
1CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

CONTI UNPACKED:
UNDERSTANDING RANSOMWARE
DEVELOPMENT AS A RESPONSE
TO DETECTION – A DETAILED
TECHNICAL ANALYSIS
Authors: Idan Weizman, Antonio Pirozzi July 2021 SentinelLABS Research Team

2CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

TABLE OF
CONTENTS

3	 INTRODUCTION

4	 CONTI BACKGROUND

6	 OPERATIONAL BACKGROUND

7 	 DEEP DIVE INTO THE
DEVELOPMENT PROCESS

13	 THE FIRST “USABLE” SAMPLE

17	 MAKING SOME HEADLINES

18	 MIXING IT UP

22	 ADDITIONAL TOUCHES

23	 SUMMARY

25 	 CONCLUSION

26 	 APPENDIX A

32 	 ABOUT SENTINELLABS

INTRODUCTION

S e n t i n e l L a b s Te a m

Not yet two years old and already in its seventh iteration, Ransomware as a

Service variant Conti has proven to be an agile and adept malware threat, capa-

ble of both autonomous and guided operation and with unparalleled encryption

speed. As of June 2021, Conti’s unique feature set has helped its affiliates to

extort several million dollars from over 400 organizations. In this report, we de-

scribe in unprecedented detail the rapid evolution of this ransomware and how it

has adapted quickly to defenders’ attempts to detect and analyze it.

4CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

CONTI BACKGROUND

Conti is developed and maintained by the so-called TrickBot gang, and it is mainly operated
through a RaaS affiliation model. The Conti ransomware is derived from the codebase of Ryuk and
relies on the same TrickBot infrastructure.

Conti samples first began to be seen around October 2019. Recent attacks, such as that on Ireland’s
public health service, demonstrate that Conti has succeeded in becoming just as dangerous if
not more so than its predecessor, for both organizations and the public at large. There are 399
reported Conti incidents at the time of writing:

In common with many other ransomware families, Conti also operates a leaks site in order to put
further pressure on its victims to pay.

Historically, ransomware authors have built their tools adopting an iterative process, evolving and
continuously adapting them to make them more effective and evasive. This has happened since Dyre
(2014), and it’s still true in Conti, which looks different in each iteration. This development model
proves effective in managing the malware’s stealthiness. With each iteration, the ransomware
signature changes because all the static indicators are encrypted using a different logic.

Conti Incidents Over Time

time

0

20

40

60

80

100

2020 2021

Qtr3 Qtr4 Qtr1 Qtr2

Aug Sept Oct Dec Jan Feb Mar Apr May JunNov

9 95 26 52 31 41 36 38 50 165

#
 o

f i
nc

id
en

ts

Conti Incidents Over Time

time

0

20

40

60

80

100

2020 2021

Qtr3 Qtr4 Qtr1 Qtr2

Aug Sept Oct Dec Jan Feb Mar Apr May JunNov

9 95 26 52 31 41 36 38 50 165

#
 o

f i
nc

id
en

ts

Fig 1: Source DarkTracer

https://labs.sentinelone.com/tag/trickbot/
https://labs.sentinelone.com/an-inside-look-at-how-ryuk-evolved-its-encryption-and-evasion-techniques/
https://www.sentinelone.com/blog/the-good-the-bad-and-the-ugly-in-cybersecurity-week-21-2/
https://drive.google.com/file/d/1MI8Z2tBhmqQ5X8Wf_ozv3dVjz5sJOs-3/view

5CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

This technical analysis aims to outline the Conti phylogenesis since the ransomware first
appeared on the scene, in order to build a comprehensive knowledge of Conti’s evolution and
its development pipeline.

For this study, we clustered Conti samples by timestamps. All the samples used in this research
are readily available from OSINT and are recognized as Conti both by the community and by static
and dynamic analysis done herein. We found that each iteration implemented new features in
Conti and evolved existing ones. The following key ransomware characteristics are summarized:

•	 Obfuscation improvements: Since the early ‘test samples’ (late 2019), Conti started
implementing a simple XOR mechanism to hide the API names resolved at runtime. From
June 2020, a custom encoding function for string obfuscation was also employed.

•	 Focus on speed: Conti developers focus mainly on speed; Conti uses up to 32 concurrent
CPU threads for file encryption operations and, starting from the iteration of September
2020, they switched the encryption algorithm from AES to CHACHA in order to further
speed-up the encryption process. Efficiency seems to be a functional requirement in the
Conti development process. This translates into less time required to lock victim’s data and
reduce the chance of the operation being blocked.

•	 Optimization of file encryption: from 2nd September 2020, a new logic for file encryption
was added. The logic implements two different modes: full and partial. depending on
file extension and file dimension. Moreover, encryption through IoCompletionPorts was
replaced by C++ queues and locks in January 2021.

6CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

OPERATIONAL BACKGROUND

Conti shares some code with Ryuk version 2 and uses the same template for the ransom note.
Starting from June 2018, Ryuk began to be deployed by the Trickbot loader, which was spread
through Emotet. Such attacks begin with Emotet used as a downloader for Trickbot, which then
installs tools such as Cobalt Strike in order to gain full access to victim infrastructure. The delivery
of Cobalt Strike is human-operated, and the objective is to drop Ryuk at the end of a very long
attack chain, often extending over several weeks.

Initially, Ryuk and later Conti were delivered exclusively by TrickBot. However, by March 2021,
as detections for TrickBot improved, BazarLoader/BazarBackdoor began to be used as the tool of
choice for the delivery of Conti.

Conti today is sold behind a RaaS affiliation model and operated by different threat actors. It is
developed and maintained by the so-called Trickbot gang.

Conti acts like most ransomware, but it has been engineered to be more efficient and evasive.
One of the major ransomware trends today is the adoption of multithreading to speed up file
encryption (like Revil, Cerber and Babuk), but Conti takes it to an even higher level. Conti uses
32 concurrent CPU threads to hasten the encryption operations, aiming to do maximum harm
before being identified by endpoint security products. Moreover, the usage of a runtime API
loading mechanism, an added layer of obfuscation by API search by hashing, and API-unhooking
mechanism built inside to disable EDR-based API hooks, make this ransomware one of the most
efficient and evasive in the current threat landscape.

7CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

DEEP DIVE INTO THE DEVELOPMENT PROCESS

In the Beginning
Most software development starts with a prototype, test version, or a proof of concept, and so
does this ransomware. The earliest sample of Conti we could find1 dates from the end of 2019
and includes indications that it is an early test version (e.g., the ransom note contains the text
“test note”). It took eight months for this version to make headlines2. We should start our story
here, with this early test version, in order to better learn about the development the ransomware
went through.

The Conti samples are sorted by the timestamp present in each sample PE file. Although this
metadata can be altered easily, we didn’t find any reason to believe it was modified, as the
timestamps in newly discovered samples advance at the same rate as the date at which the
samples are uploaded to online resources.

The names in the table above are used for readability. The uppercase letter is shared between
different samples which are considered to have the exact same functionality, although they
might present insignificant differences (e.g. ransom note text, encryption key). Then, samples
which share a number originate from the same sample, where the lowercase letter at the end
shows the order of unpacking (‘a’ being the original sample, ‘b’ extracted from it, ‘c’ extracted
from ‘b’, etc.).

1https://id-ransomware.blogspot.com/2019/11/conti-ransomware.html
2https://www.carbonblack.com/blog/tau-threat-discovery-conti-ransomware/

Name Hash (SHA-256) Is Packed? Timestamp (UTC) Type

A1a 2f334c0802147aa0eee90ff0a2b0e102
2325b5cba5cb5236ed3717a2b0582a9c Yes 2019/10/06 14:08:28 EXE

A1b 4f43a66d96270773f4e849055a844feb
6ef234d7340b797f8763b7a9f8d80583 Yes 2019/10/06 12:43:23 DLL

A1c 94bdec109405050d31c2748fe3db32a
357f554a441e0eae0af015e8b6461553e No 2019/10/21 15:00:01 EXE

A2 77b1fcae9e8f0a5a739c35961382e2b3f2
39a05c1135c4a8efe1964a263d5a47 No 2019/10/21 15:00:01 EXE

8CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Conti has only a few of its imported functions linked at load-time.
Therefore, the first thing it does is load them manually at runtime using
LoadLibraryA and GetProcAddress.

All the names of the APIs are encoded using a simple XOR with the
byte 0x99. The names of the DLLs are not encoded in this version,
except for some optional imports, which are from Rstrtmgr.dll. Other
than those, the GetProcAddress function ends by making sure it ’s
got all the mandatory APIs it was looking for. Otherwise, it exits the
program with ExitProcess.

Fig 2: The imports loading function, getting the last import and
checking all imports were found successfully

9CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Two resources from the PE file are loaded. The first will be used as the text for the ransom note
(which is set to “test note” in this earliest version), while the second is a list of strings, separated
by a comma, of files that should be encrypted in case they contain a substring from the list. In
cases where the resource has a value of “null”, all files are encrypted except for a hardcoded list.
This allows for simple modifications to the readme text or for targeted encryption of specific files,
without recompiling the ransomware.

Fig 3: The import loading function, setting the flag if the optimal imports were found successfully

Fig 4 + 5: The ransom note and the null resources in the sample

1 0CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

A few operations are performed to increase the probability of successful encryption of the system:

•	 A list of command lines are executed: the first few are used to delete shadow copies over
the first few drives in the system; the rest are to stop a list of ~170 services3. All command
strings are encoded by XOR with the byte 0x99.

