
Fake npm Roblox API 
Package Installs 
Ransomware and has a 
Spooky Surprise
October 27, 2021 By Juan Aguirre

The world was just coming to terms with the “ua-parser-js” npm 
library hijacking incident, and Sonatype’s discovery of crypto-
mining malware from last week, when we found a bigger, and 
spookier, issue just in time for Halloween.

Could threat actors abuse open source ecosystems, like npm, PyPI, 
and Rubygems, to deploy ransomware? This crucial question was 

https://blog.sonatype.com/author/juan-aguirre
https://blog.sonatype.com/npm-project-used-by-millions-hijacked-in-supply-chain-attack
https://blog.sonatype.com/npm-project-used-by-millions-hijacked-in-supply-chain-attack
https://blog.sonatype.com/newly-found-npm-malware-mines-cryptocurrency-on-windows-linux-macos-devices


raised for the first time because of our most recent discovery of 
malicious npm packages:

• Noblox.js-proxy
• Noblox.js-proxies

The answer was an unequivocal yes. Let me go into the full 
details. These typosquatting packages mimic noblox.js, a popular 
Roblox game API wrapper that exists on npm as both a standalone 
package, along with legitimate variants such as “noblox.js-
proxied” (ending in ‘d’ not ‘s’). Both of these have been tracked 
under sonatype-2021-1526 in our security research data.

Noblox.js is an open source JavaScript API for the popular game 
Roblox. Users commonly utilize this library, downloaded over 
700,000 times to date, to create in-game scripts that interact with 
the Roblox website. Since we discovered the two typosquats so 
quickly, they both had minimal impact with Noblox.js-proxy 
seeing 281 total downloads and Noblox.js-proxies seeing 106 total 
downloads, but it’s clear what type of scale the threat actors were 
hoping for going after such a popular component.

But, the developers behind malicious typosquats noblox.js-proxy 
and noblox.js-proxies have implemented some extra unwanted 
functionalities—trojans, ransomware, and even a spooky surprise.

While Noblox.js-proxy was flagged by Sonatype’s automated 
malware detection system, when investigating this package, our 
security research team also came across noblox.js-proxies. This 
highlights the importance of combining automation and human 
research in protecting our open source ecosystems - and why we at 

https://www.npmjs.com/package/noblox.js
https://www.npmjs.com/package/noblox.js-proxied
https://www.npmjs.com/package/noblox.js-proxied


Sonatype have not only built the system to find the issues, but 
employ an army of researchers to confirm them.

Note, due to many similarities between noblox.js-proxy and 
noblox.js-proxies, along with the fact they are uploaded by 
the same threat actor (‘DarkDev’ or ‘DarkDev1’), we have 
referred to the packages interchangeably, and any references to 
behavior of noblox.js-proxy are also largely representative of the 
latter’s behavior.

Typosquats display the official 
Noblox’s README page on npm
At a first glance, the packages look legitimate as the NPM page 
for them shows the README for the official Noblox package.

https://archive.md/Pvjyk


The first release of noblox.js-proxy, version 1.0.0, looks 
completely normal. It contains functional code, correct definitions, 
and a benign post-install script. But starting with 1.0.1 we noticed 
some obfuscated text within what used to be an inoffensive 
postinstall.js file. It's pretty common for threat actors to place the 
malicious code within the manifest file, package.json file, and 
even more commonly these days, within the pre and post-install 
scripts defined in the manifest file. And that’s also the case here.

The package.json file launches the “postinstall.js,” which contains 
a suspicious line of code:

While there can be legitimate reasons projects minimize their code 
or even obfuscate it, a seemingly random piece of obfuscated code 
in the middle of plain readable functions is an immediate red flag. 
Let's focus on that.

Obfuscated, minified JavaScript 
drops a cryptic Batch script
Besides just highlighting what the threat actor did in this instance, 
I wanted to share a little about how we security researchers go 
about investigating these types of findings as well. Here is some of 



what I went through to truly identify whether or not this was 
malicious.

