
Out of the Box Testing

Hubert Kario[0009−0007−8694−4270]

Red Hat Czech s.r.o, Purkyňova 115, 612 00 Brno, Czech Republic
hkario@redhat.com

16 May 2023

Abstract. In this paper we analyse typical timing data that can be
collected over loopback interface, in local, and in metropolitan area net-
works. We evaluate performance of few statistical test for detecting dif-
ferences in timing of server responses. The evaluated tests include the
popular Box test, as well as sign test, Wilcoxon signed-rank test, and
paired sample t-test. We found that the Box test offers poor perfor-
mance, as it’s an incorrect test to use for the measurements we collected.
Use of appropriate tests also allows for robust differentiation between
much smaller differences than the existing literature would suggest. We
were able to detect side channels of single-digit CPU cycles over regular
gigabit Ethernet. Those alternative tests were also found to be robust
against noise in production networks, allowing detection of side channel
of just few nanoseconds with 6 network hops between test systems.

Keywords: Non-parametric tests · side-channel attacks · timing attacks
· box test · sign test.

1 Introduction

Cryptographic implementations not only need to compute expected outputs for
all valid inputs and handle errors gracefully, they also must not expose the values
of processed secret data indirectly.

If an implementation exposes certain property or values of the secret values
through its behaviour (though timing of responses, memory accesses, electro-
magnetic fields, sound, power use, etc.) we say that it has side-channel leakage.
The timing of responses is particularly interesting as it allows for attacking it
remotely through normal interfaces.

RSA is one of the algorithms notably impacted by attacks like this. Particu-
larly seminal paper on this topic, introducing the so-called box test, was written
by Crosby et.al[1]. That same test was then reused by many other researchers[5,
3, 2, 6].

Unfortunately, none of those researchers, not even ones that considered use of
the box-test but ultimately decided not to use it[4], have verified the assumptions
of the test. That test, like many others, requires samples to be identically and
independently distributed.

2 Hubert Kario

1.1 Contributions

Our work makes the following contributions:

– We examine the timing behaviour of synthetic servers in detail
– We present a new technique that follows established statistical practice to

measure timing differences that outperforms the box test.
– We show that by using correct statistical approach, measurements of much

smaller timing differences are possible than previously shown.
– We show that differences of single clock cycles are measurable over loopback

interface with few hundred thousand measurements.
– We show that robust measurements of side channel over metropolitan area

networks as small 10ns are also possible.

1.2 Paper structure

We begin the paper with a refresher on statistical theory: p-values. After that, we
attempt use of the statistical tests without verifying their assumptions of inde-
pendence. We discuss what statistical independence is and how can we achieve it
by performing a double-blind study. Having established a proper study setup we
investigate the effect of different factors on the test performance: used CPU, the
baseline response delay, introduction of real network link, and real production
network.

2 P-values

In frequentist statistics, the tests generally return two values, a test statistic and
a p-value. While the test statistic and its interpretation varies from test to test,
the interpretation of a p-value is the same independent of the specific test used.

When using a p-value, we need to select a value α, representing the acceptable
rate of false positive errors (situations when the test reports a signal or effect
when there is none). When the calculated p-value is smaller that the value α,
the test is considered to be positive, while if it is larger than the α, the result is
considered to be negative. This works, because independent of the test used, if
the null hypothesis is true (there is no effect present), the distribution of p-values
needs to follow a uniform distribution between 0 and 1.

Let’s consider a simple binomial test: perform n coin tosses, obtain k positive
outcomes and calculate the associated p-value. For large numbers of unbiased
coin tosses, p-values from such a test will be distributed uniformly. But because
both k and n are discrete values, the corresponding p-values are similarly dis-
crete. Plotted on a histogram, like in Fig. 1a, p-values won’t look like a uniform
distribution. Naïve interpretation of that would suggest the used test is incor-
rect. Such interpretation would be wrong though, as if we look at the Empirical
Cumulative Distribution Function (ECDF) of the p-values on fig. 1b, we can
see that the distribution of the calculated p-values is a non-continuous uniform

