

T A B L E O F C O N T E N T S

Foreword	 5
2023 Map of Leaks	 8

Industry Leaks	 9

Secrets Detectors	 10

Focus: GenAI Secrets Leaks	 14

Ranking File Extensions by Their Leakiness	 15

What Happens After a Secret Leaks?	 17
Remediation Efforts	 17

Revoked secrets	 19

Zombie Leaks: a Hidden Threat	 20

DMCA Takedown Notices: a Last Resort to Stop Leaks?	 22

AI for Secrets Detection	 23
How Good Can LLMs Be at Detecting Secrets?	 24

Powering Secrets Detection with AI: GitGuardian’s Approach	 27

Are You Sure to Know Where Your Secrets Are?	 29
Unveiling Secret Exposures with HasMySecretLeaked	 29

Solving Secrets Sprawl	 37
Awareness & Training	 38

Combining Secrets Detection & Management	 40

Preventing Leaks & Breaches	 42

About GitGuardian	 44

Appendix	 45
Definitions	 45

Methodology	 46

The State of Secrets Sprawl 2024

DATA ANALYSIS BY GITGUARDIAN

See What Happens After a Public Leak?

See Industry leaks

THE STATE OF SECRETS SPRAWL 2024 MENU

4

Foreword

It is not a secret. Hard-coded credentials have long been a primary cause of

security incidents in the software world. Yet, with the growing complexity of

digital supply chains, secrets sprawl is the Achilles’ heel for organizations of all

sizes and security postures.

GitGuardian has been at the forefront of identifying and reporting hard-coded

secrets for the past four years. Remarkably, the incidence of publicly exposed

secrets has quadrupled in this time, with a staggering 12.8 million occurrences

detected on GitHub.com in the last year alone—a 28% increase from 2022.

“[In 2023] for the first time, compromised credentials took the top

spot in root causes [of attacks]. In the first six months, compromised

credentials accounted for 50% of root causes, whereas exploiting a

vulnerability came in at 23%.”
Verizon’s 2023 Data Breach Investigations Report

https://verizon.com/dbir

THE STATE OF SECRETS SPRAWL 2024 MENU

5

The proliferation of 50 million new code repositories on GitHub, a 22%

increase from last year, amplifies the risk of both accidental exposures

and deliberate malicious acts. This reality underscores the vital need for

companies to track and manage the exposure of their sensitive information.

Too many remain vulnerable to breaches without awareness or means to

mitigate them.

Our research sheds light on a concerning trend: 90% of exposed valid secrets

remain active for at least five days after the author is notified.

This finding emphasizes a crucial lesson in code security: while detecting

vulnerabilities is critical, the real challenge lies in remediation. Security,

we believe, must be a shared responsibility across all stages of the Software

Development Life Cycle (SDLC), not just the domain of specialized teams.

Raising awareness about these seemingly minor lapses is essential for

mitigating supply chain risks.

“49% of breaches by external actors involved Use of stolen

credentials, while Phishing made up 12% of external attacks.

Attackers used the Exploit vulnerability technique in 5% of breaches.”
Sophos’2023 Active Adversary Report

When 507 IT decision-makers were asked, “Have you ever been

impacted by, or heard of secrets (API keys, username and passwords,

encryption keys, etc.) leaking within your organization?” the responses

highlighted widespread concern:

•	 75% of respondents reported experiencing a secret leak.

•	 60% reported leaks impacting the company or its employees.

•	 47% identified “Hard-coded secrets” as key risk points in their

software supply chain.

Voice of Practitioners: the State of Secrets in Appsec

https://news.sophos.com/en-us/2023/08/23/active-adversary-for-tech-leaders/#:~:text=compromised%20credentials%20accounted%20for%2050%25%20of%20root%20causes,-%2C%20whereas%20exploiting%20a
https://www.gitguardian.com/files/voice-of-practitioners-the-state-of-secrets-in-appsec

THE STATE OF SECRETS SPRAWL 2024 MENU

6

As our world becomes increasingly digital, and as secrets continue to

underpin the trustworthiness of digital systems, closing the remediation loop

is imperative for securing a safer digital future.

How Leaky Was 2023?

All the metrics featured in this report have been meticulously filtered to ensure

they precisely depict the current state of secrets sprawl. For a comprehensive

understanding of our methodology, please refer to the appendix.

4.6% of active repositories leaked a secret in 2023

On 67,243,678 active repositories, 3,066,304 leaked a secret.

More than 1 in 10 commit authors

leaked a secret

Out of the 14,978,367 distinct

authors who contributed,

1,749,398 (11.7%) leaked a secret.

1.8M pro-bono alert emails (+23.5%)

GitGuardian sent 1,854,834 pro-bono alert emails following the

detection of an exposed secret for the first time. Out of these,

only 33,242 secrets were revoked within 5 days. GitGuardian stops

tracking the status of secrets after these 5 days.

2023 Map of Leaks

THE STATE OF SECRETS SPRAWL 2024 MENU

8

Industry Leaks
Leveraging its advanced proprietary algorithm, GitGuardian has successfully

traced many secret occurrences back to their respective companies.

This capability extends to incidents where secrets were leaked outside the

company-owned repositories. Through this sophisticated mapping process,

GitGuardian provides insightful data on the prevalence of leaks across different

industries:

THE STATE OF SECRETS SPRAWL 2024 MENU

9

Unsurprisingly, the IT sector, which includes software vendors, accounts for

65.9% of all detected leaks.

Following IT, the education sector is responsible for 20% of the leaks,

reflecting the growing digitization and reliance on technology within academic

institutions.

The remaining 14% of leaks are evenly divided between the Science &

Technology fields and other industries.

This distribution highlights a crucial aspect of our modern economy: digitization

is pervasive, and virtually every industry now operates with a significant

online presence, often utilizing platforms like GitHub for development and

collaboration.

Consequently, the potential for secrets to be exposed on such platforms is a

universal challenge, extending far beyond the realms traditionally associated

with high cybersecurity risks.

Secrets Detectors
GitGuardian differentiates specific secrets from generic ones (see the

definitions in the appendix). In 2023, specific occurrences were up 16.7%,

while generic occurrences were up 37%.

THE STATE OF SECRETS SPRAWL 2024 MENU

10

GENERIC DETECTORS

For the purposes of this report, we intentionally omitted a certain percentage

of generic secrets. Consequently, the ratio of specific to generic detectors

does not precisely represent the prevalence of generic secrets in our overall

detection results.

Indeed, as Pierre Lalanne, Engineering Manager at GitGuardian, notes:

“Overall, generic detectors account for 45.4% of all the

secrets we detect.”