After a while of trying to deobfuscate this code and get something 
readable out of it, I came to the conclusion that I need to work on 
my obfuscation, encoding/decoding skills. However, I’m pretty 
decent with dynamic analysis so I decided to try my luck there.

Interestingly, on launching the malicious package in an Ubuntu 
VM I had handy, I got an error message stating `cmd.exe /c 
setup.bat` couldn’t be run. Looking at the directory where I 
executed the malware I was now also seeing a setup.bat file. Both 
the ‘cmd.exe’ reference and the dropped Batch file instantly 
indicate the malware targets Windows users.

I noticed, the Batch file was itself heavily obfuscated, which was 
very odd. Then, upon looking more closely it appeared to be 
encoded, with what looked like Chinese characters. At first, I even 
put them through a translator in an attempt to make something out 
of it, then some google-fu came to the rescue.

Turns out this was a UTF-16 file and all I needed to do was save it 
as such and tell my text editor how I wanted to view it (thanks to 
the StackOverflow post that resolved the mystery).

Next, I opened up the batch script in my favorite text editor and 
took a look. Once again obfuscated, or was it?

https://superuser.com/questions/1676713/how-to-decode-contents-of-a-batch-file-with-chinese-characters


The result of re-opening the file as UTF-16 was a lot better, but I 
still couldn't really make much out of it. There were some URLs 
buried in cleartext there that were readable and led to malicious 
binaries, but I wanted to better understand this.

Some more google-fu and I read about something called variable 
expansion. This is a process of simply replacing a variable 
enclosed in % or ! with some value. I knew the URLs I saw had to 
be prefixed with ‘https’, so I started replacing some values with 
what I knew should be there then added some automation to get an 
awesome result.

After a successful round of variable expansion, the Batch script 
became legible:

https://stackoverflow.com/questions/25324354/windows-batch-files-what-is-variable-expansion-and-what-does-enabledelayedexpa
https://stackoverflow.com/questions/25324354/windows-batch-files-what-is-variable-expansion-and-what-does-enabledelayedexpa


Batch script alters Windows registry, 
drops trojans, and ransomware
And then, everything started to become clearer. The Batch script 
first attempts some Windows User Account Control 
(UAC) bypasses via fodhelper.exe, a trusted Windows binary that 
facilitates ‘Features on Demand’. This is followed by the use of 
PowerShell download ‘cradles’ to grab some malicious 
executables.

At this stage, the following malicious executables are downloaded 
from Discord’s CDN server:

• exclude.bat

• legion.exe

• 000.exe

• tunamor.exe

Going through them and performing some dynamic analysis, in 
great part assisted by the awesome any.run sandbox, we can start 
to piece together what this malware is actually doing.

https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://strontic.github.io/xcyclopedia/library/fodhelper.exe-7215C73EC1AAE35B9E4B1F22C811F85C.html
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/features-on-demand-v2--capabilities?view=windows-11
https://www.virustotal.com/gui/file/a81b7477c70f728a0c3ca14d0cdfd608a0101cf599d31619163cb0be2a152b78/details
https://www.virustotal.com/gui/file/4a900b344ef765a66f98cf39ac06273d565ca0f5d19f7ea4ca183786155d4a47
https://www.virustotal.com/gui/file/78972cdde1a038f249b481ea2c4b172cc258aa294440333e9c46dcb3fbed5815
https://app.any.run/tasks/e9bbf757-8ccc-4153-85c2-4230e8369f99/


The one-liner batch script, exclude.bat runs first, and attempts to 
turn off antivirus agents. To avoid detection, it adds the C:\ 
directory, which is the root, to the Windows Defender exclusions 
list.

Next up is legion.exe, which drops multiple files, including 
a stealer.exe, and performs registry changes to avoid detection. 
But, the main functionality of this executable is to steal Discord 
tokens and stored browser and system credentials. To achieve 
persistence, legion.exe also copies itself as the Microsoft Update 
Manager.