Out of the Box Testing 3

Histogram of p

p

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
0

1
0

0
0

1
5

0
0

(a) Histogram of p-values
with no effect

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(p)

x

F
n

(x
)

(b) ECDF of p-values
with no effect

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(p)

x

F
n

(x
)

(c) ECDF of p-values
with a biased generator

(p = 0.54)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(p)

x

F
n

(x
)

(d) ECDF of p-values
with a very biased
generator (p = 0.7)

Fig. 1: Distribution of p-values of 10 thousand binomial tests with n = 100, and ex-
pected p of 0.5.

distribution, matching a continuous uniform distribution (the red line on the
graphs) very closely.

Since the binomial distribution can also deal with biased events, like weighted
coins, it’s defined with additional parameter: p – the probability of success of
any one instance of the event (like a coin toss in our example). For an unbiased
coin it’s 0.5, for a coin that lands always on one side p would be either 0 or 1
(depending if it always lands heads or tails), and a coin that prefers one side
over the other would have the p parameter other than those three values, with
values closer to 0 and 1 indicating heavier bias. It should be noted that p and
p-value are separate: p-value is a generic concept while p here is a parameter
specific to the binomial distribution and the associated test.

If there is an effect (the expected p doesn’t match the p of the underlying
distribution), the calculated p-values will not follow uniform distribution of (0, 1).
The departure from uniformity may be slight, but for large number of p-values
easy to notice when compared to an Cumulative Distibution Function (CDF) of
the uniform distribution, as visible on fig. 1c.

4 Hubert Kario

ret = read(sock, &x, 4);
for (i=x; i != 0; i--) {

asm ("" : "+g" (i) ::);
}

Listing 1: Down for() server processing function in C

For higher differences between the expected p and actual probability p of the
sample, smaller p-values are more likely. The same holds true for bigger samples.

In other words, a presence of an effect or a signal doesn’t guarantee a small
p-value from a statistical test, it just makes it more likely. At the same time, a
small α makes it less likely that the test will generate a p-value that is smaller
than it when there is no signal or no effect. In more practical terms, if we execute
a test 1000 times, we can expect that we’ll see p-values smaller than 0.01 around
10 times, even if there is no effect.

Since our goal is to use those tests in automated environments, executing the
tests over and over, where we expect to see very small differences in case of a
side channel, we’ll be using small α values, more typical of physics (10−5) than
biology or sociology (0.05) so that the probability of false positives is very low.

3 Synthetic server

To test effectiveness of different approaches we need some server with known
behaviour, preferably where we can control the overall response time and amount
of side-channel leakage.

3.1 Experimental server

A server we used for the tests reads an integer from the network socket, counts
down until it is equal zero and then writes a reply to the client. We used such
configuration for a multitude of reasons. When the data to be processed comes
from the network, the compiler can’t anticipate the values to be processed, and
thus optimise around them. While local attacks are possible, the biggest attack
surface comes through a network thus testing a network service makes it more
realistic. Moreover, if we can test servers over the network, we don’t need to
modify real servers to test if they are vulnerable or not (we can perform black-
box testing of real servers). Given the cloud environments, it’s also relatively
easy to get a machine in the same data centre as the target, while getting on
the same physical machine requires more specific circumstances. The reason to
make a server counting down is that such loop on an x86_64 platform can be
implemented by two machine instructions, providing very fast execution, and
thus high granularity between different inputs.

In listing 1 you can find the core function generating the side-channel for
measurement. We read the value of the counter from the network directly to avoid

Out of the Box Testing 5

0x0040139c <+12>: lea 0xc(%rsp),%rsi
0x004013a1 <+17>: call 0x401080 <read@plt>
0x004013aa <+26>: mov 0xc(%rsp),%eax
0x004013ae <+30>: test %eax,%eax
0x004013b0 <+32>: je 0x4013bd <doprocessing+45>
0x004013b2 <+34>: nopw 0x0(%rax,%rax,1)
0x004013b8 <+40>: sub $0x1,%eax
0x004013bb <+43>: jne 0x4013b8 <doprocessing+40>