•	 All running processes on the system are iterated. Processes containing “sql” in them are
terminated with TerminateProcess.

The amount of processors in the system is queried and twice that number of IoCompletionPorts
are created (weirdly, this small detail will change quite a few times). The same amount of
threads are created for handling the encryption of files, waiting for them to come through these
IoCompletionPorts (detailed last as how those work).

Following the creation of the threads, the ransomware will look for all drives on the system, running
its logic for selecting files for encryption on each of those.

After all the drives are iterated through, the ransomware will go over all addresses that are returned
from GetIpNetTable, with 32 threads, and for each of those will call NetShareEnum to get a list of
network shares opened on them. If any shares are found, they will be added to a list to traverse
for files to encrypt as well.

Fig 6: The last service stopped and the termination of processes containing “sql” in their name.

3See Appendix A for the list of commands used.

1 1CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Conti iterates on all found shares for files.

A marked CompletionStatus is sent, using the magic number ‘666’, for
every created thread which iterates through the IoCompletionPorts, to
inform them there are no more files left for encryption, causing them
to stop.

The two parts that are left to go over are the iteration function and the
encryption worker thread function:

•	 The iteration function starts by getting a folder as a parameter,
creating a readme file inside of it, as per the embedded
resource. Afterward, using the FindFirstFile API, all entries in the
folder are searched. Skipping the “.” and the “..” names, entries
marked as directories will be recursively called as a parameter
to the current function, except for an hardcoded list of discovery
names which won’t be. As for files, except for a hardcoded list of
substrings (executables, links, and conti created files), all other
files will be queued for encryption.

•	 The encryption function each thread runs starts with loading a
public RSA key placed in the data section of the PE file. After
that, the function takes out items from the IoCompletionPorts,
which contain a file path to encrypt, and does the following
to each one: creates a new AES key for it, exported it using
the public RSA key, tried to open the files for writing (we will
note a few things about this part soon), writes the exported
and encrypted key to the end of the given file, followed by the
original size of the file (for allowing to separate the key from the
data in it). Then, the content of the files is read, in chunks no
bigger than 0x500000 bytes, encrypted with the AES key which
was generated, and overwritten back to the file. At the end of the
encryption process, the file will be moved, adding the extension
“.CONTI” to the end of it, and the processes of getting files from
the IoCompletionPorts will be repeated until the magic status
(666) is sent.

The last thing to note is how file handles are opened by the encrypting
function. Remember the optional imports from Rstrtmgr.dll? This is
the place they are used. Those APIs are used by the Windows Restart
Manager for asking opened processes to close themselves on restarts,

1 2CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

which results in closing of open handles to files in the process. If Conti fails opening a file, and the
optional imports are found, it will use them to force any process using the file to close. Afterward,
Conti will retry opening the files.

When all threads return, the sample exits.

Fig 7: An example public RSA key present in one Conti sample

1 3CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

THE FIRST “USABLE” SAMPLE

Two months later, we witness a newer version which went through a small amount of changes,
one of which is the inclusion of a real ransom note instead of the “test note” previously
embedded, allowing this sample to be used on a victim machine (hence, “usable”, as otherwise
the victim is left without a way to contact the attackers). From that we can assume this sample
may have been tested on a machine of a real victim, although the first publicly known incident of
Conti is dated to July 2020.

Looking at the import loading function, we observe a few things.

The first notable change is that the imports from Rstrtmgr.dll are no longer optional, and the
function which loads APIs at runtime assumes they were found successfully, together with the
other, less exotic imports. Because Rstrtmgr.dll is available on Windows Vista onward4, we can
infer this sample will crash on Windows XP when trying to unlock files. Considering the above, this
function will always report success and the program will continue executing, never to reach the
ExitProcess branch (which, somewhat ironically, is also loaded by this function now).

Name Hash (SHA-256) Is Packed? Timestamp (UTC) Type

B1 308a561e0b874d7a356b916b2118288
a8c58d82a3ef26f136f6bdc45a388a692 No 2019/11/29 16:55:22 EXE

B2 844cc2551f8bbfd505800bd3d135d930
64600a55c45894f89f80b81fea3b0fa1 No 2019/11/29 16:55:22 EXE

4https://docs.microsoft.com/en-us/windows/win32/rstmgr/restart-manager-portal

1 4CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

The names of the APIs used in the import loading function are
encoded with a different byte as a XOR key, 0x0F instead of 0x99.
This shows a slight progression for making it harder to detect by
static signatures and reversing.

Fig 8: The imports loading function, always returning TRUE, without
checking if the imports were found successfully.

