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ABSTRACT
In this paper we provide evidence of an emerging criminal infras-

tructure enabling impersonation attacks at scale. Impersonation-as-
a-Service (IMPaaS) allows attackers to systematically collect and

enforce user profiles (consisting of user credentials, cookies, de-

vice and behavioural fingerprints, and other metadata) to circum-

vent risk-based authentication system and effectively bypass multi-

factor authentication mechanisms. We present the IMPaaS model

and evaluate its implementation by analysing the operation of a

large, invite-only, Russian IMPaaS platform providing user pro-

files for more than 260
′
000 Internet users worldwide. Our findings

suggest that the IMPaaSmodel is growing, and provides the mecha-

nisms needed to systematically evade authentication controls across

multiple platforms, while providing attackers with a reliable, up-to-

date, and semi-automated environment enabling target selection

and user impersonation against Internet users as scale.

KEYWORDS
user profiling; impersonation attacks; impersonation-as-a-service;

threat modeling

1 INTRODUCTION
In recent years there has been a surge in criminal infrastructures

supporting cyberattacks and cybercrime activities at large [2, 10, 20].

For example, exploitation-as-a-service and pay-per-install provide
a set of attack technologies generally aimed at infecting systems

or controlling bots that are then employed to launch, for example,

DDoS attacks, or subsequent malware and phishing campaigns (e.g.,

to harvest credit card numbers or steal credentials). An important

problem in any venture, let alone a criminal one, is the ability to

systematically monetize the effort that goes into it [22]. In criminal

enterprises, monetization is not necessarily an easy feat: whereas

re-selling or giving access to infected systems to fellow criminals

alleviates the problem for whom generates the infection (e.g., the

bot herder [5, 26]), the problem of assigning a price to each bot

remains [3]. Whereas the dynamics of demand and offer in the

underground are likely to play a role in this setting (and remain

an important open question to investigate in this domain), another

key factor in determining the value of an infected system is the

information it manages and/or processes; for example, access to the

email account(s) of an Internet user may have a different value, to

attackers, than access to a user profile with a server-stored credit

card number (e.g., an e-commerce website). On the other hand, it

is not yet clear how (and if) attackers can systematically employ

those credentials to impersonate Internet users at large, particularly

in the presence of multi-factor authentication systems whereby a

username and password alone are not sufficient to gain access to

an Internet account.

Credential theft and re-selling in underground communities have

been studied multiple times in the literature; for example, recent

studies provide an in-depth view of what happens to credentials

after they have been stolen [35], and their employment for final

attacks [40]. Similarly, several studies investigate the attack vec-

tors that allow attackers to obtain the credentials in the first place,

ranging from (targeted) phishing and phishing kits, to malware

infections at scale [8, 9, 35]. On the other hand, a systematic em-

ployment of the stolen credentials remains out of reach for most

attackers: credentials stolen from the underground may be accessed

by multiple criminals, effectively destroying their value for later

accesses [22]; similarly, the effort required to monetize access to

stolen or hijacked user accounts does not scale well with the number

of available accounts [22, 23]. In particular, protection systems such

as multi-factor and risk-based authentication systems severely limit

the capabilities of attackers to effectively employ stolen credentials,

requiring the employment to more sophisticated attack vectors than

a simple credentials dump [40]. Risk-based authentication systems

receive user authentication requests and are responsible to decide

whether additional multi-factor authentication is required for that

session, or if the provided (valid) password suffices to grant access

to the user requesting it. The idea behind risk-based authentication

is that, by ‘measuring’ certain characteristics of the user environ-

ment (i.e., its fingerprint [1]), the authenticating system can build a

‘risk profile’ associated to that request as a function of the distance

between the current fingerprint and the profile associated to the

requesting user. If the mismatch is too large, the risk-based authen-

tication system will defer the decision to a multi-factor mechanism

(e.g., requesting a code sent to a trusted device or account, such as a

mobile phone or an email account); on the other hand, if no anom-

aly in the user profile is detected, the risk-based authentication

system will – in most cases – grant access just with the password.

This mechanism is a significant obstacle to a successful imperson-

ation attack, as the very high dimensionality of a user fingerprint

makes it impossible, for an attacker, to systematically reproduce it

for arbitrary users from scratch [1, 40]. A recent study by Thomas

et al. [40] highlights how modern phishing kits [34] are equipped

with fingerprinting modules that, together with the user credentials,

obtain a measurement of the user’s environment that can be re-used

to circumvent risk-based systems. On the other hand, obtaining

these user profiles require systematic efforts to phish targets, per-

haps across different platforms, and may not provide reliable and

stable measures of a user’s fingerprint as the victim’s interaction

with the attacker website may not accurately reflect the victim’s
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interaction with the legitimate website (e.g., for behavioural fin-

gerprinting [12, 38]). Overall, traditional attack strategies seem

unsuitable to reliably obtain, update, and enforce user profiles.

In this paper we provide evidence of a new emerging criminal

infrastructure for Impersonation-as-a-Service, that relies on custom

malware and a marketplace platform to systematize the delivery of

complete user profiles to attackers. A user profile on an IMPaaS ser-

vice comes complete with stolen credentials for multiple platforms,

the ability to either reproduce or re-generate a user fingerprint

from the stolen data, and a software bundle to enforce the user

profile during an authentication session. To study the presence

of the IMPaaS model in the wild, we provide an in-depth analysis

of a large criminal platform (ImpaaS.ru) providing, at the time

of writing, more than 260
′
000 profiles of Internet users, globally.

ImpaaS.ru is an emerging, invite-only, Russian IMPaaS platform
currently operating in the underground. To evaluate the nature

of IMPaaS operations, we dissect the process behind the acquisi-
tion, selection, and enforcement of stolen user profiles enabled by

the IMPaaS model, and provide a detailed evaluation of the char-

acteristics of ImpaaS.ru, its extension, the characteristics of the
user profiles it provides to final attackers, and the relative effect of

different user profile characteristics on its value.

Scope and contribution. The contribution of this paper is

three-fold:

• we provide the first characterization of the IMPaaS model

for the systematization of impersonation attacks at scale;

• we provide an evaluation of a large, invite-only, emergent

Russian IMPaaS platform that automates the collection, pro-

vision and enforcement of user profiles collected worldwide;

• we provide insights on the relative effects of different user

profile characteristics on the value of the user profile, and

quantify these effects.

A detailed technical analysis of the malware for the user profile

exfiltration and enforcement is out of the scope of the present paper.

This paper proceeds as follows: Section 2 set the background for

impersonation attacks and their relation to existent countermea-

sures; Section 3 introduces the IMPaaS model for impersonation

attacks at scale, and Section 4 describes the ImpaaS.rumarketplace

implementing it, and our infiltration and data collection strategy.

ImpaaS.ru operations are analysed in Section 5. Section 6 discusses
our findings, and Section 7 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 User impersonation attacks
With the rise of sophisticated web applications, much of a user’s In-

ternet activity happens by accessing a multitude of remote services,

from banking to e-commerce and social network platforms, through

the browser. Most of these services will have authentication mech-

anisms that are meant to grant access to the underlying service to

the authorized user(s) only. From an attacker’s perspective, user

impersonation provides a large portfolio of additional attack op-

portunities, ranging from economic gain [2, 16] to more targeted

scenarios such as targeted-phishing [24] and violent crimes [21].

Password-based authentication (PBA) is the most common (first)

barrier attackers have to overcome to perform an impersonation

attack. Whereas passwords have proven difficult to securely handle,

are prone to leaks and to off-line attacks [32, 43] and still present

severe usability problems [37], they represent the most widespread

means of authentication online [7, 8]. PBA requires users to create

a non trivial secret, not to reuse it across several services and to

memorize both the secret and where it has been used; nonetheless,

several studies indicate that up to ≈ 90% of users reuse passwords

or small variations thereof across several services [14, 28].