Listing 2: Down for() server in assembly

conversation = Connect(host, port)
node = conversation
node = node.add_child(RawSocketWriteGenerator(

baseline.to_bytes(byte_len, "little")))↪→

node = node.add_child(ExpectAlert(AlertLevel.fatal))
node.add_child(ExpectClose())
conversations["probe A, {0} cycles".format(baseline)] = conversation

Listing 3: Down for() client

any bias in methods like sscanf() and to make sure that all values require the
same number of bytes to transmit between attacker and the tested system. We
then compare it to 0, as that is translated to a single instruction, jne, subtraction
is compiled to the sub instruction with an immediate value, as can be seen in
listing 2, where the body of the loop is the last two instructions (previous ones
handle the special case of initial iterator equal to 0). The asm block is used
to trick the compiler into assuming that the loop can’t be optimised out as it
processes all the intermediate values of iterator i.

3.2 Experimental client

For the client we used the tlsfuzzer framework. The basic connection was speci-
fied as in listing 3. This prepares a series of actions performed by the framework
when the conversation is actually executed: first a TCP connection is estab-
lished (the Connect node), then a byte string representing the numerical value
of baseline is written to the opened socket. Finally the framework expects a
TLS Alert message (the ExpectAlert node) and a TCP connection closure (the
ExpectClose) node.

Three copies of such conversation are prepared: two that send the same value
(by comparing them to each-other we can detect false positives), and one with
an increased value (the true positive).

If iterating the loop different amount of times takes different amount of time,
we expect then to see similar processing time for the conversations with the

6 Hubert Kario

same values and different processing time when we compare either of the first
two with the third one.

3.3 Experimental setup

The tlsfuzzer framework executes the specified conversations provided number
of times. To minimise the effects of branch-prediction and as a general good sta-
tistical practice, it performs a randomized trial: it executes the conversations in
random order. To get highest precision of measurements, instead of measuring
response time on Python level, it performs a packet capture, and after executing
all the connections, it maps the collected response timings to the conversations,
in the process ensuring that the time measurement isn’t influenced by the ex-
changed data (as neither the packet capture process nor the parser inspect the
exchanged data, the parser just looks for the time between last message from
client and a server response to it).

4 Statistical independence

Fig. 2: Scatter plot of individual measurements, note the markedly different distribution
for measurements with indexes between around 1250 and 1700. The 0, 1, and 2 in the
legend refer to the three different probes executed.

Out of the Box Testing 7

By executing a client that sends three types of probes we essentially get three
data samples, each comprised of server response times for a particular input.
The widely applied approach for analysing such data is to perform so-called box
test[1]. One of the criteria mandated by the box test, is that the samples need
to be independent and identically distributed. Unfortunately, independence of
measurements wasn’t a property that was verified either in the original study
or in the studies that used the same test[5, 3, 2, 6], or ones that considered box
test, but found it to be under-performing when compared to Mann—Whitney U
test[4]. Note that Mann—Whitney U test also requires independent samples.

In statistics, we say that two events are independent if occurrence of one has
no impact on occurrence of another. That also means that the measurements
have no impact on one another, in particular, that by inspecting one measure-
ment we don’t learn anything about measurements in its immediate vicinity.

While there are statistical tests for independence, they’re not foolproof.
Thankfully, in the case of timing measurements we just need to look at a graph
of measurements to be able to tell that they are not independent, as in figure 2.

While often the lack of independence isn’t as striking as in fig. 2, it is the
counter-example for the hypothesis that the samples are always independent. Or
in other words, if we were to execute the different samples one after another,
instead of in parallel, we would be comparing values distributed as between index
0 and 1000, and then between index 1000 and 2000, despite them having vastly
different distributions. It would be like going to Phoenix, Arizona, measuring the
daily temperature, every hour, every day for the whole January, coming up with
an average of 13.8°C, then travelling to Seattle, Washington, doing the same
there in June, coming up with an average of 16.7°C, and based on that coming
to the absurd conclusion that on average Seattle is hotter that Phoenix.