THE STATE OF SECRETS SPRAWL 2024 MENU

11

🦉 Fun Fact:
Ironically, GitHub became its own cautionary tale when it inadvertently leaked its RSA

SSH host key for GitHub.com right on GitHub.com! GitHub caught it quickly and replaced

the key to ensure operations remained secure. It just goes to show, nobody’s immune to

the occasional slip-up, not even the experts!

SPECIFIC DETECTORS

Looking specifically at specific detectors, we found over 1M valid Google API

secrets (occurrences), 250K Google Cloud, and 140K AWS IAM.

💡 Leveraging a promising machine learning algorithm, the GitGuardian

AI/ML team was able to categorize Generic High Entropy and Generic

Password secrets.
Read more in Powering Secrets Detection with AI: GitGuardian’s Approach

https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/

THE STATE OF SECRETS SPRAWL 2024 MENU

12

A UNIQUE CASE: OPENAI KEYS

OpenAI, the powerhouse behind the widely recognized ChatGPT, DALL-E,

and the newer Sora generative AI tools, has seen its services soar in

popularity well beyond the tech world. It’s hardly surprising that API keys

for programmatically accessing these tools have proliferated across GitHub,

becoming a common sight.

As we move into 2024, the landscape of AI services has dramatically

expanded, with key players from both established tech giants and innovative

startups competing to deliver advanced inference capabilities across diverse

formats, including text, audio, and video. These services also extend to

ancillary offerings like embeddings (pre-processed inputs for Large Language

Models) and persistence solutions for storing these embeddings in vector

databases.

Prompted by this evolution, we explored the idea of using the frequency of

secret leaks as an indicator of a service’s popularity.

In 2023, GitGuardian observed a 1212x increase in the

number of OpenAI API key leaks from previous year,

unsurprisingly making them the highest-growth detector.

THE STATE OF SECRETS SPRAWL 2024 MENU

13

Focus: GenAI Secrets Leaks
OpenAI remains the most utilized AI service, evidenced by the alarming

average of 46,441 API key occurrences leaked each month in 2023. This

figure significantly surpasses the leakage rates of other AI services we

monitored throughout the year, such as Cohere, Claude, Clarifai, Google Bard,

Pinecone, and Replicate.

The leaks curve shows a sharp increase at the start of the year, reaching a

peak in April, followed by a gradual decline from May to October. While this

reduction is a positive development for application security, it may inversely

reflect the perceived popularity of OpenAI during this period.

While OpenAI leads by a wide margin in the number of leaks, more and more

tokens used to access HuggingFace open-source models have been seen on

GitHub month after month, hinting at a growing interest in open-source AI

among developers, albeit still overshadowed by OpenAI’s dominance.

Our analysis also highlights the rapid penetration of services like Gemini

(Google’s ChatGPT alternative, formerly known as Bard and introduced at the

end of March), Pinecone (a vector database service), Replicate (AI models-

THE STATE OF SECRETS SPRAWL 2024 MENU

14

as-a-service), and to a lesser extent, Claude (an AI assistant by Anthropic),

Cohere, and Clarifai.

By assessing the spread of secret leaks, it is easy to discern the rising use of

these AI services.

GitGuardian proactively tracks the emergence of new secret types on GitHub,

continually updating its detection tools to match the latest trends in secrets

sprawl. This vigilant approach ensures its scanning engine remains effective

against evolving security threats.

If you’re a software provider, we encourage you to reach out for the

development of bespoke detectors tailored to your service’s specific needs:

Request a custom detector from GitGuardian for your service.

Ranking File Extensions by Their Leakiness

To better understand which file types are most likely to leak secrets, we

adopted a risk-based approach. The core of this method involves calculating

the likelihood that a file with a specific extension will expose a secret. Two key

https://www.gitguardian.com/partner-registration

THE STATE OF SECRETS SPRAWL 2024 MENU

15

File extensions probability to expose a secret

For example, this score indicates that whenever GitGuardian scans an “.env” file, there’s

a 54% chance that it will result in the detection of a secret. This metric gives us a clearer

picture of which file types warrant closer scrutiny for potential security risks.

Best Practices: Correctly using .env files as a first layer of secrets protection

“Compromised credentials are a gift that keeps on giving

(your stuff away)”
The 2023 Active Adversary Report from Sophos

pieces of information were leveraged for this analysis: the prevalence of each

file extension on GitHub and the frequency with which each type appears in

incidents involving leaked secrets.

The result is a probabilistic risk score for each file extension (see the

Methodology section for a deeper dive).

https://blog.gitguardian.com/secure-your-secrets-with-env/
https://news.sophos.com/en-us/2023/08/23/active-adversary-for-tech-leaders/#:~:text=compromised%20credentials%20are%20a%20gift%20that%20keeps%20on%20giving

THE STATE OF SECRETS SPRAWL 2024 MENU

16

When someone exposes a secret on public GitHub, they should consider it

compromised. The author must revoke the secret quickly to reduce the

impact of the incident.

GitGuardian offers a free service that notifies the author when it confirms a

secret: the pro-bono alerting system. The system checks the secret’s validity

up to 13 times based on a predetermined schedule. The last check happens

about 5 days after the first detection.

Remediation Efforts
In 2023, GitGuardian monitored how well authors fixed leaks. The tracking

started when the first valid occurrence of a secret was detected and ended

five days later.

What Happens After a Secret Leaks?

The common trend is troubling:

More than 90% of the secrets remained valid 5 days

after being leaked.

THE STATE OF SECRETS SPRAWL 2024 MENU

17

These curves display the progress of secret validity over time after detection.

The perimeter is restricted to secrets for which the first occurrence was

found valid, which amounts to 644,947 unique secrets detected in 2023 (not

all secrets can be checked for validity). For each one, GitGuardian’s pro-bono

alerting system emailed the commit author.

GitGuardian found that after 5 days, 91.6% of the secrets remained valid.

To ensure a more balanced analysis, we excluded 3 detectors that accounted

for 50% of the observations (namely Google Cloud Keys, Google API keys, and

MongoDB Credentials).

This finding is crucial for grasping the full scope of the secrets sprawl issue.

While the majority of security initiatives focus on detecting these leaks, the

actual bottleneck lies in remediation. Simply alerting developers falls short;

what’s truly essential is providing them with the necessary guidance and

support to rectify their mistakes effectively.

In other words, it’s all about being able to answer, “What happens after a

secret leaks?”

Also, just 2.6% of the secrets were revoked within 1 hour

of notification via email.

THE STATE OF SECRETS SPRAWL 2024 MENU

18

Revoked secrets

Not all types of secrets are fixed (revoked) at the same rate. We noticed some

significant differences around which secrets were likely to be fixed within 5

days after their detection (selected sample of detectors with more than 400

observations):

This analysis reveals that leaked WeChat App and Algolia keys are the most

likely to remain exposed for over 5 days. Conversely, developers are more

concerned about the risks of leaking Stripe or Cloudflare API keys, as these

would be prime targets in credential-harvesting campaigns.