Whereas this leaves room for password guessing attack, addi-

tional attack vectors (such as malware and phishing [9, 40]) can be

used to obtain user passwords, regardless of their complexity. In

general, hijacked accounts can allow adversaries to tap into social

connections of victims to compromise additional accounts [18, 39],

by creating targeted social-engineering attacks against their circle

of trust or by spamming malicious content [36], liquidate financial

assets [27], steal sensitive information with the aim of blackmailing

users [9, 36] and sextortion [42]. Additionally, stolen user creden-

tials are oftentimes made available to the cybercrime community

through underground markets [35, 40]. These markets generally

provide ‘dumps’ of stolen credentials obtained from data leaks from

an affected platform, or as a result of an extensive phishing cam-

paign targeting its users [40]; common target platforms include

banking or trading websites, cryptocurrency services, pornographic

websites, and other internet services. A recent estimation calcu-

lates that, between March 2016 and March 2017, 1.9 billion phished

credentials has been sold through the underground markets [40].

2.2 Countermeasures to attacks against PBA
Multi-Factor Authentication. To mitigate the shortcomings of

authentication mechanisms relying solely on passwords, web plat-

forms have started adopting additional authentication measures

such as Multi-Factor Authentication (MFA). MFA moved the au-

thentication paradigm from (solely) something that the user knows
(e.g. a password) to something the user has (e.g., a token) [15, 40].
This is achieved mainly with a combination of a pair of valid cre-

dentials and a One Time Passcode (OTP) received via some trusted

component such as a mobile phone, email, or a hardware token [15].

Albeit possible attack scenarios exist where the attacker can obtain

the information required for the authentication almost in real-time

(stolen token generator, compromised email, SIM swap attacks [33],

etc.), MFA dramatically increases the costs for an attacker, and is

widely regarded as an effective countermeasure to password-based

impersonation attacks [40]. Nonetheless, MFA is not devoid of se-

curity problems, perhaps most notably related to its usability [31],

concerns on token-recovery mechanisms, and third-party trust [7].

Risk-Based Authentication. Partly to mitigate the usability prob-

lem, Risk-Based Authentication (RBA) is oftentimes adopted as a

means to evaluate whether the authenticating user is (likely to

be) the one that has, historically, access to a specific account. RBA

is an adaptive security technique aiming to strengthen password-

based authentication by monitoring how unexpected or suspicious

a login attempt is from the perspective of the authenticating ser-

vice [31, 40, 41]. During the authentication, the RBA system moni-

tors both behavioral and technical characteristics of the user and of

the device, producing a fingerprint of the authenticating user [41].
RBA computes a risk score associated to the ongoing authentica-

tion by comparing the existent profile of the authenticating user



against the features collected for that instance of the authentica-

tion. The features vary from basic information such as User-Agent,

system time and OS, to environmental or behavioral features, such

as system language, keyboard layout, fonts and plugins installed,

mouse movement, geolocation and keystroke speed [1, 17, 40, 41].

Whereas the high dimensionality of this data generates, with high

probability, unique ‘fingerprints’ of a user, these are not necessarily
stable in time (as, for example, users may access the service from

multiple or new systems, may update software configurations, or

authenticate from different locations). Depending on the computed

risk score for that transaction, the authenticating service may grant

access to the user with only a valid password (if the risk level is

low), or require additional authentication factors (e.g., codes sent

to associated email accounts, SMS verification) or even deny access

for higher risk levels [31, 41]. This mechanism relies on the assump-

tion that attackers cannot systematically re-create the profile of the

victim, unless the attacker is already in control of a user’s system.

Following the implementation of RBA techniques across critical

services, adversaries developed sophisticated solutions aiming to

impersonate the user profile of the authenticating user. Recent lit-

erature has shown that phishing kits have developed capabilities

to obtain user profiles that can then be re-used by the attacker;

similarly, recent malware has been specifically engineered to re-

port user activity back to the attacker [40]. In particular, Thomas

et al. [40] highlight the improved capabilities of phishing kits in

collecting information related to victims, including geographical

location, browser metadata and answers to security questions; they

found that attacks relying on user profile information collected

from phishing kits are 40 times more likely to be successful than

‘regular’ attacks based on leaked credentials. On the other hand,

the collection of user profile information does not scale well across

users and platforms as user profiles may vary with time, across

services, and must to be collected by the attacker through additional

attack means (e.g., phishing).

2.3 Analysis of current attack strategies
Attack capabilities. From the analysis above, we identify six ca-

pabilities required to systematically bypass RBA systems.

Password authentication. At the very minimum, an attacker needs

the authentication credentials of the victim.

User profiling. To attempt circumventing RBA systems, an attacker

should have an accurate measurement of the victim’s profile/fin-

gerprint for that platform.

Multi-platform. The attacker may need to access multiple web plat-

forms to bypass some MFA controls (e.g. tokens or OTPs sent to an

email account of the victim). Authentication credentials and user

profiles need to be collected for these additional platforms as well.

The capability of impersonating the victim on multiple platforms

further increases the attack surface in scope of the attacker.

Profile updates. User profiles are unique but not necessarily sta-

ble. For example, a user may update a password, change software

configuration, or access the service from a different geographical

region. These changes may invalidate previously collected profiles

for that user, which may therefore require updating.

Infection infrastructure. The attacker requires an infrastructure to in-
fect users, and collect and update the collected user profiles. This has

to be maintained as defensive capabilities evolve (e.g. blacklisting

of an employed phishing domain), and may require the acquisition

of external services (e.g., for an infection update [10, 20]).

Automated profile enforcement. Once a profile is collected, the at-
tacker needs to enforce it when authenticating on the platform.

Whereas some aspects of the profile are easy to reproduce (e.g., user

agent, screen resolution), others are not (e.g., installed fonts/plugins,

keystroke speed, mouse movements, etc.). As profiles change across

users and platforms, the attacker likely needs a system capable of

enforcing the collected profiles in an automated fashion.

Analysis across attack strategies. Kurt et al. [40] identify three

main strategies for impersonation attacks. Table 1 provides an

overview of their capabilities.

Leaked credentials. credentials derived from data breaches on a

platform. Leaked credentials are generally traded in bulk in under-

ground forums; the leaked data oftentimes only contain associations

between usernames and (hashed) password, with no user profile

information. The data is static and if a user changes the password,

the information owned by the attacker loses all value. As the leak

concerns only one platform (and multiple leaks are likely unrelated

to each other), cross-platform attacks against one user are not en-

abled by this attack strategy. However, password-reuse attacks may

provide the attacker with access to additional platforms on top of

the one that suffered the leak.

Phishing kits. attackers can employ kits to deploy phishing websites

aimed at stealing user credentials. As users directly interact with

the phishing kit, user profiling can be achieved by injecting finger-

printing code in the phishing webpage [40]. The profiles derived

through phishing kits are however limited to only one occurrence

of the authentication (on the phishing website) and may be in-

complete or inaccurate. For example, the employment of password

manager software may hinder the realism of the derived fingerprint

(e.g., in terms of input time or user behaviour on the page) when

compared to the one measured by the original platform. To achieve

multi-platform capabilities, the attacker must develop or acquire

a phishing kit for each of the phished platforms, and collect the

relevant data through separate attacks against the same user.

Malware. the attacker has access to the system through a keylogger

or trojan/bot. This requires the attacker to either purchase/rent

the infected system [20], or create the infection themselves (e.g.,

through malware attached to a phishing email, or through Pay-per-

Install services [10]). Due to the specificity of the attack, custom

malware is likely needed to collect and update the profiles. As the

attacker is virtually already in full control of the user system, they

can collect user profiles related to any platform accessed by the

victim. However, due to the position of the attacker, most of the

impact (e.g., email access or web session hijacking) can be achieved

through malware without the need of collecting the user profiles

to then replicate them at a later stage.
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with a browser extension that, provided the victim’s profile as an input, reproduces it when accessing a service.

Figure 1: Diagram of Impersonation-as-a-Service operations.

Table 1: Overview of impersonation attack capabilities.

 indicates full systematic capability;H# indicates systematic capability only after

specific engineering effort from attacker;# indicates no systematic capability.

Leak Phishing

kits

Malware ImpaaS

Password auth. H#    
User profiling #  H#  
Multi-platform # H# H#  
Profile updates # #   
Infection infrastructure # # H#  
Automated profile enf. # # #  

3 THE IMPERSONATION-AS-A-SERVICE
MODEL

In this paper we describe evidence of a new emerging attack model,

namely Impersonation-as-a-Service (IMPaaS for short), and the crim-

inal infrastructure supporting it.