When we ignore requirements of a statistical test we risk two effects: the test
will be producing false positives at an increased rate (above the selected alpha),
or it will not be sensitive to real differences. We’ll be getting random results not
directly related to the analysed data.

The solution is to use a test that can handle dependent measurements, like
most paired two-sample tests: where instead of estimating the means of sam-
ples individually, the samples are considered to be ordered, and the values are
compared in pairs. The first measurement from first sample is compared only
with the first measurement from the second sample. Same for second and sub-
sequent measurements. Then we inspect the distribution of the results of those
comparisons.

One of the first statistical tests ever described is the sign test. To perform the
test, we calculate pairwise differences of the measurements and note the number
of positive and negative results (in standard sign test ties are ignored). Then
the count of positive values is compared with the binomial distribution with the
probability parameter p=0.5. So for example, if we counted 450 positive values
and 445 negative values, the p-value of the test will equal 0.89, which is a non-
significant result. As such, we cannot assume that either sample median is larger
(technically, sign test checks for stochastic dominance, which for our purposes

8 Hubert Kario

means the same, but is a separate concept).
A more advanced test is the Wilcoxon signed-rank test, which accounts for

not only the sign, but also the magnitude of the differences.

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Box test false negative rate

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: False negative rates of the test executed against synthetic server measured over
loopback interface, with baseline loop count of 10 cycles. White means “no data”.

In case of measurements over the loopback interface, the Box test is sig-
nificantly less sensitive than either the sign test or the Wilcoxon signed-rank
test.

Fig. 3 shows the empirically acquired fraction of test runs that returned
negative result when there was a difference between the tested samples as a
product of the sample size and tested difference (delta) between the two samples.
Dark blue colour indicates that almost all tests correctly identified presence of
side-channel while yellow indicates that almost none did.

In fig. 3 we can see that, as expected, the sign test scales with an inverse
square root of sample size, consistently detecting side-channels an order of mag-
nitude smaller with samples two orders of magnitude larger. At the same time,
while the box test seems to outperform the sign test for small sample sizes, it
is due to high rate of false positives (fig. 4) rather than it being more sensi-
tive. Also, the box test isn’t able to detect differences at all when the difference
becomes really small (10 cycles in this example).

5 Double-blind study

The statistical best practice calls for performing a randomized double blind
study. In such experiments, the participants are assigned randomly to a control
group and a treatment group (the “randomized” part) and where both the inves-
tigator applying the treatment and the participant don’t know if the participant
is part of control group or not (the “double blind” part).

While we don’t have human actors in the experiment we’re running, the in-
vestigator (test client) can still have an effect on the study participant (test
server). Effects can range from the time between individual connections, and

Out of the Box Testing 9

time to sending data after opening the connection, to cumulative stress (phys-
ically heating it up, cache lines evicted, branch predictor state, etc.) imposed
on the CPU beforehand. All of these can have effect on how quickly the server
responds. If those things are correlated with the sent probes they will impact
server behaviour, even if the set of instructions executed by the server is exactly
the same. That’s because the environment they’re executed in is different, and
correlated with the probes.

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false positive rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Box test false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: False positive rates of the test executed against synthetic server measured over
loopback interface, with baseline loop count of 10 cycles.

Indeed, when we investigate the false positive rate of the sign test in fig.
4, we can notice that it fairly uniformly rises as the sample size increases. For
moderately large samples (200k observations) the sign test isn’t any better than
a coin toss at detecting if a side channel is present, that’s despite use of a very
small alpha value (0.0001), which for an unbiased test should show around one
false positive in ten thousand tries. Here we see it in eight out of ten tests.

From the experiments we performed it’s caused by a mixture of effects, all
pointing to non-uniform behaviour on client side causing non-uniform behaviour
on server side, even if exactly the same data is sent over the network.