1 5CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

This time, all the imports are loaded at runtime instead of the
weird mix that was in place previously, except for LoadLibraryA,
GetProcAddress, for obvious reasons, which will be improved upon
later. CreateThread is also in the load-time imports, for some odd
reason, even though it is also loaded at runtime and used from both
places. However, this sloppiness of having a mix of import origins
will repeat itself later on.

Imports of sample A2:

Fig 9: Imports of Samples A2

1 6CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Instead of creating twice the amount of processes on the machine,
it always uses 32 threads to read from the IoCompletionPorts. This
simplification shouldn’t improve encryption time on most systems,
making the efficiency of it questionable.

The recursive iteration on drives, looking for files to encrypt, is
parallelized. For each drive found, a new thread is created with the drive
root path as parameter, and this thread just calls the iteration function
from before, and exits after it completes. This is a nice addition that
might boost speed. Also, this is the only place a load-time imported API
is used (CreateThread).

Finally, there are some changes to the way encryption is performed:

•	 In previous versions, both the encrypted AES key and the original
file size are written at the end of the file, before the encryption
takes place. In this version, however, the original file size is
written only after the file is fully encrypted. In our view, both
methods should work pretty much the same.

•	 An additional small change is done to the way encrypted data
is written back to the file. In this version, WriteFile is called in
a loop for as long as the number of bytes written back to disk is
not the amount intended to be written. This change might have
been introduced to fix certain cases, where the encrypted bytes
in memory did not match the actual bytes written to disk. This
problem would cause the decryption to restore the wrong bytes.

Imports of sample B1:

Fig 10: Imports of Samples B1

1 7CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

MAKING SOME HEADLINES

We encounter the next iteration about half a year later. This was the first publicly analyzed Conti
sample and it started to get headlines5.

This iteration had the following additional features:

•	 String obfuscation got a considerable upgrade. Instead of a simple single-byte XOR, a
custom encoding function is used, represented by the following pseudocode:

The constants (a, b) are different for every encoded string. Additionally, more strings are
obfuscated in comparison with the previous samples, although some are still left open on
the stack (i.e., DLL names).

•	 Two importing mechanisms are now shuffled together. Runtime APIs no longer require
Rstrtmgr.dll APIs but now include net new imports. And yet additional APIs are resolved at
load time. The disparity reinforces the view that multiple developers with different areas of
responsibility may be involved in Conti.

Name Hash (SHA-256) Is Packed? Timestamp (UTC) Type

C1 eae876886f19ba384f55778634a35a1d
975414e83f22f6111e3e792f706301fe No 2020/06/04 00:02:10 EXE

C2 1ef1ff8b1e81815d13bdd293554ddf8b3
e57490dd3ef4add7c2837ddc67f9c24 No 2020/06/04 00:02:10 EXE

5For a list of publications: https://malpedia.caad.fkie.fraunhofer.de/details/win.conti

Fig 11: Improved string obfuscation method

1 8CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

•	 The ransomware will create a mutex and hold it, so that two instances won’t execute at
the same time, to avoid interfering with one another or simply slowing the encryption
rate unnecessarily.

•	 Conti can now take command-line arguments. Those include:
•	 An option to select the encryption mode (only local, only SMB shares, or both).
•	 A list of network locations to search for shares and add files found on any such share to

the encryption list.
•	 These features allow the attackers to have a finer control on what Conti will encrypt

without compiling something new.

•	 36 fewer services are stopped6, but the shadow copies and the termination of processes
with “sql” in them is left unchanged.

•	 Only local (192.168.*; 10.*; and 172.*) IPs from the GetIpNetTable look for shares. This
might explain the need for arguments to allow encrypting additional shares that might not
adhere to any of the three specified IP patterns.

MIXING IT UP

The next iteration of Conti appears around three months later and includes a greater number of
changes, making it less similar to any previous version. Moreover, these changes make artifact-
based clustering (e.g, by file extension of encrypted files, file structure, or ransom note content)
less useful for determining whether a sample belongs to the Conti family, requiring deeper static
or dynamic analysis to make the identification

Let’s go over this long list of changes.

The entrypoint changed from a minimal C looking entry (which simply began with a call to the first
function the malware author wrote, being the runtime import loading function) to a C++ bootstrap
one, with all the jazz of CRT, security cookie, and SEH initializations. Later on, it’s also apparent
that unlike older versions, the C++ STL is being utilized– most notably, std::string is now used.

Name Hash (SHA-256) Is Packed? Timestamp (UTC) Type

C1 eae876886f19ba384f55778634a35a1d
975414e83f22f6111e3e792f706301fe No 2020/06/04 00:02:10 EXE

C2 1ef1ff8b1e81815d13bdd293554ddf8b3
e57490dd3ef4add7c2837ddc67f9c24 No 2020/06/04 00:02:10 EXE

6See Appendix A for the changes.

