only 58% in public repositories.

If we focus on just generic passwords, the story is even more telling of

developers relying on the privacy of the repository to protect them. In private

repositories, 24% of all generic secrets we found were generic passwords,

versus 9% of all the generic secrets found in public repositories.

Top 10 specific secrets in private repositories

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

16

MENU

Top 5 generic secrets leaked in public GitHub repositories

Data analysis by GitGuardian

Top 5 generic secrets leaked in private repositories

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

17

MENU

Fastest Growing Services

OpenAI and other AI services are not anymore the fastest-growing keys leaked, as they are

identified by GitHub Push Protection. The service with the largest year-over-year growth of

leaks is the 188% increase for Neo4j, the popular open-source graph database used in LLMs to

create and manage knowledge graphs, providing context to reduce hallucinations and helping

teams better visualize complex data.

We also see a rise in the number of keys for Low-Code/No-Code tools like Airtable, Supabase,

and Zapier. This rise correlates with the rise of “shadow IT,” where teams outside of traditional

IT and development are introducing new platforms into the enterprise at an accelerating

rate. Furthermore, the increasing adoption of AI agents is fueling this trend, as AI drives

the demand for and integration with low-code and no-code platforms, many of which also

offer built-in AI capabilities. Reports from Gartner and other researchers predicted this to be

upwards of 50% of technology spending.

We know our findings are only the tip of the iceberg, as the majority of the code produced

is not public on GitHub. There is an extremely large volume of code being produced inside

organizations, and unfortunately, the data points to the fact people are paying the least

attention when it comes to proper secrets management practices.

Data analysis by GitGuardian

Fastest growing types of secrets

THE STATE OF SECRETS SPRAWL 2025

18

MENU

Mapping the SDLC:
Where Leaks Happen
For years, source code management tools have been the primary focus of

secrets detection. However, secrets appear wherever teams collaborate, often

in collaboration and project management tools like Slack, Jira, or Confluence.

The rise of low-code and no-code development has only worsened the issue.

More employees—many without security training—are handling secrets,

increasing exposure risks. Unlike Source Code Management tools (SCM),

collaboration platforms lack built-in security controls, and their high message

volume makes real-time protection a challenge.

Collaboration Tools:
The Overlooked Frontier of Secrets
Sprawl
For the past 2 years, GitGuardian has been detecting secrets outside of

source code. We observed the number of detected secrets grow quickly as

customers expand detection coverage across their productivity platforms.

SCM systems vs collaboration tools

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

19

MENU

Secrets in collaboration tools are often more critical than those in SCM

tools—38% of incidents were classified as highly critical or urgent, compared

to 31% in SCM. This happens because:

 • Developers are less cautious with secrets outside SCM.

 • SCM prevention mechanisms (e.g., shift-left security) reduce critical

incidents, whereas collaboration tools lack equivalent safeguards.

 • Less security-aware employees frequently handle secrets in these tools.

Secrets in SCM and collaboration tools are almost entirely distinct—only 7%

of secrets appear in both. Organizations should address collaboration tools as a

different security challenge.

Secrets in SCM also found in collaboration tools

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

20

MENU

Collaboration
Tool

Leak Rate Average Instances
per Customer

Likelihood of Finding
Secrets

Key Observations

Slack 2.4% of
channels

1,500 channels per
workspace

Very High – Most
organizations likely have
multiple
exposed secrets.

Secrets appear frequently,
often with multiple leaks
per channel due to real-time
messaging.

Confluence 0.5% of
spaces

400 spaces per
customer

Moderate – Some
organizations may have a
few exposed secrets.

Secrets are less common but
still present, likely due to
documentation misuse.

Jira 6.1% of
tickets

150 projects per
customer

High – Many
organizations have some
exposed secrets.

Highest leak rate.
Secrets are frequently
shared in tickets, probably
for troubleshooting.

% of sources with at least one secret incident

Data analysis by GitGuardian

While SCM tools have built-in protections, productivity platforms remain a growing attack

surface. This risk compounds as organizations use many different collaboration tools.

Expanding detection capabilities beyond source code is essential to increase coverage, which

improves the recall and therefore helps prevent breaches.