A noteworthy finding is that 58.5% of OpenAI API keys are still valid 5 days

after being leaked. Given the substantial volume of these leaks throughout

2023 (46K per month) and the emerging threats posed by the misuse of

generative AI, the security of OpenAI keys warrants urgent attention. Likewise,

only 33.4% of valid AWS IAM keys are revoked within the initial five days.

THE STATE OF SECRETS SPRAWL 2024 MENU

19

An interesting observation is that WeChat, Stripe, Datadog, and OpenAI, all

participants in GitHub’s partner program for streamlining the secret detection

and reporting process, still experience a high rate of unresolved leaks.

This situation highlights that automated detection is a necessary but

insufficient layer of protection. With a valid secret exposed for that long,

threat actors can compromise resources, data, and move laterally across the

supply chain. Fixing vulnerabilities should be the primary focus of a secrets

security program.

How Toyota Customer Data was Compromised with a Credential

Exposed for 5 Years
On October 7, 2022, Toyota, the Japanese-based automotive manufacturer, revealed

they had publicly exposed a credential allowing access to customer data for nearly 5

years. The code was accessible in a public GitHub repository from December 2017 through

September 2022. While Toyota says they have invalidated the key, anyone who found

that credential could access the server, gaining access to the data of 296,019 customers.

Zombie Leaks: a Hidden Threat
Repository owners often react to leaks by either deleting the repository

or making it private, cutting off public access to the leaked information.

However, this approach can lead to one of the riskiest scenarios for an

organization: a “zombie leak”.

🦉 Fun Fact:

Only 24% of Riot Games keys were still active after five

days vs. 95.5% for Algolia! Could gamers be a secret

weapon against secrets sprawl?

THE STATE OF SECRETS SPRAWL 2024 MENU

20

A zombie leak occurs when a secret is exposed but not revoked, remaining

a potential attack vector. The commit author may believe that deleting the

commit or repository is sufficient, overlooking the crucial revocation step.

A study involving a random sample of 5,000 erased secret occurrences 5 days

after their exposure revealed that only 28.2% of the repositories were still

accessible today. This suggests that the remaining repositories were likely

deleted or privatized, a common response to leaks.

Although we cannot tell when these repositories disappeared, many of the

disappearances were probably caused by what seemed most likely to hide the

issue rather than effective remediation.

It’s important to remember that numerous threat actors continuously

monitor and mirror public GitHub activity in real-time. Any sensitive

information exposed, even briefly, should be considered compromised. For

secrets, this means that merely hiding the leak is ineffective and can

create a false sense of security.

What to do if you expose a secret: the secret leak remediation cheat sheet

https://www.gitguardian.com/files/secret-sprawl-remediation-cheatsheet

THE STATE OF SECRETS SPRAWL 2024 MENU

21

⚖ The Digital Millennium Copyright Act (DMCA)

Is a U.S. copyright law established in 1998. But GitHub is used

worldwide. So GitHub’s DMCA policy also takes international copyright

laws into account. As such, GitHub will also respond to takedown

notices that are compliant with equivalent laws in other jurisdictions.

Given that leaks frequently occur outside an organization’s control, often in

personal GitHub accounts, DMCA notices are mainly employed to manage such

external repositories. Data points to an increasing use of DMCA notices as a

last-ditch effort to remove repositories that inadvertently expose secrets.

In 2023, GitHub received 2,085 DMCA takedown notices, and 2,050 of the

repositories mentioned in these notices were taken down: of these, 255

(12.4%) exposed at least one secret. This proportion was 9% in 2021 and

11.1% in 2022. Between 2021 and 2023, the percentage of takedown requests

that involved a repository with an exposed secret increased by 37.8%.

DMCA Takedown Notices: a Last Resort to Stop
Leaks?
DMCA takedown notices are a process for any

copyright owner in the U.S. to demand the removal

of content that infringes on their rights. As a “safe

harbor,” GitHub must process DMCA requests when

infringing code is posted on the platform. For

that, a dedicated repository is used to archive all

DMCA takedown notices and counter-notices they

receive. These notices can mention one or multiple

repositories simultaneously.

https://github.com/github/dmca/tree/master

THE STATE OF SECRETS SPRAWL 2024 MENU

22

It’s worth noting that the public disclosure of such requests can inadvertently

highlight problematic repositories to malicious actors. This visibility makes it

a double-edged sword, suggesting it should be used as a last-resort solution

due to the risk of drawing unwanted attention to sensitive content.

AI for Secrets Detection
The year 2023 marked the breakthrough of Generative AI, significantly

impacting various professional fields with rapid adoption facilitated by user-

friendly chats and developer-friendly APIs. Developers, as we have seen, are

at the forefront of this new wave, and there is no doubt that this powerful

technology, in the hands of both good and bad actors, will have an outsized

impact on cybersecurity.

Could foundational models effectively replace human-

developed engines for tackling secrets sprawl?

This chapter explores whether LLMs models could serve as an alternative to

traditional secret detection tools. It examines the operational scale, cost and

time efficiency, and overall performance of general-public AI in detecting

THE STATE OF SECRETS SPRAWL 2024 MENU

23

secrets. That leads to an in-depth look at GitGuardian’s AI-driven approach to

enhancing the detection and management of sensitive information.

How Good Can LLMs Be at Detecting Secrets?
Large Language Models (LLMs) are advanced artificial intelligence

systems designed to understand, generate, and work with human

language. They comprise multiple orders of magnitude more

parameters than traditional machine learning models and are tuned on

unprecedentedly vast amounts of data.

As of today, many such LLMs have been made available to the public, e.g.

through APIs as is the case for GPT-4, with the possibility to specialize them

by providing task-specific instructions as done with “custom GPTs.”

In the context of source code, LLMs models are competent at understanding

and generating code for a variety of programming languages as well, making

them a natural candidate for secret detection.

OPERATING SCALE

GitGuardian scans ~10M public documents per day, or ~116 per second. Assuming

an average document size of 500 tokens (a very conservative approach), this

would be equivalent to 3M tokens being processed every minute on average,

illustrating GitGuardian’s operating scale.

This volume challenges the rate limits set

by OpenAI for their foundational models:

THE STATE OF SECRETS SPRAWL 2024 MENU

24

TIME & COST FACTORS

Then comes the price and time consideration. With an average price

per document of 0.02$ and an average time of 10 seconds using GPT-4

(respectively ~0.0004$ and ~2.5s/doc for GPT-3.5), here is what would be

needed to scan 1 day of data processed by GitGuardian:

Note: the observed latency difference between the models is based on an

average derived from our empirical testing, and has been documented by

other users.