1 9CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

The import loading went through a complete rework.

•	 For the most part, Conti does not embed the plain names of DLLs and their required
exports, but instead, only keeps a hash of the strings it needs. To get the requisite imports,
it iterates through NtCurrentPeb()->Ldr->InLoadOrderModuleList, at first looking for the
module kernel32.dll by the hash of its name, later on finding the LoadLibraryA API in the
same manner, iterating over exports until the hashes match.

•	 Only kernel32.dll is found by hash. The rest of the DLL names are embedded in the
executable, now obfuscated, and are loaded using the LoadLibraryA API. An anecdote on
that is, that even though kernel32 is loaded by its hash, in this early version, its name is
still present in the binary and it is even decoded, even though it is never used.

•	 The API hashing7 function of choice is Murmur2A8 with a constant seed set to 0x5B2D, used
on lowercase ASCII strings.

•	 A newly implemented hook removal logic takes place after loading all the necessary DLLs.
For each loaded DLL, Conti reads its file on disk and goes through all the exports in it,
looking for a difference in the first few bytes. If any such difference is found between the
disk version and the in memory version, the bytes in memory are replaced by the bytes read
from disk. Security products will often hook processes in order to fully monitor malicious
activity. Conti targets this methodology specifically in the hopes of disarming security
products lacking robust anti-tamper features.

•	 The APIs used in the hook removing function are acquired via the load-time linked
LoadLibraryA and GetProcAddress, which once again is a new addition that didn’t go
through the refactor of switching APIs to those loaded at runtime.

Instead of fetching the needed imports at the beginning, each import is found by hash just before
it is needed to be called. Moreover, to save relooking for previously fetched imports, they are
cached in a single big array for sequential calls.

7Additional reading: https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware
8Implementation: https://github.com/rurban/smhasher/blob/4db9ed2dc7/MurmurHash2.cpp#L210-L247

2 0CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

With all those shenanigans accounted for, we find additional changes to the main logic:

•	 FAdded support for additional command-line arguments. In this version, a list of directories
can be specified as targets for a search for interesting files to encrypt. Also, a flag for
logging can be given, although it isn’t implemented until a later version.

•	 The two resources have been removed. The ransom note content was moved to the data
section of the executable, while the ability to encrypt specific file patterns instead of the
default ones was removed. We speculate that the authors found the latter feature not worth
supporting as we had never seen it used in practise.

•	 The ability to kill services was removed.

•	 The feature that allows deleting shadow copies is implemented differently, further down in
the logic of this sample. In cases where the local encryption mode is chosen, the sample
will delete shadow copies found from querying Win32_ShadowCopy on ROOT\CIMV2, by
running a command using WMIC9. This is compared to previously using vssadmin10 to delete
a fixed amount of drives, which may or may not have shadow copies enabled, might not
even be mounted on disk, or even miss a drive with shadow copy11.

•	 Reimplementing a feature that was removed, the amount of threads created to read
from the IoCompletionPorts is back to being based on the amount of processors
available on the system. This time, it depends on what mode the ransomware is
executed in, creating a thread per processor for cases where ‘only local’ or ‘only
network’ encryption is specified, and creating twice as many if both modes are
engaged. Interestingly, the reimplementation in this version is using the wrong value
returned from the GetNativeSystemInfo query, using dwActiveProcessorMask instead of
dwNumberOfProcessors. This small bug is fixed in a later version.

•	 This version includes changes to the implementation used to select files for encryption.

9 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/wmic
10 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/vssadmin
11 See Appendix A for changes in commands

2 1CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

•	 This version includes changes to the implementation used to select files for encryption.

•	 Different files are encrypted by different logic. We have a new list of 171 extensions
where the whole content of the file is encrypted, and then, there is another list of 20
extensions for which only some parts of the file are encrypted. Lastly, the rest of the files
are categorized by their size.

•	 Files smaller than 1MiB are encrypted whole (same as the first extension list, making
that list of probably known small files).

•	 Files bigger than 1MiB and smaller than 5MiB have only their first 1MiB encrypted.
•	 Files bigger than 5MiB are partially encrypted in jumps (same as the second

extensions list, making that list of probably known big files)

•	 The encryption algorithm is changed from AES to ChaCha. The keys are still generated
randomly per file, and written to the end of the file after being encrypted with an
embedded RSA public key located in the data section of the binary.

•	 The extension of encrypted files were changed, from .CONTI to .YZXXX, which might help
avoid detection of ransomware based on known extension changes.

•	 A significant change here is the implementation used to look for network shares to encrypt:

•	 Addresses of the form “169.*” were added to the list of IP addresses to search for
shares (along with “172.*”, “192.168.*”, and “10.*”, as mentioned above).