THE STATE OF SECRETS SPRAWL 2025

21

MENU

100,000+ Valid Secrets on Docker Hub
Hardcoded secrets continue to be common practice in cloud environments to

simplify testing and deployment. Docker images, being a crucial part of modern

cloud infrastructure, are not immune to this problem. Our comprehensive

analysis of 15 million public Docker images from Docker Hub, the largest-

scale scan of this kind ever conducted, has revealed a concerning reality:

approximately 100,000 valid secrets, including AWS keys, GCP keys, and GitHub

tokens belonging to Fortune 500 companies, are currently exposed.

The detailed methodology of this research is described in the methodology section.

The analysis involved scanning 16 million layers across these images,

representing over 30TB of data. This unprecedented investigation

uncovered not just the volume but also the nature of exposed secrets

on Docker Hub.

The State of Secrets Sprawl in Docker Images

DockerHub analysis revealed that approximately 98% of detected secrets were

found exclusively in layers, with most appearing in layers smaller than 15MB.

This finding emphasizes the critical importance of detailed Docker image scanning,

as configuration analysis alone proves insufficient for comprehensive security.

THE STATE OF SECRETS SPRAWL 2025

22

MENU

When examining the manifests where secrets were detected, a concerning

pattern emerged:

 • ENV, RUN & ARG instructions were responsible for 78% of secret leaks

 • ENV instructions alone accounted for 65% of all leaks

Instructions where secrets were detected

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

23

MENU

Valid Secrets Analysis

Out of 1,179,475 unique secrets detected, 101,186 were automatically verified

as valid, with 97% found exclusively in layers. These secrets provide access to:

 • Databases

 • AWS infrastructures

 • GitHub Enterprise instances

 • Artifactory repositories

This represents exposure across 170,227 Docker images.

The nature of valid secrets in DockerHub notably differs from other platforms

like GitHub. While platforms such as GitHub have established notification

systems for key partners like Microsoft and OpenAI, resulting in quick

invalidation of exposed secrets, DockerHub lacks such systematic protection.

This gap in security is evident in the discovery of over 7,000 valid AWS keys still

active in public images.

Data analysis by GitGuardian

Breakdown of valid secrets found in public Docker images

THE STATE OF SECRETS SPRAWL 2025

24

MENU

Risk Patterns

Among generic secrets, approximately 40,000 RSA private keys were identified

in the dataset.

This research underscores a critical gap in container security practices and

highlights the need for more robust secret management in containerized

environments. The findings suggest that current security measures and

awareness around Docker image security need significant enhancement to

address the sprawling exposure of sensitive credentials.

A Story From the Field

Docker image layers present unique challenges for secrets management. Analysis of

a production image appeared initially secure, but examination of the image history

revealed a concerning pattern:

$ docker history organization/application-production
...
<missing> 6 months ago /bin/bash -o pipefail -c rm -f
.npmrc || : 0B

This indicated an attempt to remove a credentials file after build operations. However,

extraction of the appropriate layer revealed:

//npm.pkg.github.com/:_authToken=ghp_6e******
registry = https://npm.pkg.github.com/
always-auth=true

This demonstrates a critical security flaw: even when files containing secrets are deleted

in later build stages, the credentials remain permanently accessible in the underlying

layers. Proper secrets management must account for the immutable nature of container

layer history.

THE STATE OF SECRETS SPRAWL 2025

25

MENU

Copilot increases secrets incidence
rate by 40%
2024 confirmed the progression of the AI topics. Most providers improved

the performances of LLM models and this technology is finding more and more

traction across all industries. Application development seems to follow this

trend to the point where GitHub now offers Copilot as part of its free offering.

On the usage side, we observe an increase in the number of repositories using

Copilot. Between 2023 and 2024, this number increased by 27%.

This tends confirm developers are more and more relying on AI tools

to improve their productivity.

Number of repositories with Copilot enabled

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

26

MENU

At the same time, researchers across the globe studied the security of the

code generated by LLM (examples: 1, 2 and 3). While no study has specifically

quantified the issue of secret leaks, GitGuardian's data supports the general

assessment of insecurity.