IMPaaS directly addresses the main limitations of the ‘traditional’

impersonation attack strategies highlighted above bymoving the ac-

quisition and enforcement of victim profiles from an ad-hoc process
to a systematic one. An overview of the comparison between IMPaaS
and current vectors for impersonation attacks is summarized in Ta-

ble 1. Figure 1 provides a birds’ eye view of the attack process, from

profile acquisition, to selection and enforcement. IMPaaS operators
rely on widespread malware infections to acquire ‘user profiles’

globally, and provide these profiles as ‘goods’ via the underground

economy through a dedicated marketplace. As a result, attackers

can acquire systematic access to a large set of user profiles span-

ning multiple platforms (social networks, email, corporate accounts,

banking/cryptocurrency, etc.), alongside associated credentials and

cookies; attackers can select the profiles they are most interested in

based on a number of features, including the geographic location

linked to the profile, the platforms for which impersonation data

is available, amount of stolen cookies, date of profile acquisition,

and others. The user profiles available on the IMPaaS platform are

automatically updated by the underlying infrastructure (e.g., as

users change software configuration, or update passwords); fur-

ther, the attacker can easily enforce and switch across the acquired

user profiles by means of a dedicated browser extension provided

by the IMPaaS platform, effectively commodifying the systematic

impersonation of Internet users at large across multiple platforms.

Profile acquisition. The IMPaaS infrastructure is fueled by a bot-

net whose goal is, rather than solely collecting credit card informa-

tion or banking credentials, to provide the information needed to

replicate the user profiles of the infected victims across the online

platforms on which affected users are active. The malware distri-

bution is independent from the IMPaaS model: it can be delivered

through phishing campaigns, targeted attacks, pay-per-install [10]

or exploitation-as-a-service infrastructures [20]. Through the cho-

sen attack vector, the attacker installs on the victim system custom

malware engineered to collect user credentials and cookies from

the victim’s browsers; the custom malware further collects a large

set of technical and (user) behavioral information that can be repli-

cated, by means of the infrastructure itself, to fully emulate the

user; these include the fingerprint(s) of the victim’s browser(s) and

other behavioral metadata that uniquely identify the user, such

as network activity, browser history, cookie data, and interactions

with the user interface of the platform. As profiles are fetched by

means of a persistent malware infection, the infrastructure can

provide updates of the profile data and credentials for each affected

user. The harvested profiles and the respective updates are then

pushed to the IMPaaS servers.

Profile selection. An IMPaaS operator provides the harvested user
profiles to interested attackers via a dedicatedmarketplace. Themar-

ketplace provides an overview of the characteristics of the collected

profiles available for purchase, such that the attacker can select

which profiles best fit their goal by searching for victim profiles



that show specific features, such as a certain geographic location,

web services for which stolen credentials are available, presence of

cookies, etc. Albeit less targeted than allowed by a spear-phishing

attack scenario, the selection procedure allows for a high degree of

precision on the characteristics and/or environment of the user. For

example, by browsing though the available credentials it is possible

to identify users operating in a specific environment (e.g. a specific

corporation, university, or other organizations), or with profiles on

platforms of interest to the attacker. Once an attacker has identified

their victim(s), the attacker can then proceed to buy the selected

profiles. This can be achieved through the usual payment methods

adopted in the cybercrime markets, such as via cryptocurrency pay-

ments to the marketplace, and/or by relaying the payment through

a third-party escrow service. Importantly, as each profile can be

purchased individually, the IMPaaS platform is in the position of

removing purchased profiles from the marketplace listings, thus

potentially reassuring the customer that they are the only one (next

to the platform operators) with access to that profile.

Profile enforcement. The IMPaaS platform provides their cus-

tomers with a customized software bundle that includes a custom

browser (based on open-source projects) and a browser extension

that allows attackers to fetch and ‘enforce’ the purchased user

profiles during the attacker’s browsing session on that platform.

Based on the profiles selected and purchased by the attacker, the

software provided by the IMPaaS platform recreates a browsing

environment that replicates the victim’s environment by instantiat-

ing exact copies of the stolen cookies and user credentials, and by

spoofing other information on the victims’ systems (e.g., installed

fonts/plugins, browser agent, . . . ). Further, the profile enforcement

system provides cookies that embed behavioral metadata derived

from the victim [12] without requiring explicit action from the

attacker, and provides SOCKS5 proxy solutions to spoof the usual

geographic location of the victim.

4 CHARACTERIZING IMPAAS IN THEWILD
In this section, we describe the operations of an emergent, invite-

only IMPaaS platform, ImpaaS.ru 1
. The platform has operated

since late 2016 and grew considerably, in terms of available user

profiles, in 2019. At the time of writing, ImpaaS.ru provides ap-

proximately 260
′
000 (and growing) user profiles available for im-

personation attacks against Internet users worldwide. ImpaaS.ru
is a Russian IMPaaS platform reachable from the surface web. This

platform is, to the best of our knowledge, the first, large IMPaaS
operator operating in the underground. On ImpaaS.ru, a user pro-
file contains information coming from user systems infected with a

credential stealer custom malware acting as a man-in-the-browser.

The custom malware enables the exfiltration of cookies, creden-

tials and sniffing of keystrokes, alongside additional environmental

and device information that uniquely characterize the user. The

IMPaaS platform states user profiles are updated and pushed to the

attacker’s system in real-time, and that sold user profiles are re-

moved from the listings of profiles available for purchase, although

1
We do not disclose the real name of the IMPaaS platform to minimize the risk of

retaliatory actions from the market operators.

this is difficult to verify empirically, and ethically.
2
An overview

of the profile characteristics is provided to browsing customers;

profiles with specific characteristics can be searched through the

marketplace interface. From the platform, it is possible to access

the list of bought profiles and download the related fingerprint. Fur-

ther, ImpaaS.ru provides their customers with a custom chromium-

based browser plugin and a pre-built version of Chromium for both

macOS, Linux andWindows. This bundle can be accessed only after

having bought at least one user profile on the platform. The plugin

comes with the capability of loading fingerprints previously ob-

tained from the acquired profiles and can tunnel the traffic through

an attacker-specified SOCKS5 proxy to spoof a victim’s geolocation.

Malware customization. The latest known custom malware em-

ployed by ImpaaS.ru is based on the AZORult malware [6, 13, 19].

ImpaaS.ru reports a recent update (Nov 2019) in AZORult address-

ing changes introduced in the Chrome browser that appear to

have affected the malware functionality. Confirmation of massive

phishing campaigns in that period associated with AZORult come

independently from Kaspersky and other researchers [6, 19, 30].

Note that, start of 2020, AZORult was abandoned by ImpaaS.ru in

favour of a new (and, at the time of writing, still unnamed), custom

malware. Due to the changing nature of the adopted malware, we

here only provide a high-level overview of AZORult operations

from samples available (at the time of data collection) in the under-

ground and malware repositories. For our analysis we replicated

the latest three versions of AZORult (at the time of writing 3.3, 3.4.1

and 3.4.2) in a virtual environment, with the aim of evaluating its

overall functionalities and their relevance to ImpaaS.ru. Malware

customization happens through two modules, namely the builder
and the C2 server. The builder has the purpose of generating the

custom build of AZORult including the URL of the C2 server. The

C2 server module is a ready-to-deploy web service providing an

overview of the harvested data and a page for setting up the fea-

tures of the malware; these features are user-defined, and include

the collection of browser history, saved passwords, cryptocurrency

client files, Skype history, a customizable regexp-based file grabber

targeting user-defined folders on the infected host, and an addi-

tional setup for the deployment of a second stage infection on the

victim system: as AZORult removes itself from the system after

execution, the second-stage mechanism can allow ImpaaS.ru op-
erators to obtain persistence on the infected system and further

refine the data collection (e.g., to harvest behavioral data over time,

see profile updates analysed in Sec 5).