PERFORMANCE

Assessing ChatGPT’s recall

To evaluate ChatGPT’s efficiency in accurately identifying valid secrets as

true positives (assessing its recall capability), we conducted a test with 1,000

known valid secrets.

We prompted ChatGPT (full prompt detailed in the Methodology section) to

detect these secrets. The outcome revealed that ChatGPT failed to recognize

15.2% of the secrets, demonstrating less-than-ideal recall. This finding is

particularly concerning given that the test focused on specific secrets; the

recall rate is likely to be even lower for generic secrets.

THE STATE OF SECRETS SPRAWL 2024 MENU

25

Assessing ChatGPT’s precision

To assess ChatGPT’s precision in identifying hard-coded secrets, we collected

1,000 random Python documents from GitHub and tasked ChatGPT with

detecting secrets. We then cross-referenced ChatGPT’s findings against

GitGuardian’s. The examination yielded the following distribution of detected

secrets: ChatGPT exclusively identified 402, GitGuardian exclusively found 8,

and both tools agreed on 6 instances.

ChatGPT is flagging an excessive number of files.

A manual review of the documents confirms this,

revealing that alerts for secrets were triggered in

simple cases, such as common placeholders or even

IP addresses. This suggests a high propensity for

generating false positives.

While refining the prompt could potentially improve

the results (at a cost), in this particular experiment,

ChatGPT’s precision was significantly low.

THE STATE OF SECRETS SPRAWL 2024 MENU

26

Powering Secrets Detection with AI: GitGuardian’s
Approach
Make no mistake: AI represents a revolutionary shift in the field of secrets

detection. However, our conviction lies in the power of combining AI with our

specialized secrets detection engine to unlock true value. We outline several

use cases where integrating AI can significantly enhance our capabilities.

CATEGORIZE GENERIC SECRETS

Generic secrets, not associated with specific services, present unique

challenges in secrets detection: the lack of contextual information and

validity checkers makes it difficult to offer incident status visibility or

context-tailored remediation guidelines. GitGuardian is deeply committed to

advancing this area, leveraging AI to enhance the contextualization of leaks.

An initial step towards enriching our insights involves using AI to classify

generic secrets, providing valuable perspectives. For instance, when

categorizing generic passwords and high-entropy secrets, we found that

66.7% of exposed passwords are related to database storage, suggesting

potential remediation paths. Similarly, 31.5% of high-entropy strings are

associated with cloud services.

THE STATE OF SECRETS SPRAWL 2024 MENU

27

And this is only the beginning. GitGuardian is developing machine learning

techniques to identify crucial details like the service targeted by the secret,

its environment, the incident’s severity, and the secret’s active usage within

the codebase, thereby significantly bolstering our remediation framework.

IMPROVING PRECISION AND RECALL FOR GENERIC SECRETS

To enhance application security through machine learning, GitGuardian’s ML

team is developing a model to accurately score the likelihood of a genuine

generic secret versus a false positive. This model is particularly effective, as

test results show distinct score distributions for true and false positives:

Such clear differentiation allows for setting a threshold that significantly reduces

false positives without substantially impacting the detection of true positives,

showcasing the model’s capability to refine secrets detection. The reduction of

false positives, in turn, reduces wasted response efforts by our customers.

THE STATE OF SECRETS SPRAWL 2024 MENU

28

Are You Sure to Know Where Your
Secrets Are?

Unveiling Secret Exposures with
HasMySecretLeaked
HasMySecretLeaked is a pioneering free service designed to allow security

practitioners to proactively check if their secrets have been exposed on

GitHub.com. It leverages GitGuardian’s comprehensive database, which

includes over 20 million records of leaked secrets found across GitHub since

2017. The service is built on a trustless model, ensuring that users’ secrets

remain secure throughout the process, as GitGuardian never accesses the

secrets directly.

The protocol behind the service is a hash-based security mechanism that has

been enhanced with a series of protective layers (see the diagram below)

to ensure that only the owner of a secret can know if this secret has been

leaked, and where.

🦉 Fun Fact:
It turns out that leaked passwords on GitHub

might just be the most authentic survey of

password habits out there.

When we peeked into 5,000 leaked passwords,

we discovered a nice tidbit: the majority are

cryptographically secure. However, reality check

– about 18% wouldn’t resist a serious cracking

attempt. Leaks inadvertently offer a real-world

glimpse into our passwords’ strengths and

weaknesses!

https://www.gitguardian.com/hasmysecretleaked

THE STATE OF SECRETS SPRAWL 2024 MENU

29

Additional measures, such as adding peppering and rate-limiting, are

implemented to prevent misuse and enumeration attacks, making

HasMySecretLeaked a secure and privacy-preserving tool for querying

secret leaks.

To test the hypothesis that secrets leaked in private repositories are also

leaked on public GitHub, we conducted a study on a perimeter comprising

403,571 leaked secrets, querying HasMySecretLeaked to know if these

were also leaked on GitHub.

This fact hints at a well-known saying: “Security through obscurity is no

security at all.” Applied to our case, it dismantles the idea that relying on the

privacy of source code as a security layer is a valid strategy.

The result:

3.11% of the secrets leaked in private repositories were also

exposed in public repositories.

THE STATE OF SECRETS SPRAWL 2024 MENU

30

These “private yet public” leaks have been publicly exposed 3.48 times on

average, and 99% were found in source code files (less than 1% in GitHub

issues, Pull Request descriptions, or GitHub Gists).

Extended Attack Surface: Secrets Sprawling in PyPI

PACKAGE REPOSITORIES

Open-source isn’t just about open-source code, it’s also about open

distribution. Open-source ecosystems rely heavily on package hosting and

management, with central repositories like NPM, Maven, and PyPI being

crucial for software development.

These platforms offer easy access to millions of code libraries, streamlining

the integration of functionality into projects “without reinventing the

wheel.” As part of the software supply chain, open-source packages make

up an estimated 90% of the code run in production today.

Historically, package repositories have been overlooked as a critical area

for supply chain security. Yet, the recent surge in malicious packages posing

as legitimate, popular code libraries has raised awareness about the risks

associated with unmonitored package submissions.

As recently as December 2023, ESET Research identified no

less than 116 malicious packages within PyPI, spread across 53

projects. These harmful packages have been downloaded more

than 10,000 times by unsuspecting victims. The malware found in

these packages featured a backdoor enabling remote command

execution, data exfiltration, and the ability to take screenshots.

https://www.welivesecurity.com/en/eset-research/pernicious-potpourri-python-packages-pypi/

THE STATE OF SECRETS SPRAWL 2024 MENU

31

This shift in perspective is driving the demand for enhanced security

protocols to safeguard an essential component of the software industry.