We conducted an analysis of secrets leaked in repositories where Copilot is allowed

and active. In a sample of approximately 20,000 such repositories, over 1,200

leaked at least one secret. This represents 6.4% of the sampled repositories.

This incidence rate is 40% higher than what we observe across all public

repositories, which stands at 4.6%. Some people may feel the incidence is not

that much higher, but in fact it means that AI does not deliver any improvement

in terms of security in this matter.

This disparity can be attributed to two factors. First, the code generated by Large

Language Models (LLMs) may inherently be less secure. Second, and perhaps more

significantly, the use of coding assistants may be pushing developers to prioritize

productivity over code quality and security.

Despite the continuous improvement of coding assistants, this data

underscores the ongoing need for robust security controls, particularly

in the area of secret detection.

Copilot enabled repositories leaking secrets

Data analysis by GitGuardian

https://arxiv.org/abs/2408.07106
https://arxiv.org/abs/2502.01853
https://arxiv.org/abs/2311.00889
https://blog.gitguardian.com/github-copilot-security-and-privacy/

THE STATE OF SECRETS SPRAWL 2025

27

MENU

Detected but Not Fixed: The Alarming
Persistence of Exposed Credentials
Detecting a leaked secret is just the first step. The true challenge lies in swift remediation.

This alarming trend persists over the years.

The continued validity of these secrets suggests that

organizations lack visibility into leaked credentials or

fail to enforce lifecycle management practices such

as automated expiration and rotation.

This persistence of long-lived secrets is particularly

pronounced in the context of Non-Human Identities

(NHIs), such as service accounts and API keys.

Our analysis of over 115,000 initially valid secrets reveals a critical truth:

a significant number remain active long after their initial detection. This

underscores a fundamental challenge: while secret detection capabilities have

advanced significantly, the remediation process often lags behind.

% of secrets still valid after exposure

Data analysis by GitGuardian

70%
of valid secrets detected in public

repositories in 2022 remain active today

THE STATE OF SECRETS SPRAWL 2025

28

MENU

NHIs, often outnumbering human identities, rely heavily on credentials

for authentication and access to resources. However, the long lifespan

of these credentials significantly increases their vulnerability to exploitation,

emphasizing the critical need for organizations to prioritize remediation efforts.

As organizations increasingly adopt automation, cloud computing, and microservices

architectures, the number of NHIs will continue to skyrocket. This proliferation

of identities will only increase the complexity of managing and securing these

credentials, making it even more challenging to ensure timely remediation.

Several key factors contribute to the persistence
of long-lived NHI credentials:

 • Many NHIs lack proper lifecycle management, leading to long-lived

and vulnerable credentials.

“One organization reported that they want to be alerted when secrets tied to
NHIs expire, but their current secrets managers don’t offer this functionality.
As a result, they provision keys with two-year lifespans, increasing risk.”

 • Static credentials are inherently riskier than dynamic ones.

“One organization shared that migrating from static to dynamic secrets is an
objective, but it’s challenging to manage and track across systems.”

 • Organizations often fail to rotate secrets regularly, increasing exposure.

“A security lead mentioned they aim to rotate secrets annually, but this process
remains challenging to enforce.”

 • The proliferation of secrets across various environments hinders

visibility and control.

“A security team emphasized the importance of segregating secrets between
production and staging environments to minimize cross-environment risks.”

Addressing the above challenges requires a multi-faceted approach.

While organizations are increasingly adopting secrets management solutions and

vaults, these tools alone don’t solve the problem.

Secrets Managers: Not a Complete Solution

THE STATE OF SECRETS SPRAWL 2025

29

MENU

Secrets managers are widely recognized as a best practice for secrets

management and storage, but they can only be effective if they are consistently

used and if their secrets are not extracted and hardcoded elsewhere.

Secrets sprawl and fragmentation occur as organizations juggle multiple

secrets management tools across teams, including those provided by IaaS

vendors, leading to a decentralized environment. This fragmentation makes it

difficult to maintain a unified approach to NHI secrets governance, resulting in

inconsistent security practices across teams and projects.