•	 Instead of using InetNtopW to translate addresses to wide strings, now the inet_ntoa
API is used, making the string only byte sized.

•	 Instead of executing 32 threads to go search for shares on those IP addresses, only one
thread is doing the dirty work.

•	 There’s an additional check in the process of looking for network shares. Addresses
are first checked to have an open port on 445, using sockets manually created by the
malware. Then, NetShareEnum API is only called for IPs that answer the check. This
change should reduce the noise of querying for shares on addresses that don’t have any.

2 2CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Name Hash (SHA-256) Is Packed? Timestamp (UTC) Type

E1 61dd6a0b2870d62f56c7fe0039d42bf53
51588f927267fe7b4ee0761872a3b20 No 2020/09/23 21:17:34 EXE

E2a 9826b386065f8312a7a7ef431c735a66
e85a9c144692907f5909f81f837c65f4 Yes 2020/10/21 18:39:10 DLL

E3b 96812dc56ffc07d9260b60dadd9729b1
aaf29d426970f9385fad87d99d4578c2 No 2020/10/09 20:53:57 EXE

E4 64a3a3ec70d20636299b8fe4f50c2b4d
077f9934ee2d6ccf7d440b05b9770f56 No 2020/11/12 18:33:30 EXE

E5 73bd8c2aa71f5dcd9d2ddd79e53656c6
ae3db2535e08cf9dab1cd13bdd6d5ea3 No 2020/11/27 15:02:42 EXE

E6 2fc6d7df9252b1e2c4eb3ad7d0d29c188
d87548127c44cebc40db9abe8e5aa35 No 2020/12/23 16:26:10 EXE

F1 5c5d05c4dcc9489ed527a1a607f0e288
4d10558451662bcc849e36da7eca570c No 2021/01/12 19:20:18 EXE

F2 3995502a85cc12c6962740989c4fb800
d514bdf2ec667fdb7e4c8206adca0235 No 2021/02/04 15:57:28 EXE

G1 4478feb1e3c98220f50ce341665087b7
f6c1d9c290e42f54812bc55da5b3707d No 2021/03/08 14:33:55 EXE

G2 d29b8160e51dd29474f3464111fc888d
a8adb2bc2f0d4f29ce71219ffc846bd5 No 2021/04/20 20:53:59 EXE

ADDITIONAL TOUCHES

From this point on, we find samples more frequently, both packed and unpacked. Some samples
are practically the same, except for the embedded public RSA key, the extension used for encrypted
files, and the text placed inside the “readme” text file. A good post which goes over an E sample
thoroughly, including all the features we discussed so far, can be found here12. Other than that,
most changes going forward per new sample are minor, and therefore they are only aggregated in
the Summary table below.

12http://chuongdong.com/reverse%20engineering/2020/12/15/ContiRansomware/

2 3CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Variant Version/Date Features/Updates

A1c, A1b, A1c,
A2 2019/10/06

Imports: Conti has only a few of its imported functions linked
 at load-time. Moreover, all the names of the APIs are encoded
using a simple XOR with the byte 0x99.

B1, B2 2019/11/29

Imports: The names of the APIs are encoded with a
different XOR key, 0x0F instead of 0x99; All the imports
are loaded at runtime;

Multithreading: Now it uses 32 threads for file encryption;
the recursive iteration on drives for encryption got parallelized
as well.

File encryption: Small stability improvement to the writing
phase of file encryption

C1, C2 2020/06/04

String obfuscation improvement: instead of a simple XOR with a
single byte, a custom encoding function is used.

Mutex creation: The ransomware now create a mutex on system
to avoid concurrent infections;

This version implements command line arguments including
an option to select the encryption mode and a list of network
locations to search for.

Minor: 36 less services are stopped

SUMMARY

Below is a summarized list of all the major Conti milestones:

2 4CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

Variant Version/Date Features/Updates

D1a, D1b, D1c 2020/09/02

Imports: introduction of API hashing using the function Murmur
2A with a constant seed set to 0x5B2D. To save relooking for
imports, they are cached in a single big array for sequential calls

New command line arguments: a flag for logging and an option
to specify specific directories is introduced.

The ransom note is moved from the .rsrs section to the
.data section.

Deletion of shadow copies with wmic instead of vssadmin.

Multithreading: Now, the amount of allocated thread for
encryption is based on the amount of processors available on the
systems. The exact number of the thread depends on what mode
the ransomware is executed in.

File encryption: A new and different logic for file encryption
is implemented. 2 modes for encrypting files: full and partial,
depending on file extension and file dimension.

Instead of executing 32 threads to go search for shares on those
IP addresses, only one thread does so.

Check for an open port before querying for shares on remote IPs.