4.1 Platform infiltration
Access to ImpaaS.ru is invite-only, and a valid account is needed

to access the listings of available user profiles. Access to the reg-

istration procedure is provided through invite codes available to

members already active on the platform, provided they spent at least

20 USD in purchased user profiles. To gain access to ImpaaS.ru
we probed several underground forums in which we have a pre-

existent foothold, and identified users that claim to be involved

with ImpaaS.ru. As recent evidence suggests that underground

2
A proposition is to infect one’s own system and purchase back the generated profile

to verify its disappearance. As the malware employed by the platform is custom,

reproducibility is non-trivial. See also Sec 4.



platform operators are actively monitoring and blacklisting ‘rogue’

accounts (e.g., performing scraping activities) [11], we aimed at

the collection of several valid accounts prior to data collection to

distribute the activity and have ‘backup’ identities to use if some

of our accounts were to be blacklisted. Our search lead us to six

members in Torum and one member in Crdclub (who claimed to be

one of the operators of ImpaaS.ru) that were offering free invite
codes between December 2019 and March 2020. We contacted them

through the private messaging facility of the forums as well as on

the messaging board, and obtained valid invitation codes from three

of them in Torum. From Crdclub we gained access to an additional

eight valid invitation codes using separate (and active) identities

on the forum, for a total of eleven ImpaaS.ru accounts overall.

4.2 User profiles on ImpaaS.ru
ImpaaS.ru offers an overview of the available profiles, highlighting

the information bundled in that user profile. A view of the interface

accessed by attackers is provided in Figure 11 and Figure 10 in

the Appendix. It is worth to note that, whereas ImpaaS.ru listings

do not readily provide identifying information on the user, the

information available on a listing is detailed enough to identify

users operating in specific target environments such as a specific

organization (e.g., to then perform lateral attacks [25]). ImpaaS.ru
distinguishes between the following information in a user’s profile:

cookies, resources and fingerprints.

Cookies. These are the cookies captured by the custom malware

and available for injection toward the respective platforms once

the user profile is purchased and enforced by the attacker.

Resources. Resources are collections of data derived from key-

logging activity and probing of browser’s local resources, such

as the database of stored passwords, and browser history. Some

well-known resources (e.g., related to social media platforms, home

banking, etc.) are highlighted as known resources by the platform,

suggesting that the type of extracted Resources is an important

information for the attacker to consider. A resource can include mul-

tiple data reporting login credentials, answers to security questions,

detailed balance info for bank accounts, credit/debit card numbers

and holder details. ImpaaS.ru states that the malware extracts

Resources from infected systems through three main modules:

FormParser reads the contents of the form data inputted by the

user; SavedLogins gathers credentials saved in the browser’s local

database; InjectScript implements code injection on the victim’s

browser on behalf of the attacker, but its operation is unclear and

most of the listed profiles do not appear to rely on it.

Fingerprints. Fingerprints provide a collection of the features

exposed by a browser when interacting with RBA systems, ranging

from technical metadata (user-agents, browser version) to more

finely grained features (geolocation, latency, system language, fonts

installed, web site device access permissions, etc.)
3
. Depending on

the specific RBA implementation, a service may probe a specific sub-

set of the features characterizing a browser or system. Differently

3
Whereas a full list of the probed features is not available from ImpaaS.ru nor from
our analysis (see section 4), a number of commercial and free solutions could be

employed by the ImpaaS.ru malware to implement reliable fingerprinting of the

infected systems.

from Resources (which are tied to a specific service, e.g. a user-

name/password combination on Amazon), the features collected

in an ImpaaS.ru fingerprint are not bounded to a specific service,

but to the browser environment itself (e.g., available system fonts,

or installed plugins). Therefore, these constitute a pool of features
that can be requested by any service, when available. ImpaaS.ru
distinguishes between two types of Fingerprints:

(1) Real fingerprints: these are directly collected from the vic-

tim’s device, providing an accurate identity of the imperson-

ated device; albeit rarely available in bots, they appear to be

sought after by market users;

(2) Synthetic fingerprints: these fingerprints are generated

on the basis of the data collected by the malware. How-

ever, accurate ‘synthetic’ fingerprints cannot be generated

without user data (e.g, system fonts, plugins installed in a

browser, etc.). For this reason, we consider the availability

of Resources and of browser data in a user profile as an in-

dication that the malware is in the position of collecting the

necessary data to generate a reliable synthetic fingerprint.

4.3 Data collection strategy
To collect data on ImpaaS.ru operations, we first consider a number

of structural limitations at the core to our sampling strategy:

Lim-1 To avoid disclosing our identity to the ImpaaS.ru operators,
we perform the scraping behind TOR. This poses technical

limits (as well as ethical concerns) for bandwidth usage.

Lim-2 We have a limited number of accounts to perform our mea-

surements; aggressive probing risks exposing our accounts

to the ImpaaS.ru operators, and lead to blacklisting.

Lim-3 Information on Resources cannot be accessed in bulk via

an API or other requests to ImpaaS.ru, but rather have
to be requested in limited bundles with separate requests.

This explodes the number of requests necessary to obtain

Resources information on all user profiles on ImpaaS.ru.

To address Lim-1 and Lim-2, we employ an ad-hoc crawler. Ini-
tially the crawler was set to work ≈ 24h/day issuing, on average,

15 requests per minute; despite the relatively low requests volume,

this strategy led two of our accounts to be blacklisted, suggesting

that ImpaaS.ru operators may be employing network monitoring

solutions to avoid measurement activities. Following [11], we pro-

gressively reduced the crawling activity to ≈ 6h/day. In the process,

an additional three accounts were banned, for a total of five banned

accounts. It is interesting to note that three of the five blocked

accounts were not linked to each other in any way,
4
suggesting

that market operators have kept their crawling-detection efforts

high during our activities. To mitigate this problem we employed

different strategies to access specific pages and resources to crawl

on ImpaaS.ru: as already noted in [11], accessing URLs directly

(as opposed to via website navigation) may generate anomalies in

crawler monitoring systems. For this reason, we operationalised all

crawling activities through browser instrumentation, and config-

ured the crawler to mimic activity patterns compatible with those

4
The first two accounts were obtained from a single member of ImpaaS.ru and active

on Torum. The other accounts all came through invitation codes generated by either

different market members, or released by ImpaaS.ru operators themselves to different

and unrelated accounts we control on Crdclub.



Table 2: Categories of resources.

Category Definition Examples

Services Platforms providing the delivery of

physical (e.g., goods, postage, etc.) or

digital (e.g., content streaming, cloud,

mail, etc.) services to final users.

Google,

PosteItaliane

Social Platforms to share user generated con-

tent.

Twitter,

Skype

Money
transfer

Platforms enabling direct payments

between people or organizations us-

ing traditional payment circuits.

CreditUnion,

Transfergo

Cryptoc. Platforms enabling direct payments

between people or organizations us-

ing cryptocurrency circuits.

Coinbase,

Bittrex

Commerce Platforms whose sole purpose is to

purchase or book goods/services from

one or multiple vendors.

Amazon,

SaldiPrivati

Other Platforms that do not match any of

the previous categories.

Auth0

of a human user (e.g. timeouts between requests proportional to

the length of the visited webpage, taking breaks, ...). With this final

setup, we finally managed to silently crawl the market avoiding the

detection and ban of the remaining accounts in our possession.

While necessary, the above strategymakes it impossible to gather

complete information on Resources due to the exploding number

of requests (Lim-3). This results in two datasets:

• Full database includes information on approximately 262
′
000

user profiles on ImpaaS.ru, including (infection, update)

dates, prices, number of browsers for which resources are

available, number of collected fingerprints for that user pro-

file, and number of stolen cookies.

• Sampled database adds Resources information to a ran-

dom selection of approximately 5% (n = 13
′
512) of the user

profiles available on the market.
5

The collected data is available for sharing to the research com-

munity at https://security1.win.tue.nl.

4.3.1 Analysis procedure. The data analysis in Section 5 is split

in two subsections: in Sec. 5.1 we provide an overview of the data

collected in the Full dataset, and characterize ImpaaS.ru op-

erations by looking at its evolution, victim profile characteristics,

profile updates, and pricing; in Sec. 5.2 we analyse the distribution

and effect of Resources on pricing, as reported in the Sampled
database. Standard sanity checks (e.g. on the regression results

presented in Sec 5.2) are performed on all analyses. Reported loga-

rithms are natural logarithms unless otherwise specified.

Manual resources classification. To factorize the type of resources
reported in Sampled database in the analysis, we provide a clas-

sification of each resource in one of six categories. Table 2 lists

the employed categories and their corresponding definitions. The

classification was done manually by one of the authors over 454

5
This fraction was originally set to 10%, however approximately half of the selected

profiles were removed from the market during the data collection process.