Insecure authentication to secrets managers is another risk. If credentials

stored on the workload to authenticate with the secrets managers aren’t

properly secured, it undermines their entire purpose.

Moreover, while they excel at storing secrets securely, they typically do

not manage the full lifecycle of credentials, leaving organizations to rely

on additional tools. This gap complicates the management of Non-Human

Identities, especially as organizations scale their infrastructure.

Our 2024 analysis of secrets managers usage across public GitHub repositories

reveals a crucial insight: secret leaks still occur, even in environments where

secrets managers are available.

Key findings from repositories utilizing secrets managers

We examined a sample of 2,584 repositories where CI/CD configurations

indicated the availability of a secrets manager. Alarmingly, 132 repositories had

leaked at least one secret in 2024, representing 5.1% of the studied repositories.

THE STATE OF SECRETS SPRAWL 2025

30

MENU

While repositories leveraging secrets managers show a slightly higher leak

incidence, these numbers are not directly comparable. Such repositories are

more likely to handle sensitive information, increasing the risk of exposure.

In contrast, many public repositories may never deal with secrets at all.

The nature of leaks in repositories leveraging secrets managers

The types of secrets leaked in these repositories mirror those typically found in

corporate environments. This suggests that even organizations with strong

security measures, such as those using secrets managers, are vulnerable to

secret leaks.

Public repositories with and without secrets managers

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

31

MENU

AWS credentials were the most commonly leaked, followed by Slack webhooks

and Azure AD API keys—all tools frequently used in corporate settings.

Excessive Permissions Make
Secret Leaks More Severe
Further compounding the issue, our analysis of public data highlights the mismanagement

of permissions associated with leaked secrets. While examining GitLab and GitHub tokens,

we discovered that a significant percentage had excessive permissions:

 • 99% of GitLab API keys had either full access (58%) or read-only access (41%).

 • 96% of GitHub tokens had write access, with 95% offering full access to repositories.

Leaked Secret types in repositories leveraging secrets managers

Data analysis by GitGuardian

THE STATE OF SECRETS SPRAWL 2025

32

MENU

Excessive permissions significantly amplify the potential impact of

a compromised NHI, enabling attackers to move laterally across systems,

escalate privileges, bypass security controls, and make it difficult to track

or revoke access promptly.

This over-permission often stems from the challenges developers face in

managing permissions during project work. When under time constraints,

it’s common for developers to grant all permissions “just to get things done,”

with the intention of revisiting and tightening access later—a step that is

frequently overlooked. This lack of caution can lead to dangerous exposures,

such as leaving high-access keys embedded in code.

Many repositories are deleted or made private after a leak, creating “zombie

leaks” where the secret remains exposed in the deleted repository.

Excessive permissions granted to API keys and tokens

Data analysis by GitGuardian

https://blog.gitguardian.com/zombie-leaks/
https://blog.gitguardian.com/zombie-leaks/

THE STATE OF SECRETS SPRAWL 2025

33

MENU

Bridging the remediation gap
While dealing with non-human identities (even in environments utilizing

secrets managers) the remediation gap remains a consistent challenge. To effectively

close this gap, organizations must adopt a holistic approach that integrates detection

with swift, automated remediation processes:

 • Treat secret leak remediation as a critical security objective with the same

urgency as detection.

 • Provide comprehensive developer training on secure secrets manager usage and

the risks of hardcoding secrets.

 • Integrate secrets discovery and security tools with secrets managers to

automate secret rotation and revocation.

 • Address secrets managers sprawl by implementing strategies to centralize and

consolidate secrets management solutions.

 • Implement tools that discover, track, and monitor NHIs across the organization,

giving deep insights into secret usage and dependencies.

 • Minimize the reliance on static secrets and embrace principles like least privilege

and just-in-time access.

 • Adopt “secretless” approaches where possible to minimize the reliance

on traditional secrets by exploring alternative authentication and

authorization mechanisms.

Managing non-human identities and their secrets is an ongoing process that requires

constant effort and adaptation.