E1, E2a, E3b,
E4, E5, E6 2020/10 - 2020/12

Ransom note: contains more contact information (website, TOR
node and email) and a UUID.

Logging option: The new command line option is now
implemented for logging errors.

Single directory encryption mode instead of traversal.

Dead code & busy loops to hinder simulation / static analysis.

F1, F2 2021/01 - 2021/02

The mutex creation is now optional from the command line.

Optimization of file encryption: encryption through
IoCompletionPorts was replaced by C++ queues and locks.

The seed of the Murmur hash function changed to 0xB801FCDA.

G1, G2 2021/03 - 2021/04
PathIsDirectoryW API used to sepwarate files from directories.

The seed of the Murmur hash function changed to 0xFF889912.

2 5CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

CONCLUSION

We took a deep dive into the evolution of Conti ransomware, gaining some insight into the process
of developing ransomware. Most notably, we saw how many changes take place to increase the
evasiveness of the malware from detections and complicate the analysis process. Most meaningful
changes and additions to the ransomware were done prior to September-October 2020, at which
point, the developers needed only to make minor refinements to stay ahead of detections and
keep the money rolling in for its affiliates. Today, Conti is a mature project that is being used
actively and aggressively to compromise and extort victims on a daily basis

2 6CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

APPENDIX A

S h a d o w C o p i e s D e l e t i o n
D e l e t i o n o f S h a d o w C o p i e s (v s s a d m i n) :

	

D e l e t i o n o f S h a d o w C o p i e s t e m p l a t e
(W M I , r e p l a c i n g % s w i t h a s h a d o w c o p y I D) :

S e r v i c e s S t o p p i n g
C o m m a n d t e m p l a t e f o r s e r v i c e s t o p p i n g
(r e p l a c i n g % s w i t h a s e r v i c e n a m e) :

cmd.exe /c vssadmin Delete Shadows /all /quiet
cmd.exe /c vssadmin resize shadowstorage /for=c: /on=c: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=c: /on=c: /maxsize=unbounded
cmd.exe /c vssadmin resize shadowstorage /for=d: /on=d: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=d: /on=d: /maxsize=unbounded
cmd.exe /c vssadmin resize shadowstorage /for=e: /on=e: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=e: /on=e: /maxsize=unbounded
cmd.exe /c vssadmin resize shadowstorage /for=f: /on=f: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=f: /on=f: /maxsize=unbounded
cmd.exe /c vssadmin resize shadowstorage /for=g: /on=g: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=g: /on=g: /maxsize=unbounded
cmd.exe /c vssadmin resize shadowstorage /for=h: /on=h: /maxsize=401MB
cmd.exe /c vssadmin resize shadowstorage /for=h: /on=h: /maxsize=unbounded
cmd.exe /c vssadmin Delete Shadows /all /quiet

cmd.exe /c C:\Windows\System32\wbem\WMIC.exe shadowcopy where “ID=’%s’” delete

cmd.exe /c net stop %s /y

2 7CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

	 S t o p p e d s e r v i c e s l i s t
(e x t r a c t e d f r o m s a m p l e A 2 i n t h i s d o c u m e n t ; s o r t e d) :

“Acronis VSS Provider”
“Enterprise Client Service”
“Sophos Agent”
“Sophos AutoUpdate Service”
“Sophos Clean Service”
“Sophos Device Control Service”
“Sophos File Scanner Service”
“Sophos Health Service”
“Sophos MCS Agent”
“Sophos MCS Client”
“Sophos Message Router”
“Sophos Safestore Service”
“Sophos System Protection Service”
“Sophos Web Control Service”
“SQL Backups”
“SQLsafe Backup Service”
“SQLsafe Filter Service”
“Symantec System Recovery”
“Veeam Backup Catalog Data Service”
“Zoolz 2 Service”
AcronisAgent
AcrSch2Svc
Antivirus
ARSM
AVP
BackupExecAgentAccelerator
BackupExecAgentBrowser
BackupExecDeviceMediaService
BackupExecJobEngine
BackupExecManagementService
BackupExecRPCService
BackupExecVSSProvider
bedbg
DCAgent
EhttpSrv
ekrn
EPSecurityService
EPUpdateService
EraserSvc11710
EsgShKernel
ESHASRV
FA_Scheduler
IISAdmin
IMAP4Svc
KAVFS
KAVFSGT