Table 3: Summary statistics of the collected datasets.

Variable min mean max sd

F
u
l
l
d
a
t
a
s
e
t

(
n
:
2
6
2
′ 0
8
0
)

No browsers 0 1.58 10 1.02

No cookies 0 1719.56 125198 1773.57

No real fprnts 0 0.06 17 0.32

Date infection
†

12-12-17 20-11-19 16-03-20 157.81

Date updated
†

01-02-18 23-11-19 15-09-19 156.69

Country char char char char
Price (USD) 0.7 7.83 96 7.62

R
a
n
d
o
m

s
a
m
p
l
e

(
D
e
c
’
1
7
-
M
a
r
’
2
0
,
n
:
1
3
′ 5
1
2
)

No browsers 0 1.57 8 1

No cookies 0 1782.01 26981 1735.24

No real fprnts 0 0.12 9 0.54

Date infection
†

28-03-18 08-01-20 16-03-20 40.04

Date updated
†

12-11-19 14-01-20 13-06-20 37.62

Country char char char char
Price (USD) 0.7 8.84 63 8.17

No resources 0 31.13 1322 46.63

Crypto 0 0.07 18 0.6

Money Tr. 0 1.66 385 6.23

Social 0 7.95 1322 18.73

Services 0 16.64 560 24.44

Commerce 0 4.66 296 11.12

Other 0 0.15 16 0.88

†
: dates are reported in dd-mm-yy format. sd in days.

unique platforms for which Resources are reported in the dataset.

The other author independently classified a random sample of 100

platforms, reaching an agreement score of 89%; after review, con-

flicts were resolved and the classification was updated accordingly.

Additional random checks did not reveal any remaining mismatch.

Ethical considerations and limitations. No personally identifiable

information is reported in our dataset. IP addresses of victims are

masked on the platform, and no detailed information about the

victims is available without purchasing a user profile. For obvious

ethical concerns, we did not purchase any. Whereas this limits

our analysis in that we do not have access to the software bundle

provided by ImpaaS.ru, and cannot ascertain in detail the quality

or operative aspects of the IMPaaS service provided by ImpaaS.ru,
we are in the position of providing a full evaluation of the data is

available to the attacker when browsing for victims.

5 DATA ANALYSIS
Table 3 provides an overview of the collected datasets.

Full dataset. The data collection spans from Dec 2017 to

March 2020, involving approximately 262
′
000 user profiles. Most

user profiles available on ImpaaS.ru target only one browser, with

the top 5% targeting three browsers. Only 35 user profiles report

data for more than six browsers in our data. Cookie distribution is

similarly skewed. Profiles are distributed globally across 213 coun-

tries
6
, and prices range from 0.7 to 96 USD; 50% of the profiles cost

at most 5 USD, whereas the priciest 5% are priced above 20 USD.

6
Although there are only 195 recognized countries worldwide, ImpaaS.ru reports ISO
3166-1 codes, which do not distinguish sovereign nations from dependent territories.

https://security1.win.tue.nl


Sampled dataset. This dataset reports data on 5.2% of the pro-

files available on ImpaaS.ru spanning from March 2018 till March

2020 (n = 13
′
512). For this dataset, we collected detailed infor-

mation regarding the available resources. As this is a random

sample, values are distributed similarly to Full dataset. Addition-
ally, we extract information on the number and type of resources

available for each profile. The average profile has upwards of 30 re-

sources; most resources are of type Services, whereas Social and
Commerce are less common. Cryptocurrency and Money transfer
resources appear to be the least numerous in a profile.

5.1 Overview of ImpaaS.ru operations
To provide an overview of the IMPaaS operations conducted in

the market we first look at the full dataset summarized at the top

of Table 3. Interestingly, we find that approximately 12% of all

profiles are not associated to a browser on the victim’s system.
7

As these profiles do not allow for impersonation attacks under the

IMPaaS model, we remove those from further analysis. Relative to

the number of user profiles, the number of available real fingerprints
is surprisingly low, with only 4.3% of the available profiles having at

least one. Note however that this refers only to Real fingerprints
collected by the malware, not the Synthetic fingerprints that
can be synthesized from user data (ref. Sec.4.2). Nonetheless, this

suggests that (real) fingerprints, available browsers, cookies, and

resources could be the driving force behind ImpaaS.ru activities.

Figure 2 provides an overview of the geographic distribution of

the user profiles available on ImpaaS.ru and their median price

per country. Most of the profiles belong to users in the United

States of America and Europe, with a high fraction of EU countries

showing volumes similar to those of the US. Users in Asian and

African countries are comparatively less affected. As commonly

seen in Russian cybercrime markets [2], ImpaaS.ru does not pro-
vide profiles for users in Russia, Ukraine, Belarus, and Kazakhstan

(CIS countries). Furthermore, with the exception of Chad and the

Central African Republic, the CIS countries appear to be some of the

only unaffected countries, globally. Overall, median prices appear

to vary from country to country rather than at a macro-regional

level. For example, EU median prices seem to be higher in Spain

(m = 9.55, sd = 9.07) and GB (8.3, sd = 7.5) than in Germany

(m = 7.21, sd = 8.21) or Finland (m = 6.96, sd = 6.68). A set of

Wilcoxon Rank-Sum tests evaluating the alternative hypothesis that

SP and GB profile prices are higher than DE and FI ones confirms

this observation (p < 0.0001). The high median price in Mauritania

(26 USD) is caused by only one profile (with no fingerprints, two

browsers, and four thousand cookies) available for that country.

The rate of appearance of new and updated user profiles on

ImpaaS.ru is depicted in Figure 3. A clear upwards trends in terms

of number of available profiles is visible, with a large jump in avail-

able profiles in November 2019 (coinciding with the 2019 spike in

phishing campaigns distributing AZORult [6, 19, 30]). Overall, in

Figure 3 we observe a sustained rate of new (black bar) and updated

(orange bar) profiles, suggesting that the platform is systematically

updating existing profiles, while adding new ones to the platform

portfolio. We further investigate the time passing between time of

7
Note that all profiles without browser data also do not, by definition, report any data

on cookies or fingerprints.

infection and (last) profile updates; Figure 4 shows the boxplot dis-

tribution of time passed between the infection and the last update

received by the platform, plotted against the date of installation;

in red, the upper bound of the maximum possible time in between.

Overall the distribution appears relatively stable, with a median up-

date time ranging between ten hours and four days. Unsurprisingly,

recently acquired profiles are updated only after a few hours from

acquisition; overall, the distribution suggests that profiles are kept

updated on average over an extended period of time, ranging from

a few days, to several months at the extreme of the distribution.

5.1.1 Analysis of profile values. Figure 5 reports the moving av-

erage of user profile prices as a function of time. The value of the

traded profiles steadily increases as time passes, a signal of growth

of the platform. In particular, profile prices seem to have doubled

since November 2019, perhaps as an effect of the updated malware

released in that period discussed at the start of this Section. Figure 6

reports the relation between the number of available Fingerprints
in a profile and its price. The effect of an increased number of avail-

able fingerprints is, albeit positive, very limited. The average price

seems to stabilize around the median value of 5 USD regardless of

the number of fingerprints available in the profile, suggesting once

again that other variables could be at play. We find no correlation

between number of available browser and number of cookies and

prices. This is not surprising, as these dimensions express little in

terms of which identities of the victim the attacker may affect.

To further look at factors that may determine the value of a

profile, we look at the impact of the geographic location towhich the

profile is linked. To do so, we investigate the relation between (log-

transformed) profile prices and the wealth of the country in which

the profile is located, expressed in terms of (log) GDP per capita (as

reported by the World Development Indicators [4]). The intuition is

that, the more ‘valuable’ a target is perceived to be, the greater the

value of the corresponding profiles might be. Figure 7 reports the

analysis. A positive and statistically significant correlation emerges,

suggesting that profile prices are indeed correlated to the wealth

of the respective country, perhaps a sign of the perceived value of

that user profile (corr = 0.4,p < 0.001).

We note that some user profiles on ImpaaS.ru appear to be dis-

counted at a rate of 30%. We do not find a clear-cut effect explaining

which profiles are likely to be discounted (Table 6 in the Appendix).