We tried different approaches to eliminate this effect: using other timings of
the TCP connections, like the time to establish the connection (time from initial
SYN to reply with SYN-ACK, to time to the first ACK packet), time to generate
the query, to time to close the connection. None of those values were sufficient to
eliminate this confounding while using stratification based on ranges, k-means
or HDBSCAN classifiers. Similarly, linear regression, non-parametric regression,
simple Bayesian inference, and Bayesian logistic regression were ineffective in
elimination of this confounding.

The solution that works is to employ double blinding, where the values to be
sent to the server are first generated in a random order, saved to a file on disk,
and then processed by one and the same conversation in tlsfuzzer, as seen in
listing 4. Effectively executing exactly the same CPU instructions on the client
side every time, irrespective of data being sent to the server.

10 Hubert Kario

data_file = open('data_values.bin', 'rb')
byte_len = 4
conversation = Connect(host, port)
node = conversation
node = node.add_child(RawSocketWriteGenerator(

data_file=data_file,
data_length=byte_len))

node = node.add_child(ExpectAlert(AlertLevel.fatal))
node.add_child(ExpectClose())

Listing 4: Down for() client with pre-generation

This kind of test execution eliminated the excessive false positive rate and
had no negative effect on false negative rate. In fig. 5 we can see that there
were no false positives detected. The sudden increase in true detections for tests
with above 50 thousand observations seems to be related to the mobile Intel i7-
10510Y CPU reaching steady temperature or power state or positive resonance
with the test client.

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false positive rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: False positive and false negative rates of sign test of the synthetic server mea-
sured over loopback with probe pre-generation. Each cell represents at least 10 indi-
vidual test executions. i7-10510Y CPU.

Executing the same kind of test on different machines we see similar effect: no
false positives above what’s expected given the selected alpha level and number
of test executions, even for very large sample sizes or noisy environments. At
the same time, the sample size at which a particular size of side-channel is
detectable depends on the baseline count in the for() loop. In fig. 6 we can see
comparison of the effectiveness of the sign test for different baseline counts of the
for() loop. First one is for 10 cycles, an arbitrary small number, showing similar
sudden increase in test effectiveness for larger sample sizes as in fig. 5. For larger
baselines we see the more expected linear (on a log-log plot) relationship between
sample size and side-channel. The 850 cycles were chosen as being 1µs slower

Out of the Box Testing 11

than 10 cycles. The 3174300 cycles were chosen as that is the typical response
time for OpenSSL 1.1.1p processing a 2048 bit RSA ClientKeyExchange message
in TLS.

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(a) 10 for() cycles, about 14µs

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(b) 850 for() cycles, about 15µs

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(c) 3174300 for() cycles, about 5.2ms

Fig. 6: False negative rate for tests with different baseline delay and size of side-channel
based on sample size. Tests with probe pre-generation. Each cell represents at least 10
individual test executions. Intel Xeon E5603 CPU

.

When we ran the same sample size for the tests (N=3200) and instead varied
the baseline iteration count, we’ve noticed, as shown in fig. 7, that the higher
than expected sensitivity was consistent for all small baselines. All baselines of
15 cycles and below allowed differentiation of 1 cycle differences with just 3200
probes. At the same time all probes with 16 or more, up to around 100 thousand
cycles, have the same sensitivity. Only when the baseline count increases enough
to cause the server response to take few hundred µs to 1ms that it has an effect

12 Hubert Kario

on the test sensitivity, with the beginning of the linear (on the log-log plot)
relationship starting with 1ms response time.

10 c 1 kc 100 kc 10 Mc 1 Gc
Baseline

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate
alpha=0.0001, N=3200

0.0

0.2

0.4

0.6

0.8

1.0

(a) Baseline in cycles

10 µs 100 µs 1 ms 10 ms 100 ms 1 s
Baseline

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate
alpha=0.0001, N=3200

0.0

0.2

0.4

0.6

0.8

1.0

(b) Baseline in seconds

Fig. 7: False negative rate as a function of side-channel size (Delta) and baseline itera-
tion count for the probes. Intel Xeon E5603 CPU

In other words, the sign test is much more sensitive and robust than the
box test. Additionally, the behaviour of CPUs varies widely by the executed
workload, and thus has very significant impact on how easy it is to detect a
side channel. Finally, even realistic server response times for computationally
intensive workloads require just few million probes to detect side channels as
small as single-digit CPU cycles.