Much like version control systems, package repositories must be considered

part of the extended attack surface of application security.

Building on its prior research, GitGuardian has expanded its investigation into

the pervasiveness of leaked secrets within PyPI packages by incorporating

new data. This enhanced analysis aims to provide a deeper understanding

of secrets sprawl within the Python package index, highlighting the ongoing

challenges and risks associated with secure code management in open-source

libraries.

THE STATE OF SECRETS SPRAWL IN PYPI

The Python Package Index, better known as PyPI, is the official 3rd party

package management system for the Python community. The central

repository boasts over 500K hosted projects, 10M files, and over 31 billion

monthly downloads.

GitGuardian analyzed the number of unique secrets leaked in PyPI packages:

11,054 unique secrets were exposed in package releases in 2023.

Approximately 10,000 of those secrets had been there since before 2023, and

over 1,000 had been introduced that year.

A promising initiative to improve the security of the open-source

ecosystem was launched by the Cybersecurity and Infrastructure

Security Agency (CISA) in partnership with the Open Source Security

Foundation (OpenSSF) last year. Together they published the Principles

for Package Repository Security. The document recommends

integrating package API tokens “into common third-party secret

scanning programs” and enabling automatic token revocation with a

dedicated endpoint.

https://repos.openssf.org/principles-for-package-repository-security
https://repos.openssf.org/principles-for-package-repository-security

THE STATE OF SECRETS SPRAWL 2024 MENU

32

Adding up all the secrets shared across all the releases (5 million), we found

56,866 occurrences of secrets, indicating the same secret is often found in

multiple releases of the same package. The reason behind this is simple: many

package maintainers often don’t realize a secret is shipped with the code

library at every release!

Leaked secrets closely follow the trend of new packages being added to the

index repository, as illustrated in this chart:

💡 A “release” on PyPI is a specific project version. For example,

the requests project has many releases, like “requests 2.10” and

“requests 1.2.1”. A release may consist of one or multiple files.

THE STATE OF SECRETS SPRAWL 2024 MENU

33

The pervasiveness of secrets across releases explains how 97 secrets

detected in packages dating from 2017 were still valid in late 2023 at the

time of the study:

As highlighted in the above chart, a large share of secrets couldn’t be

validated because no checker exists. Focusing on valid secrets only, here is a

sample of some of the most frequent secrets we discovered:

THE STATE OF SECRETS SPRAWL 2024 MENU

34

WHY ARE WE SEEING LEAKED SECRETS IN PYPI PACKAGES?

Of course, secrets hard-coded in source code are at risk of being packaged

and exposed in a central repository such as PyPI. However, several scenarios

could account for the presence of a secret in a PyPI package without it being

visible in the source code:

	» Private Repositories: the source code may be hosted in a private

repository, shielding it from public scrutiny but not from being included in

publicly distributed packages.

	» Local Packaging: the package could be compiled/packaged on a local

machine, allowing secrets to be inadvertently incorporated during the

packaging process without being exposed in any public code repository.

	» Build-Time Insertion: the secret might not be embedded directly in the

source but introduced during the build or packaging process. This can

happen through environment variables, build scripts, or other mechanisms

that insert secrets into the final package, bypassing the source code stored

in version control systems.

“In the course of outreach for this project, we discovered at

least 15 incidents where the publisher was unaware they had

made their project public. Without naming any names, we did

want to mention some of these were from very large companies

that have robust security teams. Accidents can happen to

anyone.”
Tom Forbes, Staff Engineer at GitGuardian

Welcome to GitHub.com, the Largest Attack
Surface in The World
Exposed secrets are not the only security threats lurking in the vastness of

GitHub. In 2023, several studies unmasked malicious operations targeting

THE STATE OF SECRETS SPRAWL 2024 MENU

35

or using the platform as a vector for supply chain attacks. As GitHub’s

popularity soars, it increasingly attracts malevolent actors, positioning it as

a central hub for cyber threats:

	» PyTorch critical supply chain compromise: Researchers exploited a critical

CI/CD vulnerability in PyTorch, a major ML framework used at Google,

Meta, and Boeing. Key to the attack was stealing GitHub Personal Access

Tokens (PATs) and AWS keys to move laterally across the supply chain. The

vulnerability enabled unauthorized upload of malicious PyTorch releases

and backdooring dependencies. The exploit involved self-hosted runners,

often targeted due to their insecure default settings and ability to run

arbitrary code from fork pull requests.

	» Spoofing committers to make malicious repos look reliable: GitHub’s ability

to spoof and forge commits’ metadata allows malicious actors to mislead

developers into using repositories hosting malicious code. Timestamps and

committer identities on GitHub commits can be easily forged.

	» Using GitHub as malicious infrastructure: Researchers explained the

frequent abuse of GitHub’s services by cybercriminals and advanced

persistent threats (APTs) for various malicious infrastructure schemes.

These include payload delivery, dead drop resolving (DDR), full command-

and-control (C2), and exfiltration. GitHub’s popularity among threat actors

lies in its ability to allow them to blend in with legitimate network traffic,

making detection and attribution challenging for defenders.

“Overall, DarkOwl detected 20,921,173 mentions of

GitHub on the darknet, of which 5,723,002 are from

last year alone. Across authenticated sites, which

are the most high-value forums and marketplaces,

90,255 mentions of GitHub were tracked.”
Erin Brown, Director of Intelligence and Collections at DarkOwl

https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
https://go.recordedfuture.com/hubfs/reports/cta-2024-0111.pdf

THE STATE OF SECRETS SPRAWL 2024 MENU

36

	» Dependabot impersonation campaign: In 2023, malicious commits were

detected on hundreds of GitHub repositories, appearing to be contributed

by Dependabot but actually carrying a payload designed to exfiltrate GitHub

secrets and steal web-based password forms. The attackers utilized stolen

GitHub personal access tokens from victims to make these malicious commits,

even compromising repositories within private GitHub organizations due to

the comprehensive access provided by the victims’ tokens.

	» 3% of all GitHub repositories are potentially vulnerable to RepoJacking:

Repo-jacking is a specific software supply chain attack type allowing

malicious actors to gain control over a GitHub namespace by registering

a username made newly available by a name change. For example, XYZ

changes their GitHub organization name from “xyz” to “xyzcorp,” making it

possible for someone to register as “xyz.” According to this study, millions

of repositories hosted under a different organization name in the past are

vulnerable to this kind of attack, including ones owned by Lyft and Google.

What makes them valuable is all the legacy links around the web that never

got updated to reflect the name change.

Solving Secrets Sprawl
The risk companies face from the rapid sprawl of API keys, configuration

variables, and secrets within engineering teams cannot be overlooked.

Secrets serve as the keys to a company’s most valuable assets, making their

management and protection a critical aspect of overall security strategy.