5.2 The impact of Resources on profile pricing
We first look at the distribution of resource types in the Sampled
dataset. As for the Full dataset, we remove from further anal-

ysis profiles that aren’t associated to at least a browser of the vic-

tim’s system and, in addition, profiles that don’t contain any stolen

resource, limiting the size of the dataset to n = 12
′
052. Table 4 pro-

vides an overview of the distribution of user profiles per category.

Note that a profile can have resources that belong to more than

one category. Overall, Services is the most commonly available

resource type across user profiles. Resources in the Social and

Commerce categories are also common, with respectively about 70%

and 40% of user profiles with resources in these categories. Ap-

proximately 25% of the profiles have data for banking and payment

accounts; by contrast, less than 2% of user profiles have resources

in the Cryptocurrency category. Only 4.5% of the resources in our
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Figure 2: Global distribution of user profiles (left) and their median price (right) on ImpaaS.ru
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Figure 3: Progression of available user profiles over time.
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Figure 4: Time between infection and last profile update (in
log scale).

dataset were classified as Other, indicating that the proposed clas-

sification covers the vast majority of resource types in ImpaaS.ru.
Figure 8 provides a first overview of the relation between the

number of resources available in a profile and the associated price.

A clear correlation emerges. The depicted linear log-log relation

indicates negative marginal returns for each added resource, mean-

ing that every additional resource added to a profile provide an

increasingly smaller, albeit positive, added value to the profile. Fur-

ther exploring the impact of resources on pricing, Figure 9 shows

2.5

5.0

7.5

10.0

2018−07 2019−01 2019−07 2020−01

A
ve

ra
ge

 p
ric

e 
(U

S
D

)

Figure 5: Weekly moving average of user profile prices.
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Figure 6: Relation between the amount of fingerprints avail-
able and the average price of user profile (in log scale).

the impact of the presence of resources in any specific category

on the value of a user profile. Note that, because each profile can

contain resources of more than one category, one cannot isolate the

relative importance of each category here. However, the compari-

son shows how, on average, a profile that contains (also) resources

in that category is priced versus other profiles that do not have it.

This is meaningful as the categories show relatively low correla-

tions (reported in Table 7 in the appendix). On average, profiles
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Figure 7: Relation betweenGDP per capita and average price
of user profiles in that country (in log scale).

Table 4: Type of resources per user profile.

Resource type no. profiles (n = 12
′
052)

Cryptocurrency 236

Money Transfer 3109

Commerce 5’066

Social 8’111

Services 11’167

Other 548
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Figure 8: Relation between the amount of resources avail-
able and the average price of user profile (in log scale).

that include Cryptocurrency resources seem to be the most valu-

able. Money transfer and Commerce resources belong to profiles

of approximately the same value, whereas profiles with Social
and Services are the least valued in ImpaaS.ru. By comparing

the relative ‘jump’ introduced by the addition of each category,

one can further evaluate the added value, on average, of having a

resource of that type. In this respect, Other appears to be the least

‘impactful’ category, as the appearance of a resource of this type

is related to the smallest relative increase in price, on average, in

a profile. On the contrary, Cryptocurrency and Money transfer
resources cause the highest jump in profile value, passing from

a median value of approximately 7 USD to more than 20. Other

categories show less extreme changes in price. Overall, we find that

resources associated to financial platforms and services appear to

1
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Figure 9: Profile price variation according to the presence of
not of resources of a certain category (in log scale).

have the highest impact on the value of a profile, with Social and

Services being the least valued. On the other hand, the addition

of resources of any category appears to have a positive impact on

the value of a profile.

To formally evaluate this relation, we build a set of linear regres-

sion models to quantify the effect of different profile features on

profile values in ImpaaS.ru. To evaluate the effect of each factor

independently, and monitor its relation to other characteristics of a

user profile, we define the following nested models with response

variable y = price (the error term ϵi is omitted for brevity):

M1 : yi = β0 + β1Real fingerprintsi

M2 : yi = . . . + β2 log(GDPi)
M3 : yi = . . . + β3Cryptocurrencyi + β4Money transferi

+ β5Commercei + β6Sociali

+ β7Servicesi + β8Otheri

M4 : yi = . . . + β9resourcesi

where β0 is the intercept, Real fingerprints is the number of

fingerprints embedded in that user profile, log(GDP) is the natural
logarithm of the gross domestic product per capita for the country

associated with the user profile, {Cryptocurrency . . . Other} are
dummy variables representing the presence of resources of the

corresponding category, and resources is the overall number of

resources in that profile (irrespective of category).

Regression results are summarized in Table 5. To evaluate the

effects of profile characteristics on full prices we remove profiles

‘on sale’ from the dataset. Table 8 and Table 9 in the appendix report,

respectively, a full breakdown of the variables’ impact on the predic-

tion, and the regression results for all data points including profiles

on ‘sale’; both tables report results quantitatively and qualitatively

in line with those reported in Table 5. Overall, the coefficient es-

timates appear stable across the models, with the exception of β2
(log(GDP)), that becomes less important on the estimation of the

dependent variable price as the types of Resources are added to

the model. The change ranges from an expected increase of 0.2

USD in profile value for every 10% increase in GDP (β2 = 2.29 in

M2, 2.29× log(1.10) = 0.22), to a relatively smaller (0.04 USD) price

increase when all resource categories are added in the model. This

indicates that some resource categories may appear more frequently

for high GDP countries than for others; with reference to Table 8



Table 5: Regression analysis on prices of user profiles.

Model 1 Model 2 Model 3 Model 4

β0 10.41∗∗∗ −12.11∗∗∗ −5.57∗∗∗ −3.70∗∗∗
(0.11) (1.21) (0.81) (0.63)

Real Fngrpr 0.55∗∗∗ 0.69∗∗∗ 1.31∗∗∗ 1.11∗∗∗

(0.16) (0.16) (0.10) (0.07)
log (GDP) 2.29∗∗∗ 0.46∗∗∗ 0.42∗∗∗

(0.12) (0.08) (0.06)
Crypto 13.62∗∗∗ 10.12∗∗∗

(0.44) (0.34)
Money Transfer 8.86∗∗∗ 6.20∗∗∗

(0.16) (0.13)
Commerce 5.06∗∗∗ 3.22∗∗∗

(0.15) (0.12)
Social 3.44∗∗∗ 1.68∗∗∗

(0.15) (0.12)
Services 3.95∗∗∗ 2.31∗∗∗

(0.29) (0.22)
Other 4.22∗∗∗ 0.89∗∗∗

(0.31) (0.24)
Resources 0.10∗∗∗

(0.00)
R
2

<0.01 0.05 0.65 0.79

Adj. R
2

<0.01 0.05 0.65 0.79

Num. obs. 7123 7123 7123 7123

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

in the appendix, it appears that resources of type Money transfer
and Commerce tend to appear more often in wealthy countries, as

most of the effect of the GDP variable disappears when this cat-

egory is accounted for, while the opposite effect emerges when

Social resources are included in the model. Additional resource

categories have modest effects on the GDP coefficient estimate. As

resource categories are added to the model, the impact of the num-

ber of fingerprints increases, passing from a 0.55 USD increase in

expected profile value for each additional fingerprint in the profile

(β1 = 0.55) to a 1.31 USD increase estimated by M3. This suggests

a positive joint effect of the number of fingerprints in a profile, and

the number of platforms with resources an attacker can employ to

impersonate a victim. All resources have a positive effect on the

value of a user profile with Cryptocurrency and Money transfer
having the highest impact, increasing the expected value of 13.62

and 8.86 USD respectively when available. Following this trend,

Commerce shows a relatively large effect as well, increasing the

profiles’ expected value of 5.06 USD. These findings may not come

as a surprise, and may indicate that ImpaaS.ru customers may be

primarily aiming at economical profit (supporting insights from ob-

serving ImpaaS.ru customers discussing on a dedicated Telegram

channel, see Sec. 6.2 for an informal report). Finally, the effect of the

number of resources in M4 is significant and positive; interestingly,

its addition decreases the effect of the single resource categories,

confirming the intuition that the more platforms an attacker can

impersonate, the higher the value of the profile.
8

In all, resource types appear to explain the majority of the vari-

ance in the model, with Money transfer accounting for a jump

in more than 30% in the model (adjusted) R2 when compared with

previous model. The complete model explains most of the price

variance in our dataset (R2 = 0.79), suggesting that the model pro-

vides an appropriate description of the features determining user

profile values in ImpaaS.ru.