6 Local network attacks

While assuming a threat model in which the attacker can measure server re-
sponse times over loopback is natural, given the prevalence of virtualization and
containerization, the most realistic is the expectation that the attacker is able
to deploy a system in the same data centre.

As such, we’ve executed tests between two hosts on the same local network,
with a copper gigabit Ethernet connection between them, connected with a single
managed switch (D-Link DGS-1100-24). Average ICMP ping RTT between them
was about 0.086 ms.

The best test performance we’ve achieved was when the test server was run-
ning on the fastest machine available in that network segment (an Intel Xeon
E3-1220), while the test client (attacker) was running on the second fastest ma-
chine (an Intel Xeon E5-2407 v2).

As seen in in fig. 8 the measured test performance varied widely, especially
for very small sample sizes (<1000) only very large side channels (>15000 cycles)

Out of the Box Testing 13

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8: False negative rate for measurements over gigabit Ethernet (0.086ms RTT)
against a for() loop server running on Xeon E3-1220 and a client running on Xeon
E5-2407 v2, with the baseline of 10 cycles

were reliably discoverable. But with increasing sample size, the test fell to the
expected linear (on log-log plot) relationship between sample size and measurable
side channel. With 1.6M measurements being necessary to detect side channels
as small as 1 for() loop cycle. For comparison, over loopback on the same
system, though for a baseline of 850 cycles, only 410 thousand measurements
are necessary to detect side channels as small as 1 cycle. This is over two orders
of magnitude smaller difference than previously deemed detectable[1].

In other words, introduction of a real network between the server and the
attacker requires increasing the sample size by a factor of 4 to achieve similar test
sensitivity as can be achieved over the loopback interface (same-system network
connections). So, if an attack is practical over loopback, it’s most likely practical
over real local network connections too.

7 Metropolitan Area Networks

We’ve also tested the performance of the test when executed against a server lo-
cated further away. When the server was about 0.534ms, 6 router hops, and about
5km away, we still saw quite good test performance. The server was running on
an Xeon E3-1220 at 3.191GHz. With the client running on Core i9-12900KS at
5.225GHz.

This test environment is also the first time when the paired t-test is compet-
itive when compared to either sign test or Wilcoxon signed-rank test (in all the
other examples with the sign test, the results from paired t-test were all false
negatives). This is most likely caused by the fact there are multiple noise sources
contributing to the overall measurement error, causing them to average out to a
more normal-like distribution because of central limit theorem.

From graphs in fig. 9, we can expect that a sample of few hundred million
measurements per probe type should be sufficient to detect differences as small

14 Hubert Kario

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Sign test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sign test results

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

Wilcoxon signed-rank test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(b) Wilcoxon signed-rank test results

100 1 k 10 k 100 k 1 M 10 M 100 M
Sample size

1 c

10 c

100 c

1 kc

10 kc

100 kc

De
lta

paired t-test false negative rate for alpha=0.0001

0.0

0.2

0.4

0.6

0.8

1.0

(c) Paired sample t-test

Fig. 9: False negative rate for tests against a networked server separated by 6 router
hops, with average return trip time of about 0.534ms. Tests with probe pre-generation.
Each cell represents at least 10 individual test executions. for() loop server with 10
cycle baseline. Intel Xeon E3-1220 CPU on server side and Intel Core i9-12900KS on
client side

.

as 10 for() loop cycles. As expected, after scheduling a very large test, with
284M measurements with a 10 cycle delta we found data to show statistically
significant results. The bootstrapped estimate of difference in response between
10 cycle and 20 cycle probes was equal 3.0+1.0

−2.0 ns for median and 10.69+3.06
−2.83 ns

for mean at 95% confidence interval. The calculated sign test p-value was equal
to 1.98e-6, the Wilcoxon signed-rank test p-value was equal to 5.06e-9, and the
dependent t-test for paired samples was equal 2.65e-9.