THE STATE OF SECRETS SPRAWL 2025

34

MENU

Understanding the Impact:
Real-World Risks of Secrets Sprawl
While the volume of leaked secrets continues to grow, the severity and potential impact

of these exposures varies significantly across different types of credentials. Our research

reveals that some of the most critical exposures aren’t necessarily the most common ones.

Primary Risk Categories and Attack Vectors
There are several distinct categories of secrets that present significant risks when exposed.

Each category exhibits unique attack patterns and potential impact levels, requiring specific

attention and mitigation strategies.

Package and Container Registry Credentials

Compromising these credentials allows attackers to publish malicious packages or containers,

overwrite legitimate artifacts, or access sensitive internal builds, leading to supply chain

attacks or service disruptions. We also find credentials in such registries, which could be used

to pivot deeper in the targeted infrastructure.

Observed attack patterns:

 • Initial access through leaked credentials

 • Repository enumeration

 • Malicious package deployment

 • Supply chain compromise

 • Downstream system infection

Examples

 • Attackers built and executed Docker images bypassing detection in place

 • Valid Kubernetes secrets are exposed in public repositories allowing attackers to conduct

supply chain attacks

https://www.aquasec.com/blog/malicious-container-image-docker-container-host/
https://www.aquasec.com/blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets/
https://www.aquasec.com/blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets/

THE STATE OF SECRETS SPRAWL 2025

35

MENU

Case Study: Artifactory Token Exposures

A recent investigation into Artifactory token leaks revealed a concerning pattern:

while not among the top 10 most commonly leaked secrets, these credentials

presented an unusually high-risk profile. Key findings include:

 • 60% of leaks occurred in build configuration files

 • Most leaked tokens were tied to production environments

 • The majority of exposures were found in corporate contexts

 • Critical sectors affected included pharmaceutical, energy, defense,

and major tech companies

This pattern highlights how the criticality of leaked secrets isn't always correlated

with their frequency of exposure.

Cloud Platform Credentials

These credentials often have broad access to cloud resources, including compute, storage,

and networking. A compromise could lead to resource abuse such as cryptojacking, data

exfiltration, or full service compromise.

Observed attack patterns:

 • Resource creation for cryptojacking or similar revenue generation

 • Data exfiltration operations

 • Complete service compromise

 • Infrastructure manipulation

Examples

 • The attacker uses compromised credentials to create computing resources, then use them

to mine cryptocurrency

 • The attacker uses compromised credentials to hijack victims’ GenAI infrastructure and

power their own disreputable LLM applications

https://www.microsoft.com/en-us/security/blog/2023/07/25/cryptojacking-understanding-and-defending-against-cloud-compute-resource-abuse/
https://www.microsoft.com/en-us/security/blog/2023/07/25/cryptojacking-understanding-and-defending-against-cloud-compute-resource-abuse/
https://permiso.io/blog/exploiting-hosted-models
https://permiso.io/blog/exploiting-hosted-models

THE STATE OF SECRETS SPRAWL 2025

36

MENU

Storage Service Access

Access to storage accounts could expose sensitive data, including PII (Personally Identifiable

Information), intellectual property, or backups, resulting in compliance violations or

significant financial loss.

Observed attack patterns:

 • Data exfiltration campaigns to connect to an Azure Blob Storage and enumerate

the available containers

 • Targeted PII collection operations

 • Source code and IP theft

 • Ransomware through backup encryption

Examples

 • Using valid credentials, the attacker use legitimate AWS S3 features to encrypt files

contained in buckets, then access for a ransom to provide the decryption keys

Source Code Management (SCM) System Credentials

SCM tokens can provide access to private repositories, exposing sensitive code,

configurations, and additional secrets. Attackers can also manipulate repositories to inject

malicious code.