Moreover, the threat posed by secrets sprawl extends beyond individual

companies, impacting supply chains and critical infrastructure. This

concern is echoed by national organizations like the Cybersecurity and

Infrastructure Security Agency (CISA) and the National Institute of

Standards and Technology (NIST).

Secret scanning is a specific requirement of the new

“Strategies for the Integration of Software Supply Chain

https://checkmarx.com/blog/surprise-when-dependabot-contributes-malicious-code/
https://www.aquasec.com/blog/github-dataset-research-reveals-millions-potentially-vulnerable-to-repojacking/#Appendix_A
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204D.pdf

THE STATE OF SECRETS SPRAWL 2024 MENU

37

Security in DevSecOps CI/CD pipelines” publication from NIST, along with

SAST, SCA, and DAST. Meanwhile, in its recent Cybersecurity Advisory, CISA

underscores the risks associated with plaintext credentials, warning against

lateral movements and privilege escalation.

Despite the recognized importance of managing secrets sprawl, the

widespread adoption of emerging best practices remains limited. While

secrets management tools are a valuable part of the solution, they alone are

not sufficient to address this complex issue. So, what can effectively solve

secrets sprawl?

Fortunately, through our work with numerous organizations since 2017, we

have gained valuable insights into how companies with the strongest security

postures successfully tackle this challenge. By learning from these successful

implementations, we can identify effective strategies and best practices to

manage secrets sprawl and enhance overall security.

Awareness & Training
Cultivating secure coding practices is an ongoing process. Awareness and

training are two interconnected aspects that play a crucial role in mitigating

the issue of secrets sprawl within an organization.

One of the significant challenges organizations face is the division between

teams that create secrets, primarily developers, and those responsible for

securing them. This division often leads to siloed operations and potential

adversarial relationships. Despite these differing approaches, both teams

share the common goal of secure code and adherence to best practices.

To bridge this gap, informal “lunch and learns” are highly effective. These

sessions can raise awareness and foster a shared understanding of security

issues without creating overwhelming pressure. Such initiatives form

the cornerstone of successful security champion programs, promoting

collaborative efforts towards common security goals.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204D.pdf
https://www.cisa.gov/sites/default/files/2023-03/aa23-059a-cisa_red_team_shares_key_findings_to_improve_monitoring_and_hardening_of_networks_1.pdf

THE STATE OF SECRETS SPRAWL 2024 MENU

38

“Security training” often brings to mind lengthy, tedious tutorials on basic

security practices. However, training can be a much more engaging and

productive experience. By focusing on practical applications, such as using

playbooks or participating in a Capture The Flag (CTF) challenge, training is

made more relevant and appealing.

Training sessions also provide an excellent opportunity to address new

threats and answer questions, ensuring that processes stay current and

effective. The ultimate goal of training is to enhance communication within

the team, making issue resolution a routine collaboration rather than a point

of conflict.

Contact us to set up a Lunch & Learn or a CTF session

Effective Processes
Consistent results require consistent processes. In cybersecurity, clear

and communicated procedures are essential to ensure success. Instead of

merely handing over security findings and expecting optimal outcomes, it’s

crucial to establish and convey effective processes for tasks such as creating

credentials or rotating secrets within a DevOps environment.

As previously mentioned, having clearly established guidelines to address the

question “What happens after secret leaks?” is vital in tackling the issue of

secrets sprawl. Automating processes should also be a priority, particularly

in critical supply chain steps such as secure code reviews. However, this is not

always the case, as highlighted in last year’s survey:

“27% of respondents revealed that they rely on

manual code reviews, which are inefficient, to

protect themselves from secret leaks.”
Voice of Practitioners: The State of Secrets in AppSec 2023

https://www.gitguardian.com/contact-us
https://www.gitguardian.com/contact-us

THE STATE OF SECRETS SPRAWL 2024 MENU

39

Designing these processes can begin with a simple step, such as

drafting a flowchart on a whiteboard. The key to success lies in effective

communication, which includes thorough documentation, comprehensive

training, and convenient tools.

Fast and (mostly) automated feedback loops empower developers to take

ownership of the remediation process. This approach ultimately contributes

to fostering a blameless culture within the organization, where mistakes are

seen as opportunities for learning and improvement, rather than as blame-

worthy events.

Take the 5-min Secrets Management Maturity Questionnaire to measure your

team’s maturity.

Combining Secrets Detection & Management
Today, security teams are waking up to two realities: the foundational

importance of securing secrets in application security programs, and the

inevitability of secrets sprawl due to human error.

Secrets management tools are essential for maintaining good credential

hygiene, providing a secure, central location for storing, distributing, and

rotating secrets. However, these tools cannot guarantee their use and may be

bypassed. Even in organizations with mature security practices, secrets can

sprawl in unexpected ways, creating a security loophole that evades even the

most stringent surveillance.

To combat secrets sprawl, organizations should use discovery tools and

effective controls. Secrets detection and remediation platforms assist in this

by enabling continuous evaluation of secrets’ security, enforcing consistent

policies throughout the software development process, and speeding up

incident resolution. These platforms foster collaboration between security

and development teams, enhancing the security of the SDLC over time.

https://www.gitguardian.com/secrets-management-maturity-questionnaire#questionnaire

THE STATE OF SECRETS SPRAWL 2024 MENU

40

After years of honing our expertise in secrets detection and remediation,

GitGuardian has partnered with CyberArk, a leader in identity security and

secrets management. Together, we are building the industry’s first end-to-

end secrets security solution.

The first use case involves detecting secrets that have been leaked on public

GitHub repositories. Our integration identifies these leaks, notifies users, and

initiates remediation steps. The second use case focuses on detecting secrets

within a company’s internal perimeter. This includes:

	» Identifying secrets in the source code that aren’t securely stored in

CyberArk’s Conjur Cloud (rogue secrets). Our aim is to inform users and

encourage the adoption of good secrets security practices.

	» When a detected secret in the user’s source code is already vaulted, our

integration alerts the user and initiates a secret rotation flow for timely

remediation.

While evaluating tools to address the issue of secrets sprawl,

particularly leaks into public GitHub repositories, might be a new

process for you, GitGuardian has helped hundreds of enterprises

find the right solution in less time than they initially anticipated. We

understand the common hurdles anyone adopting a new solution

faces, including how to communicate the value and urgency of solving

the issue as you build a case. We are more than happy to help you

navigate these challenges.