From those results we can conclude that the smallest size of difference mea-
surable is not limited by the noise or network distance, but the size of the sample
we’re willing, or able, to collect.

Out of the Box Testing 15

It should be noted that all three statistical tests used here permit combining
data from multiple sources to detect smaller differences, as all three do not
require consistency in magnitude of differences between different data pairs.
Which means that parallelization of data collection and its later analysis is quite
trivial and does not require extensive considerations when running the tests.

8 Future work

In this work we have used one of the simplest approaches to detecting sample
differences. Use of more advanced statistical models, like with Bayesian inference,
might outperform those old tests.

There exist tests for testing multiple samples at once, like the Friedman test.
Quantifying their performance in comparison to the sign test and bootstrapped
confidence intervals would allow to estimate the size of the maximum remaining
side channel. That would be particularly useful in case different side-channels
can be tested in parallel.

Good explanation of the sudden jumps in performance for very small base-
lines or larger samples sizes might point to a way of constructing a test harness
that regularly outperforms the presented test results.

While we found that combining test data from multiple systems together
improved the confidence of the test results, we haven’t quantified when and
how beneficial that is in general. In particular, we’ve seen in one example that
combining similarly sized data from two systems with very different signal to
noise ratios made the overall result worse than analysis of data from just the
better of them.

9 Summary and recommendations

We’ve shown that by using correct statistical methods and best practices we can
detect much smaller timing side-channels than previously deemed possible.

When executing statistical tests, users should check if the data meets the ex-
pectations of the statistical test used. We found that including “canary” probes
(ones that are treated as separate by the test but should generate the same be-
haviour from system under test—i.e. known true negatives) to be a very good
approach for verifying sanity of the test setup. When the failure rate from com-
paring them exceeds the selected α level, the test setup should be re-evaluated.

When measuring very small differences, on the order of nanoseconds, it’s
necessary to take into account the side-channels generated by the test harness.
Even things like the memory location from which the data is copied to the
network can have measurable effect on server response times. We found pre-
generating values of all the probes to be sent and writing them to disk before
executing even a single network connection to be a flexible and robust way to
ensure constant-time (or at least probe independent) behaviour from the test
harness.

16 Hubert Kario

By using such practices we were able to detect side-channels as small as few
clock cycles (below 1ns) over regular gigabit Ethernet. Thus we don’t think that
general purpose implementations can ignore presence of timing side channels
when they are determined to be small: it just means they are harder to detect,
not that they are impossible to detect over the network.

10 References

[1] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. “Opportunities
and Limits of Remote Timing Attacks”. In: ACM Trans. Inf. Syst. Secur.
12.3 (Jan. 2009). issn: 1094-9224. doi: 10.1145/1455526.1455530. url:
https://doi.org/10.1145/1455526.1455530.

[2] Tom Van Goethem et al. “Timeless Timing Attacks: Exploiting Concur-
rency to Leak Secrets over Remote Connections”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 1985–2002. isbn: 978-1-939133-17-5. url: https://www.usenix.org/
conference/usenixsecurity20/presentation/van-goethem.

[3] JS Daniel Mayer and J Sandin. “Time trial: Racing towards practical remote
timing attacks”. In: Black Hat US Briefings (2014).

[4] Robert Merget et al. “Raccoon Attack: Finding and Exploiting Most-Significant-
Bit-Oracles in TLS-DH(E)”. In: IACR Cryptol. ePrint Arch. 2020 (2020),
p. 1151.

[5] Christopher Meyer et al. “Revisiting SSL/TLS Implementations: New Ble-
ichenbacher Side Channels and Attacks”. In: 23rd USENIX Security Sym-
posium (USENIX Security 14). San Diego, CA: USENIX Association, Aug.
2014, pp. 733–748. isbn: 978-1-931971-15-7. url: https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/
meyer.

[6] Mathy Vanhoef and Eyal Ronen. “Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd”. In: 2020 IEEE Symposium on Security
and Privacy (SP). IEEE. 2020, pp. 517–533.