Observed attack patterns:

 • Source code and IP theft

 • Supply chain code injection

 • Secret mining from codebases

 • Repository manipulation and deletion

Examples

 • Attackers stole valid credentials from GitHub, then uploaded a compromised Ultralytics

Python module to PyPI

https://www.halcyon.ai/blog/abusing-aws-native-services-ransomware-encrypting-s3-buckets-with-sse-c
https://www.halcyon.ai/blog/abusing-aws-native-services-ransomware-encrypting-s3-buckets-with-sse-c
https://blog.gitguardian.com/the-ultralytics-supply-chain-attack-connecting-the-dots-with-gitguardians-public-monitoring-data/
https://blog.gitguardian.com/the-ultralytics-supply-chain-attack-connecting-the-dots-with-gitguardians-public-monitoring-data/

THE STATE OF SECRETS SPRAWL 2025

37

MENU

Secrets Management System Credentials

A compromise of secret management tokens (Hashicorp Vault Token, LDAP,

Active Directory…) allows attackers to retrieve and misuse all the sensitive

secrets stored in a centralized location, amplifying the risk across systems

and applications.

Observed attack patterns:

 • Mass secret extraction

 • Authentication system compromise

 • Cross-system privilege escalation

 • Organization-wide access exploitation

Database Credentials

Database credentials can provide unauthorized access to critical data.

Attackers can steal, modify, or delete information, resulting in data breaches,

operational disruptions, or compliance penalties.

Observed attack patterns:

 • Data exfiltration campaigns

 • Privilege escalation via misconfiguration

 • Database schema manipulation

 • Credential harvesting from stored data

Examples

 • DeepSeek database containing sensitive data such as clients credentials

 • Malware that targets PostgreSQL databases through brute force attacks,

ultimately deploying cryptocurrency miners and gaining unauthorized

system access

https://www.wiz.io/blog/wiz-research-uncovers-exposed-deepseek-database-leak
https://www.aquasec.com/blog/pg_mem-a-malware-hidden-in-the-postgres-processes/
https://www.aquasec.com/blog/pg_mem-a-malware-hidden-in-the-postgres-processes/
https://www.aquasec.com/blog/pg_mem-a-malware-hidden-in-the-postgres-processes/

THE STATE OF SECRETS SPRAWL 2025

38

MENU

Business and
technical impact

 • Cloud resource creation

 • Supply chain manipulation

 • Infrastructure compromise

Additional
credential access

 • Additional secret discovery

in artifacts

 • Access to build configurations

 • Service credential extraction

Initial
access

 • Discovery of leaked token

 • Permission enumeration

 • Resource mapping

Attacker

Company developers

Package Registry

Package Registry

Build Systems

Build Systems

Production Env

Production Env

List Popular Packages
(API Request)

Compromised Token
with Write Access

Package Stats & Metada

Download Target Package

Package Contents

Upload New Version
(Higher Version Number)

Upload Confirmation

Package Available for Distribution

Regular Dependency Update

Poisoned Package

Build Process Execute Malicious Code

Display Built Artifacts

Production Systems Compromised

Impact Multiplication: Each downstream system potentially affected

The Cascade Effect:
From Minor Leak to Major Breach
There is often a common pattern where seemingly limited access can cascade into critical

breaches:

THE STATE OF SECRETS SPRAWL 2025

39

MENU

DevOps Context Personal Repository Supply Chain Multiplication

DevOps tools are close to the
production so are more likely to
affect the software supply chain or
the production environment

Credentials often have elevated
privileges

Automation requires broad access

Build processes touch multiple
systems

Corporate credentials in personal
spaces

Limited security oversight

Difficult to track and monitor

Single compromise affects multiple
organizations

Difficult to track impact scope

Complex remediation process

Secret leaks rarely remain isolated incidents. Instead, they typically serve

as entry points for sophisticated attack chains that can compromise entire

organizations and their supply chains. This reality demands a shift from simple

secret detection to comprehensive secret lifecycle management and rapid

incident response capabilities.