2 8CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

kavfsslp
klnagent
macmnsvc
masvc
MBAMService
MBEndpointAgent
McAfeeEngineService
McAfeeFramework
McAfeeFrameworkMcAfeeFramework
McShield
McTaskManager
mfemms
mfevtp
MMS
mozyprobackup
MsDtsServer
MsDtsServer100
MsDtsServer110
MSExchangeES
MSExchangeIS
MSExchangeMGMT
MSExchangeMTA
MSExchangeSA
MSExchangeSRS
msftesql$PROD
MSOLAP$SQL_2008
MSOLAP$SYSTEM_BGC
MSOLAP$TPS
MSOLAP$TPSAMA
MSSQL$BKUPEXEC
MSSQL$ECWDB2
MSSQL$PRACTICEMGT
MSSQL$PRACTTICEBGC
MSSQL$PROD
MSSQL$PROFXENGAGEMENT
MSSQL$SBSMONITORING
MSSQL$SHAREPOINT
MSSQL$SOPHOS
MSSQL$SQL_2008
MSSQL$SQLEXPRESS
MSSQL$SYSTEM_BGC
MSSQL$TPS
MSSQL$TPSAMA
MSSQL$VEEAMSQL2008R2
MSSQL$VEEAMSQL2008R2
MSSQL$VEEAMSQL2012

2 9CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

MSSQLFDLauncher
MSSQLFDLauncher$PROFXENGAGEMENT
MSSQLFDLauncher$SBSMONITORING
MSSQLFDLauncher$SHAREPOINT
MSSQLFDLauncher$SQL_2008
MSSQLFDLauncher$SYSTEM_BGC
MSSQLFDLauncher$TPS
MSSQLFDLauncher$TPSAMA
MSSQLSERVER
MSSQLServerADHelper
MSSQLServerADHelper100
MSSQLServerOLAPService
MySQL57
NetMsmqActivator
ntrtscan
OracleClientCache80
PDVFSService
POP3Svc
ReportServer
ReportServer$SQL_2008
ReportServer$SYSTEM_BGC
ReportServer$TPS
ReportServer$TPSAMA
RESvc
sacsvr
SamSs
SAVAdminService
SAVService
SDRSVC
SepMasterService
ShMonitor
Smcinst
SmcService
SMTPSvc
SNAC
SntpService
sophossps
SQLAgent$BKUPEXEC
SQLAgent$CITRIX_METAFRAME
SQLAgent$CXDB
SQLAgent$ECWDB2
SQLAgent$PRACTTICEBGC
SQLAgent$PRACTTICEMGT
SQLAgent$PROD
SQLAgent$PROFXENGAGEMENT
SQLAgent$SBSMONITORING

3 0CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

SQLAgent$SHAREPOINT
SQLAgent$SOPHOS
SQLAgent$SQL_2008
SQLAgent$SQLEXPRESS
SQLAgent$SYSTEM_BGC
SQLAgent$TPS
SQLAgent$TPSAMA
SQLAgent$VEEAMSQL2008R2
SQLAgent$VEEAMSQL2008R2
SQLAgent$VEEAMSQL2012
SQLBrowser
SQLSafeOLRService
SQLSERVERAGENT
SQLTELEMETRY
SQLTELEMETRY$ECWDB2
SQLWriter
SstpSvc
svcGenericHost
swi_filter
swi_service
swi_update
swi_update_64
TmCCSF
tmlisten
TrueKey
TrueKeyScheduler
TrueKeyServiceHelper
UI0Detect
VeeamBackupSvc
VeeamBrokerSvc
VeeamCatalogSvc
VeeamCloudSvc
VeeamDeploymentService
VeeamDeploySvc
VeeamEnterpriseManagerSvc
VeeamHvIntegrationSvc
VeeamMountSvc
VeeamNFSSvc
VeeamRESTSvc
VeeamTransportSvc
W3Svc
wbengine
wbengine
WRSVC

3 1CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

D i f f b e t w e e n s e r v i c e s s t o p p e d o n a l a t e r v e r s i o n
(C 1 ; l e f t) a n d t h e e a r l i e r o n e (A 2 ; r i g h t) :

3 2CONTI UNPACKED : UNDERSTANDING RANSOMWARE DEVELOPMENT AS A
RESPONSE TO DETECTION — A DETAILED TECHNICAL ANALYSIS

InfoSec works on a rapid iterative cycle where new discoveries occur daily and authoritative sources are
easily drowned in the noise of partial information. SentinelLabs is an open venue for our threat researchers

and vetted contributors to reliably share their latest findings with a wider community of defenders. No
sales pitches, no nonsense. We are hunters, reversers, exploit developers, and tinkerers shedding light

on the world of malware, exploits, APTs, and cybercrime across all platforms. SentinelLabs embodies our
commitment to sharing openly –providing tools, context, and insights to strengthen our collective mission of
a safer digital life for all. In addition to Microsoft operating systems, we also provide coverage and guidance

on the evolving landscape that lives on Apple and macOS devices. https://labs.sentinelone.com/

ABOUT SENTINELLABS

https://labs.sentinelone.com/