Enterprise Buyer’s Guide For Secrets Detection: 10 key considerations

for security decision-makers

“94% of surveyed respondents plan to improve their

secrets practices in the next 12-18 months.”
Voice of Practitioners: The State of Secrets in AppSec 2023

https://blog.gitguardian.com/protect-secrets-with-cyberark-and-gitguardian-integration/
https://www.gitguardian.com/whitepapers/enterprise-buyers-guide
https://www.gitguardian.com/whitepapers/enterprise-buyers-guide

THE STATE OF SECRETS SPRAWL 2024 MENU

41

Preventing Leaks & Breaches
A multi-layered detection strategy is crucial for preventing hard-coded

secrets and ensuring robust security.

First, real-time monitoring of repositories provides full visibility,

strengthening your Version Control System (VCS) against exposed secrets.

Second, employ a shift-left approach to address security concerns earlier in

the development lifecycle. Ideally, secret leaks should be identified before

they are committed to the repository. This is best achieved by integrating

security tools into the development environment, enabling developers to

detect and remediate security issues as they code.

GGshield, the GitGuardian command-line interface (CLI), was designed

with this use in mind. It detects hard-coded secrets in pre-commit hooks,

reducing the risk of a leak and promoting a culture of security awareness

among developers. For organizations hosting their VCS, ggshield can also

be used as a pre-receive hook to prevent leaky commits from entering

repositories organization-wide.

GGShield is easily integrated into CI pipelines and other continuous

integration tests. In 2023, this accounted for 57.3% of the nearly 8.5 million

ggshield API calls made by GitGuardian customers.

https://www.gitguardian.com/ggshield

THE STATE OF SECRETS SPRAWL 2024 MENU

42

In 2023, ggshield prevented 417K policy breaks per month!

Finally, ggshield is not just for hard-coded secrets. The tool can scan for

infrastructure-as-code misconfigurations and create honeytokens.

IMPLEMENTING HONEYTOKENS FOR ENHANCED SECURITY

Managing secrets sprawl on a large scale can be daunting, particularly in large

organizations where the scope of the secrets security tech debt makes it

difficult to prioritize remediation according to the risks.

🍯 What is a Honeytoken?

Honeytokens are decoy credentials acting as tripwires,

revealing attacker information (e.g., IP Address, User

Agent, Location, etc.) without granting access to real

customer resources. When a hacker triggers these

decoys during a secret scan, it alerts the security team

to a potential security incident.

https://docs.gitguardian.com/secrets-detection/detect/secrets-incidents-and-policy-breaks

THE STATE OF SECRETS SPRAWL 2024 MENU

43

As you begin the process of cleaning up historical secrets, a task that

could take months or even years, honeytokens can provide reassurance by

alerting you in case of a breach. This allows you to respond immediately and

mitigate potential damage.

When dealing with a significant secrets debt, involving hundreds or

thousands of incidents, honeytokens are invaluable. They guide the security

team in prioritizing and rotating critical secrets, ensuring a proactive and

efficient remediation process.

Honeytokens are your tool to maintain a vigilant defense against potential

security threats while steadily addressing the issue of secrets sprawl. This

approach combines immediate threat detection with long-term security

enhancement.

About GitGuardian
GitGuardian is the security platform for the DevOps generation. GitGuardian

enables security teams to define and enforce secure coding practices

consistently and globally at every step of the software development process.

Centered on collaboration between security and development teams,

GitGuardian also helps organizations enhance their security posture by

decentralizing and accelerating the remediation of hard-coded secrets

vulnerabilities and misconfigurations in infrastructure-as-code and open-

source dependencies.

Widely adopted by developer communities, GitGuardian is the #1 security

application on GitHub Marketplace and is used by over 300 thousand

developers and leading companies, including Snowflake, Orange, Iress,

Mirantis, Maven Wave, Payfit, and Bouygues Telecom.

https://blog.gitguardian.com/honeytokens-for-peace-of-mind/

THE STATE OF SECRETS SPRAWL 2024 MENU

44

Appendix
Definitions
Secret:
A secret is any sensitive data we want to keep private.

When discussing secrets in software development,

we refer to digital authentication credentials that

grant access to services, systems, and data. These are

most commonly API keys, username and password

combos, or private keys. In this report, secrets refer to

credentials hard-coded in plaintext.

Occurrence:
When our detection engine detects a hard-coded secret,

it becomes an occurrence. A single incident generally

encompasses multiple occurrences: the various

locations across files or repositories where the secret

was identified. Occurrences map to the magnitude of

the sprawl and correlate to the amount of work needed

to redistribute the secret after it has been rotated.

Occurrences are similar to technical debt.

Detector:
At GitGuardian, a detector is a set of rules that filter

documents for secrets. Beyond simple regex patterns,

detectors are a sophisticated blend of pre- and post-

validation processes engineered for optimal speed,

precision, and recall. These steps are performed using

a combination of regular expressions and heuristics

(e.g., variable assignments) based on contextual

information. GitGuardian detectors boast features like

automatic deduplication and the ability to recognize

prefixed and base64 encoded secrets, such as

Kubernetes secrets. GitGuardian developed the vastest

library of specific detectors to detect more than 400

types of secrets. You can find the exhaustive list here.

Specific detector:
Specific detectors are designed to detect secrets for

a specific provider, for example, the AWS detector will

only detect AWS secrets. They offer high recall and

precision, meaning they will rapidly catch all specific

secrets while raising a low number of false alerts.

Generic detector:
Generic detectors are designed to catch a broad

variety of secrets that cannot be tied to a specific

service. For example, the generic password detector

aims to catch any strings assigned to a password

variable. This broad scope inherently increases

their susceptibility to generating false positives,

or overlooking true positives, unless meticulous

attention is given to fine-tuning their parameters.

To strike a balance, GitGuardian’s secrets detection

engine accepts a false positive rate of approximately

20% as a trade-off for achieving high recall.

Secret incident:

A secret incident is a uniquely identified security

event determined to impact the organization and

necessitates remediation. An incident often has

multiple occurrences across files or repositories.

Software supply chain security:
A software supply chain is a logistical pathway that

covers anything required to build a software artifact.

It is the set of assembled components, building

tools, and processes from source code to production

deployment. Supply chain security is about securing

each link in the chain by ensuring that components

supplied by third parties have not been compromised

and comply with security requirements.

https://docs.gitguardian.com/secrets-detection/secrets-detection-engine/detectors/supported_credentials

THE STATE OF SECRETS SPRAWL 2024 MENU

45

Methodology
GITHUB METRICS

All the GitHub metrics are extracted from the State of the Octoverse 2023. Some metrics,

such as the number of new developers and repositories per month, have been computed

based on the newly released GitHub Innovation Graph, an open dataset offering quarterly

data on public activity that dates back to 2020.

STUDY PERIMETER

To ensure that the data presented here most accurately represents the state of secrets

sprawl, and particularly to eliminate as many generic false positives as possible, filtering

was applied to the data collected in 2023.

The filter is applied per detector and determines whether a check is necessary to count the

secrets reported by this detector. If so, the secret is only counted if the first occurrence of

the secret was valid. Otherwise, the secret is directly included in the count.