Critical Timeline Statistics

 • 90% of exposed secrets remain valid after 5 days (State of Secrets Sprawl 2024)

 • Active exploitation begins within hours of exposure

 • Supply chain attacks can affect thousands of downstream systems

 • Average time to detection: 3+ months for self-detected leaks

Risk Amplification Factors

https://www.gitguardian.com/state-of-secrets-sprawl-report-2024

THE STATE OF SECRETS SPRAWL 2025

40

MENU

About GitGuardian
GitGuardian is an end-to-end NHI security platform that empowers software-

driven organizations to enhance their Non-Human Identity (NHI) security and

comply with industry standards. With attackers increasingly targeting NHIs,

such as service accounts and applications, GitGuardian integrates Secrets

Security and NHI Governance. This dual approach enables the detection of

compromised secrets across your dev environments while also managing

non-human identities and their secrets lifecycle. The platform supports

over 450 types of secrets, offers public monitoring for leaked data, and

deploys honeytokens for added defense. Trusted by over 600,000 developers,

GitGuardian is the choice of leading organizations like Snowflake, ING, BASF and

Bouygues Telecom for robust secrets protection.

https://www.gitguardian.com/github-security-audit

THE STATE OF SECRETS SPRAWL 2025

41

MENU

Appendix

Definitions

Secret
A secret is any sensitive data we want to keep private. When discussing

secrets in software development, we refer to digital authentication

credentials that grant access to services, systems, and data. These are most

commonly API keys, username and password combos, or private keys. In this

report, secrets refer to credentials hard coded in plaintext.

Occurrence
When our detection engine detects a hard-coded secret, it becomes an

occurrence. A single incident generally encompasses multiple occurrences:

the various locations across files or repositories where the secret was

identified. Occurrences map to the magnitude of the sprawl and correlate

to the amount of work needed to redistribute the secret after it has been

rotated. Occurrences are similar to technical debt.

Detector
At GitGuardian, a detector is a set of rules that filter documents for secrets.

Beyond simple regex patterns, detectors are a sophisticated blend of pre-

and postvalidation processes engineered for optimal speed, precision, and

recall. These steps are performed using a combination of regular expressions

and heuristics (e.g., variable assignments) based on contextual information.

GitGuardian detectors boast features like automatic deduplication and the

ability to recognize prefixed and base64 encoded secrets, such as Kubernetes

secrets. GitGuardian developed the vastest library of specific detectors to

detect more than 450 types of secrets. You can find the exhaustive list here.

https://www.gitguardian.com/detectors

THE STATE OF SECRETS SPRAWL 2025

42

MENU

Specific detector
Specific detectors are designed to detect secrets for a specific provider, for

example, the AWS IAM detector will only detect AWS IAM secrets. They offer

high recall and precision, meaning they will rapidly catch all specific secrets

while raising a low number of false alerts.

Generic detector
Generic detectors are designed to catch a broad variety of secrets that

cannot be tied to a specific service. For example, the generic password

detector aims to catch any strings assigned to a password variable. This broad

scope inherently increases their susceptibility to generating false positives,

or overlooking true positives, unless meticulous attention is given to fine-

tuning their parameters. To strike a balance, GitGuardian’s secrets detection

engine accepts a false positive rate of approximately 20% as a trade-off for

achieving high recall.

Secret incident
A secret incident is a uniquely identified security event determined to

impact the organization and necessitates remediation. An incident often has

multiple occurrences across files or repositories.

Non-human identities (NHIs)
NHIs are machine-based credentials that allow API integrations and

automated workflows, which require machine-to-machine communication.

These include API keys, service accounts, certificates, tokens, and roles, which

collectively enable the scalability and efficiency required in modern cloud-

native and hybrid environments.

THE STATE OF SECRETS SPRAWL 2025

43

MENU

Methodology

Study Perimeter

To ensure that the data presented here most accurately represents the state of secrets

sprawl, and particularly to eliminate as many generic false positives as possible, filtering was

applied to the data collected in 2024.

The filter is applied per detector and determines whether a check is necessary to count the

secrets reported by this detector. If so, the secret is only counted if the first occurrence of the

secret was valid. Otherwise, the secret is directly included in the count.

This method significantly boosts the precision of some detectors designed to accept a margin

of false positives to avoid compromising detection recall. For instance, the GitHub Access

Tokens detector employs a broad regex pattern prone to flagging numerous false positives.

Hence, this detector underwent filtering. Detectors like AWS keys, which rely on specific

prefixes, already exhibit high precision and do not require this additional filtering step.