6 DISCUSSION
In this paper we presented the IMPaaS model as a novel threat en-

abling attackers to perform user impersonation at scale. IMPaaS is

supported by an emergent criminal infrastructure that controls the

supply chain of user profiles, from system infection to profile ac-

quisition and commodification. Whereas traditional impersonation

attacks relying solely on stolen credentials are greatly mitigated by

risk-based and two-factor authentication systems, the capability of

seamlessly reproducing a user’s ‘appearance’ to an authentication

system allows attackers to systematically compromise accounts of

multiple users, across multiple platforms.

Whereas Thomas et al. already suggested that user profiling

could be used to bypass modern authentication systems [40], in

this work we provide evidence of an emergent as-a-service imper-

sonation model that appears to be rapidly expanding. The profile

value analysis provided in Section 5.2 suggests a mature pricing

model, which may indicate that the analyzed platform operations

are of stable, predictable quality, and likely to expand in number.

Overall, the analysis of the available user profiles on ImpaaS.ru
and the reportedly widespread adoption of info-stealer malware

such as AZORult in phishing campaigns [19, 29] provide further

supporting evidence of the growth of this threat model.

Our analysis of ImpaaS.ru allows us to further quantify the

relative effects of different resources on the value of a user profile.

Interestingly, albeit perhaps not surprisingly, we find that profile

values show a significant correlation with the wealth of the country

(expressed in terms of GDP) associated to that profile; this suggests

that attackers looking to impersonate and, likely, monetize user

profiles assign a greater value to profiles likely to give access to

greater financial resources (e.g., bank balances or valid credit cards).

Interestingly, this effect is significantly reduced by the presence

of Commerce resources in a profile, perhaps due to the prevalence

of e-commerce platforms in wealthy countries. Nonetheless, other

resource categories have a clear impact on the overall valuation of a

user profile, with Cryptocurrency and Money transfer resources
driving most of the value. Real fingerprints (those derived directly

from the device, rather than being synthesized by the IMPaaS plat-

form using the profile’s metadata) available in a profile also add

value to the user profile. Our analysis suggests that each real fin-
gerprints adds about 0.55 USD to the value of a user profile, and up

to 1.31 USD when considered jointly with the available resources,

8
Driven by observations in Chen et al. [12], who identified cookies as having a key

role in behavioral fingerprinting practices, we find that in terms of profile pricing the

availability of cookies does not show a statistically significant effect (Anova F 1.92, p =
0.17) in our dataset, suggesting that cookies do not play a central role in impersonation

attacks as driven by ImpaaS.ru.



suggesting that the modus operandi enabled by IMPaaS described
in Figure 1 is supported by the platform operations.

Importantly, our analysis allows us to put a number on the value

of user information to attackers, contributing to the literature on

the subject. A user’s ‘virtual identity’ seems to be worth between

less than 1 USD and approximately 100 USD. This value changes

significantly depending on the wealth of the country where the

user (appears to be) located; a rule-of-thumb indication seems to be

that for a tenfold increase of the a user’s ‘expected wealth’ (approx-

imated by a country’s GDP), a profile value increases on average by

approximately 1 USD. Cybercriminals seem to particularly value

profiles with access to Cryptocurrency and Money transfer plat-
forms, whose prices are respectively 10 and 6 USD higher than

profiles with no access to platforms of these types. To put this in

perspective, these represent respectively a 150% and 90% markup

over the price of the average profile, a clear sign of the relevance

of resources of these types for cybercriminal activities. By con-

trast, access to Social and other services does not seem to be (in

comparison) highly valued by cybercriminals.

6.1 Implications for victimization
The systematization of impersonation attacks enabled by the IMPaaS
model allows attackers to select and target specific victim profiles,

and to automate the attack procedure by means of dedicated soft-

ware bundles replicating a victim’s browsing conditions on the

environment of the attacker. Differently from traditional phishing-

based attacks, IMPaaS provides an attacker with access to several

platforms on which a user is active, effectively allowing the attacker

to both mitigate security measures (e.g., by monitoring email for

authentication codes or activity notifications), as well as extending

the attack surface to different services (e.g. banking, social, etc.).

Attackers leveraging an IMPaaS platform can rely on an auto-

mated source for credentials to conduct sophisticated attacks at

scale. In addition to obtaining access to bankingwebsites, cryptocur-

rency exchange platforms and e-commerce websites, an attacker

may compromise multiple accounts to gain control over the identity

of the victim. The capability of selecting victim characteristics be-

fore the acquisition of a profile is also a potential enabler of targeted

attacks against organizations or communities for which a victim is

an employee, or a registered member. The attacker may employ that

advantage point to facilitate lateral movement attacks, for exam-

ple targeting colleagues or family members of the victim by using

their legitimate contact details. Furthermore, the attacker could in-

tegrate additional information about a victim gathered through the

accessed platforms (part of a corporation, subscription to meeting

websites, etc.) to further escalate the attack to other victims.

6.2 Examples of (alleged) criminal operations
enabled by ImpaaS.ru

To informally investigate how attackers are weaponizing capa-

bilities enabled by IMPaaS, we collected a number of examples

provided by users of ImpaaS.ru on a Telegram channel linked to

the platform, to which we have gained access through ImpaaS.ru.
Many attacks reported there appear to focus on Money transfer
and Commerce services. For example, a user shared that they were

(allegedly) able to cash-out from a US bank using a synthetic fin-

gerprint acquired on ImpaaS.ru and with the support of a geo-

graphically accurate SOCKS5 proxy. The user further suggested

to rely on 911.re as the marketplace where to buy proxies linked

to specific ZIP codes and/or ISPs. On a similar line, a second user

reported to have managed issuing a new debit card on behalf of the

victim, with the aim of cashing it out through ATMs. Interestingly,

some ImpaaS.ru users report performing multi-stage attacks de-

ployed through the obtained user profiles and exploiting multiple

platforms. For example, an attacker describes setting filters to a

victim’s email mailboxes accessed through the victim’s user pro-

file, with the aim of hiding notifications from Amazon related to

purchases the attacker made using the victim’s Amazon account.

Overall, whereas of course none of these examples can be veri-

fied and the threats described above are not new per-se, the mix

of infrastructural support for profile acquisition, selection, and en-

forcement enabled by IMPaaS opens to the systematization of threat
scenarios such as the ones described above, on a global scale.

7 CONCLUSION
In this paper we presented the emergence of the Impersonation-as-a-
Service criminal infrastructure, which provides user impersonation

capabilities for attackers at large. IMPaaS allows attackers to bypass
risk-based authentication systems by automatically simulating the

victim’s environment on the attacker’s system. In this study we

characterise the largest currently operating IMPaaS infrastructure,

ImpaaS.ru, by performing an extensive data collection spanning

more than 260 thousand stolen user profiles collected worldwide.

ImpaaS.ru infiltration and data collection required substantial ef-

forts to collect multiple accounts, needed to fine-tune the data

collection as platform operators seemed to monitor crawling activi-

ties and blacklist related accounts. From our analysis, ImpaaS.ru
emerges as a mature, expanding infrastructure with a clear pricing

structure, suggesting a well-established criminal business model.

Impersonation-as-a-Service represents an additional component of

the cybercrime economy, providing a systematic model to monetize

stolen user credentials and profiles.

Lesson learned. Our data collection efforts provide supporting

evidence that underground platform operators are actively mon-

itoring crawling activities, and take measures to limit them. This

may prevent future research activities and significantly impact the

possibility of designing large-scale studies studying cybercriminal

online venues. Specific sampling strategies and analysis techniques

will have to be devised to further develop research in this domain.
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APPENDIX
A MARKET FEATURES

Figure 10: View on the advanced search functionality.