This method significantly boosts the precision of some detectors designed to accept a

margin of false positives to avoid compromising detection recall. For instance, the GitHub

Access Tokens detector employs a broad regex pattern prone to flagging numerous false

positives. Hence, this detector underwent filtering. Detectors like AWS keys, which rely on

specific prefixes, already exhibit high precision and did not require this additional filtering

step.

Beyond the filtering process, we also manually excluded outliers—repositories exhibiting

abnormally high leak rates, where a secret might be committed every minute—from this

defined perimeter to ensure the integrity and accuracy of our metrics.

FILE EXTENSION RISK SCORE

For any given file, we have two random variables:

1.	 T the file type

2.	 S the presence of a secret

Let us note:

	» Ω the set of all files

	» Ωs the set of files with secrets

	» Ωx the set of files of type x

Now, for each file type x, we have:

	» |Ωx| / |Ω| = P(x) the probability of the file type x

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.com/github/innovationgraph/tree/main

THE STATE OF SECRETS SPRAWL 2024 MENU

46

	» |Ωs,x| / |Ωs| = P(x|s) the probability of file type x conditionally on the file exposing a

secret

Now, per Bayes theorem, we have P(x|s) / P(x) = P(s|x) / P(s)

	» P(s|x) is the probability of the file having a secret knowing that the file is of type x

	» P(s) is the global probability of a file having a secret.

Since P(s) is a normalization constant (it doesn’t depend on the file type), the risk score is

defined by P(s|x), the probability of the file having a secret knowing that the file is of type x.

This probabilistic score is between 0 and 1.

After running a statistical test of independence (ꭓ2), we found a probability of 0 that we

would observe this data if the file extension and the presence of a secret were independent

variables. Therefore, these results are significant.

PASSWORD STRENGTH COMPUTATION

The strength of a password is determined by its entropy, measured in bits. Entropy

quantifies the unpredictability or randomness of a password, which in turn affects its

security level. To calculate this entropy, we used a standard computation assuming a

uniform distribution of characters. This formula provides a measure of the password’s

complexity and, by extension, its strength against brute-force attacks:

CHATGPT FOR SECRETS DETECTION

Prompt:

You are an expert in secret detection in source code.

You receive source code snippets and your role is to detect secrets.

The first line is the file name and the following lines are the file content.

Answer using the following format when a secret is present:

Name: [name of the secret]

Secret: [copy of the secret]

Description: [short description of the secret]

Repeat multiple times if multiple secrets are present.

If no secret is present, answer only “ALL CLEAR”

Bits of entropy Password strength

0-35 Very weak

36-59 Weak

60-119 Strong

120 and above Very strong

https://nordvpn.com/fr/blog/what-is-password-entropy/

THE STATE OF SECRETS SPRAWL 2024 MENU

47

Three examples of false positives raised by ChatGPT when used for secrets detection:

Code snippet

print(‘Modified this file’)

print(‘Third Modification’)

print(‘changes in second branch’)

+print(‘123456 new change in second branch’)

Name: Numeric Secret

Secret: 123456

Description: This code snippet contains a numeric

secret, specifically the number 123456.

Code snippet

@@ -168,7 +168,7 @@ class Server_run():

 def run(db):

 from http.server import HTTPServer

 handler = handlerwithdb(db)

- server = HTTPServer((“192.168.0.178”, 9000), handler)

+ server = HTTPServer((“192.168.51.201”, 9000), handler)

 print(“Starting server, use <Ctrl-C> to stop”)

 server.serve_forever()

 #Server_run.run()

Name: IP address

Secret: 192.168.0.178

Description: The IP address 192.168.0.178 is hard-coded in the code.

Name: IP address

Secret: 192.168.51.201

Description: The IP address 192.168.51.201 is hard-coded in the code.

THE STATE OF SECRETS SPRAWL 2024 MENU

48

Code snippet

@@ -96,6 +96,11 @@ def webserver(request):

 docker_id_db = start_postgres()

 wait_for_container(docker_id_db)

 db_connection_string = f”postgres://postgres:notsecretpassword@

{get_ip_from_id(docker_id_db)}:5432”

+ db_initializer = subprocess.check_output(

+ [‘docker’, ‘run’, ‘--rm’,

+ ‘--name’, ‘initdb’,

+ ‘-e’, f”AIRFLOW__CORE__SQL_ALCHEMY_

CONN={db_connection_string}”,

+ get_image_name(), ‘airflow’, ‘initdb’]).decode().strip()

 docker_id = subprocess.check_output(

 [‘docker’, ‘run’, ‘--rm’,

 ‘--name’, ‘webserver’,

Name: db_connection_string

Secret: postgres://postgres:notsecretpassword@

{get_ip_from_id(docker_id_db)}:5432

Description: Connection string for PostgreSQL database.

Name: AIRFLOW__CORE__SQL_ALCHEMY_CONN

Secret: {db_connection_string}

Description: SQLAlchemy connection string for Airflow.

Name: notsecretpassword

Secret: notsecretpassword

Description: Password for the PostgreSQL user.

UNVEILING SECRET EXPOSURES WITH HASMYSECRETLEAKED

We conducted a study on a set of 403,571 leaked secrets and found the following:

	» 94.74% of the secrets were not publicly exposed.

	» 2.16% of the secrets were publicly exposed more than 10 times. However, these were

not considered in our analysis due to the likelihood of being false positives.

	» 3.11% of the secrets were publicly exposed less than 10 times, with an average of 3.48

occurrences.

Among the secrets that were publicly exposed, 17.27% had exactly one occurrence exposed

on GitHub.com.

The State of Secrets Sprawl 2024

DATA ANALYSIS BY GITGUARDIAN

Learn more at www.gitguardian.com

© 2024 GitGuardian. All Rights Reserved.

http://www.gitguardian.com

	Foreword
	2023 Map of Leaks
	Industry Leaks
	Secrets Detectors
	Focus: GenAI Secrets Leaks
	Ranking File Extensions by Their Leakiness

	What Happens After a Secret Leaks?
	Remediation Efforts
	Revoked secrets
	Zombie Leaks: a Hidden Threat
	DMCA Takedown Notices: a Last Resort to Stop Leaks?

	AI for Secrets Detection
	How Good Can LLMs Be at Detecting Secrets?
	Powering Secrets Detection with AI: GitGuardian’s Approach

	Are You Sure to Know Where Your Secrets Are?
	Unveiling Secret Exposures with HasMySecretLeaked

	Solving Secrets Sprawl
	Awareness & Training
	Combining Secrets Detection & Management
	Preventing Leaks & Breaches

	About GitGuardian
	Appendix
	Definitions
	Methodology