Beyond the filtering process, we also manually excluded outliers—repositories exhibiting

abnormally high leak rates, where a secret might be committed every minute—from this

defined perimeter to ensure the integrity and accuracy of our metrics.

Learn how our machine learning models, such as the one powering FP Remover, identify and

validate more generic secrets.

Docker Analysis Methodology

Our investigation into Docker Hub covered 9.3M unique repositories from 3.2M users, focusing

on the 5 most recent tags per repository. After filtering through 198M Docker instructions

totaling 4.8PB, we analyzed 15M layers (30TB) over three weeks using ggshield, GitGuardian's

CLI tool. The detected secrets were validated through automated service checks, API

responses, and cross-referencing with public key databases where possible.

https://blog.gitguardian.com/ai-false-positive-remover-v2/
https://blog.gitguardian.com/ai-false-positive-remover-v2/

THE STATE OF SECRETS SPRAWL 2025

44

MENU

Secrets managers usage analysis

We analyzed a sample of 2,584 public repositories for which we identified

a secrets manager was available. To find those repositories, we relied on the

CI/CD configuration files when those indicated secrets were pulled from a

secrets manager at build time.

We relied on the available configurations for:

 • GitHub actions

 • Azure Pipeline

 • Circle CI

Other CI/CD were also studied with less relevance and volume.

Copilot usage analysis

We analyzed a sample of 19,151 public repositories for which we identified Copilot was in use.

To find those repositories, we relied on development environment configuration files hosted

on the repository.

The Dev Container extension allows the configuration of the Visual Studio Code IDE similar to

a Dockerfile. The activated editor extensions can be configured with it.

{
 “name”: “codespace”,
 “customizations”: {
 “vscode”: {
 “extensions”: [
 “GitHub.copilot”
]
 }
 }
}

We used this file to select repositories when the github.copilot extension was configured.

The secrets in those repositories were then analyzed following the methodology

for all repositories.

THE STATE OF SECRETS SPRAWL 2025

45

MENU

For each of those technologies, we identified how the configuration of the

secrets manager occurred for a list of enterprise technologies:

 • HashiCorp

 • Azure Key Vault

 • Conjur

 • AWS secret manager

 • Akeyless

 • Google Cloud Secrets Manager secret manager

 • Bitwarden

 • Infisical

 • Doppler

That way, we were able to identify repositories using each of those providers.

For example, repositories using GitHub actions with Hashicorp vault can be

identified because they use the hashicorp/vault-action.

The secrets in those repositories were then analyzed following the methodology

for all repositories.

Analysis of Leaked Secret Permissions

This study analyzed the permissions associated with leaked GitLab and GitHub

API tokens. For both platforms, the study used their respective API functionality

to retrieve the scopes of each token, allowing for the determination of read-

only versus write access. The results were then tabulated and analyzed to

calculate the percentage of tokens with different access levels.

The State of Secrets Sprawl 2025

DATA ANALYSIS BY GITGUARDIAN

Learn more at www.gitguardian.com

© 2025 GitGuardian. All Rights Reserved.

https://www.gitguardian.com/
http://www.gitguardian.com

	How Leaky Was 2024
	AI-Enhanced Detection: Revealing the Full Scope of Credential Exposure
	58% of All Detected Secrets Are Generic
	GitHub’s Push Protection: A Promising Initiative, But Not a Silver Bullet
	Private Repositories 8 Times More Likely To Contain Secrets
	Fastest Growing Services

	Mapping the SDLC: Where Leaks Happen
	Collaboration Tools: The Overlooked Frontier of Secrets Sprawl
	100,000+ Valid Secrets on Docker Hub
	Copilot increases secrets incidence rate by 40%

	Detected but Not Fixed: The Alarming Persistence of Exposed Credentials
	Secrets Managers: Not a Complete Solution
	Excessive Permissions Make Secret Leaks More Severe
	Bridging the remediation gap

	Understanding the Impact: Real-World Risks of Secrets Sprawl
	Primary Risk Categories and Attack Vectors
	The Cascade Effect: From Minor Leak to Major Breach
	Critical Timeline Statistics
	Risk Amplification Factors

	About GitGuardian
	Appendix
	Definitions
	Methodology