Figure 10 and Figure 11 report screenshots from the market. Fig-

ure 10 depicts the search function of the market. Attackers can

access a fine grained research tool that enables them to search

for profiles with specific resource composition, number of avail-

able browser fingerprints, and other information. In Figure 11, an

overview of the details for each profile is provided. On the left,

from top to bottom, the name of the profile and the installation and

update dates of the profile are listed. On top, in the center, the list

of the available browsers (here only Microsoft Edge). The superim-

posed number indicates the number of fingerprints available for

that specific browser and the superimposed icon whether cookies

are available (green) or not (red). On the top-right is reported the

number of resources available (here 76). In the center, an overview

of the websites for which resources are present. On the right, de-

tails about the country, IP prefix and operating system are provided.

Finally, to the right-most, there’s the price expressed in USD and

buttons to respectively buy, reserve or add the profile to the cart.

B FURTHER DATA INSIGHTS
Table 6 shows correlation coefficients for the logistic model sale =
β0 + β1Resources + β2Year + β3Cookies + β4Browsers (binary re-

sponse variable). Whereas Resources, Year, and Browsers are sig-

nificant predictors, the effect is very small with the unsurprising

exception of Year, suggesting that profiles recently acquired are less
likely to be put on ‘sale’. The coefficient for β4 shows a positive,
albeit small, effect of the no. of browsers provided in a profile on

the likelihood of profile sale. As indicated by the small R2, we do
not find a clear rationale explaining this effect.

Table 7 reports correlation coefficients between Resources types
in our dataset. No high correlation is found, suggesting that no auto-

correlation problem should affect the regression analysis provided

in Section 5.2.

Table 8 reports all regression models on the expected (full) profile

price. The main insight is that model coefficients are relatively

stable as Resources are added in. When including bots on sale

in the regression (Table 9), coefficients appear relatively stable

and in line with those reported in Table 8, both in terms of trend

and magnitude. An exception is log (GDP) in Model 5a, where the

respective coefficient is not significant and drops in value when

compared to Model 4a and Model 6a. This may suggest a correlation

between log (GDP) and presence of Commerce resources for profiles
on sale, that is not present or weaker for profiles at full price.

Table 6: Logistic regression for discounted profiles

y = sale Model

β0 −0.09∗
(0.05)

Resources 0.00∗∗∗

(0.00)
Year 2020 −0.92∗∗∗

(0.04)
Cookies 0.00

(0.00)
Browsers 0.14∗∗∗

(0.02)
R2 0.04

Num. obs. 11683

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7: Autocorrelation matrix among categories of re-
sources available for each bot.

Crypto Social Services Other MoneyTransfer

Crypto

Social 0.08

Services 0.04 0.09

Other 0.05 0.11 0.05

MoneyTransfer 0.16 0.26 0.10 0.17

Commerce 0.12 0.28 0.09 0.17 0.42



Figure 11: Overview of a listed profile on ImpaaS.ru.

Table 8: Statistical models for profiles sold at full price.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

β0 8.71∗∗∗ −12.11∗∗∗ −11.64∗∗∗ −2.08∗ 2.24∗∗ −2.15∗∗ −5.54∗∗∗ −5.57∗∗∗ −3.70∗∗∗
(0.08) (1.21) (1.13) (0.87) (0.80) (0.80) (0.82) (0.81) (0.63)

Real Fngrpr 1.06∗∗∗ 0.69∗∗∗ 0.80∗∗∗ 1.15∗∗∗ 1.30∗∗∗ 1.30∗∗∗ 1.30∗∗∗ 1.31∗∗∗ 1.11∗∗∗

(0.14) (0.16) (0.15) (0.11) (0.10) (0.10) (0.10) (0.10) (0.07)
log(GDP) 2.29∗∗∗ 2.19∗∗∗ 0.87∗∗∗ 0.24∗∗ 0.49∗∗∗ 0.44∗∗∗ 0.46∗∗∗ 0.42∗∗∗

(0.12) (0.11) (0.09) (0.08) (0.08) (0.08) (0.08) (0.06)
Crypto 21.74∗∗∗ 15.19∗∗∗ 14.15∗∗∗ 13.87∗∗∗ 13.72∗∗∗ 13.62∗∗∗ 10.12∗∗∗

(0.65) (0.51) (0.46) (0.45) (0.44) (0.44) (0.34)
Money Transfer 12.30∗∗∗ 9.91∗∗∗ 9.21∗∗∗ 9.07∗∗∗ 8.86∗∗∗ 6.20∗∗∗

(0.17) (0.17) (0.17) (0.16) (0.16) (0.13)
Commerce 5.94∗∗∗ 5.25∗∗∗ 5.27∗∗∗ 5.06∗∗∗ 3.22∗∗∗

(0.15) (0.15) (0.15) (0.15) (0.12)
Social 3.50∗∗∗ 3.52∗∗∗ 3.44∗∗∗ 1.68∗∗∗

(0.15) (0.15) (0.15) (0.12)
Services 4.08∗∗∗ 3.95∗∗∗ 2.31∗∗∗

(0.29) (0.29) (0.22)
Other 4.22∗∗∗ 0.89∗∗∗

(0.31) (0.24)
Resources 0.10∗∗∗

(0.00)
R
2

<0.01 0.04 0.18 0.52 0.60 0.63 0.64 0.65 0.79

Adj. R
2

<0.01 0.04 0.18 0.52 0.60 0.63 0.64 0.65 0.79

Num. obs. 7123 7123 7123 7123 7123 7123 7123 7123 7123

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05



Table 9: Statistical models for all profiles (sold at full price and on sale).

Model 1a Model 2a Model 3a Model 4a Model 5a Model 6a Model 7a Model 8a Model 9a Model 10a

β0 8.74∗∗∗ −8.76∗∗∗ −8.29∗∗∗ −0.17 3.52∗∗∗ −0.29 −3.49∗∗∗ −3.46∗∗∗ −2.26∗∗∗ −2.10∗∗∗
(0.08) (0.85) (0.80) (0.63) (0.58) (0.58) (0.60) (0.59) (0.48) (0.44)

Real Fngrpr 1.07∗∗∗ 1.22∗∗∗ 1.29∗∗∗ 1.52∗∗∗ 1.66∗∗∗ 1.69∗∗∗ 1.69∗∗∗ 1.70∗∗∗ 1.49∗∗∗ 1.03∗∗∗

(0.14) (0.14) (0.13) (0.10) (0.09) (0.09) (0.09) (0.09) (0.07) (0.07)
log(GDP) 1.77∗∗∗ 1.69∗∗∗ 0.58∗∗∗ 0.03 0.25∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.24∗∗∗ 0.36∗∗∗

(0.09) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06) (0.05) (0.04)
Crypto 19.23∗∗∗ 13.76∗∗∗ 12.72∗∗∗ 12.48∗∗∗ 12.34∗∗∗ 12.25∗∗∗ 9.08∗∗∗ 8.91∗∗∗

(0.49) (0.39) (0.36) (0.35) (0.34) (0.34) (0.28) (0.25)
Money Transfer 10.95∗∗∗ 8.82∗∗∗ 8.25∗∗∗ 8.12∗∗∗ 7.94∗∗∗ 5.58∗∗∗ 5.37∗∗∗

(0.13) (0.12) (0.12) (0.12) (0.12) (0.10) (0.09)
Commerce 5.21∗∗∗ 4.60∗∗∗ 4.60∗∗∗ 4.42∗∗∗ 2.71∗∗∗ 2.74∗∗∗

(0.11) (0.11) (0.11) (0.11) (0.09) (0.08)
Social 3.02∗∗∗ 3.08∗∗∗ 3.01∗∗∗ 1.42∗∗∗ 1.50∗∗∗

(0.11) (0.11) (0.11) (0.09) (0.08)
Services 3.83∗∗∗ 3.72∗∗∗ 2.13∗∗∗ 2.17∗∗∗

(0.21) (0.21) (0.17) (0.16)
Other 3.54∗∗∗ 0.59∗∗ 0.69∗∗∗

(0.22) (0.19) (0.17)
Resources 0.10∗∗∗ 0.09∗∗∗

(0.00) (0.00)
Sale −3.40∗∗∗

(0.07)
R
2

<0.01 0.04 0.15 0.49 0.57 0.59 0.60 0.61 0.74 0.79

Adj. R
2

<0.01 0.04 0.15 0.49 0.57 0.59 0.60 0.61 0.74 0.79

Num. obs. 11683 11683 11683 11683 11683 11683 11683 11683 11683 11683

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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