Run away! or... ran-some-where
Now it's 000.exe’s turn. This is a .NET executable, meaning we 
can use ILSpy or dnSpy to roughly reconstruct the source code. At 
first, I noticed some interesting operations with keyboard hooks, 
then I came across some more dropped files:

https://www.virustotal.com/gui/file/4c3ad2621f0fa905f26268b7bdae54480a3fc6a3aeeb143f7e30f2df08c5b299/detection


000.exe is dropping even more files: a Text file, a Batch script, 
rich-text (RTF) documents, an EXE, and at last an MP4 video, as 
shown above. Here is where it gets spooky.

Text.txt is just a file containing the string “UR NEXT''. Windl.bat 
attempts to set the Windows user account name to “UR NEXT”, 
drop the malicious RTF file and execute rniw.exe. The rniw 
executable attempts to exhaust system resources by repeatedly 
popping up alert boxes with the message “Run away” and pinging 
1.1.1.1 non-stop.

But that's not all, in order to ambient the threats in the correct 
manner the threat actors even play a video that gave me 
goosebumps.



Finally, tunamor.exe is spun up, which I thought was funny given 
that amor is Spanish for ‘love’ but there is absolutely no love in 
here. This executable is flagged by VirusTotal as a Remote Access 
Trojan (RAT), possibly TAIDOOR. Taking a look at the 
executable itself, we can see this isn't just a RAT, this is 
ransomware and it's likely our bad actors are after a payday.

Below is the ransom note generated by tunamor.exe:

https://www.virustotal.com/gui/file/78972cdde1a038f249b481ea2c4b172cc258aa294440333e9c46dcb3fbed5815/community
https://www.bleepingcomputer.com/news/security/us-govt-exposes-chinese-espionage-malware-secretly-used-since-2008/


While unconfirmed, the ransom note looks identical to the ones 
seen in MBRLocker variants, generated using publicly available 
tools released on YouTube and Discord. A report released 
by BleepingComputer last year stated that MBRLocker variants 
were likely used as part of 'pranks' to be played on people.

To sum it all up, we have a malicious typosquatting package with 
the main goal of stealing tokens, credentials, installing trojans, and 
infecting the victim’s system with ransomware—all of this with 
some fun but spooky videos and notes along the way.

Oddly enough, the threat actor also posted copies of these 
malicious packages [1, 2] to GitHub but pushed an 
additional commit to remove the malicious code:

https://www.bleepingcomputer.com/news/security/new-coronavirus-themed-malware-locks-you-out-of-windows/
https://archive.md/UBUhg
https://archive.md/3Q111
https://archive.md/WE7hH


At the time of our analysis on October 20th, the malicious package 
“noblox.js-proxy” was already taken down by npm. However, a 
second package “noblox.js-proxies” emerged shortly and was 
discovered by Sonatype yesterday, October 26th. We promptly 
reported the package to npm and it was removed by the npm 
security team in less than an hour of our report.

Indicators of Compromise (IoCs)
Files checksum (SHA-1):

legion.exe: d361f250684b8f5dd4073aa873971cb424959da7

000.exe: 33c341130bf9c93311001a6284692c86fec200ef

tunamor.exe: e398138686eedcd8ef9de5342025f7118e120cdf



stealer.exe: f839971b1fac2b0d6119b67440b90691b3d2bdc8

rniw.exe: 97bb45f4076083fca037eee15d001fd284e53e47

URLs/IPs:

hxxps://cdn.discordapp.com/attachments/
884900935283916881/884913366945112094/exclude[.]bat

hxxps://cdn.discordapp.com/attachments/
884900935283916881/884906713071890462/legion[.]exe

hxxps://cdn.discordapp.com/attachments/
884900935283916881/884919522350477372/000[.]exe

hxxps://cdn.discordapp.com/attachments/
884900935283916881/884919401500000286/tunamor[.]exe

hxxps://itroublvehacker[.]gq

162[.]159[.]134[.]233

What’s next for protecting open 
source ecosystems?
Just last year, my colleague and security researcher Ax Sharma 
had raised a question “Will ransomware operators be the next 
threat actors to exploit trust within the open-source ecosystem?”

And, it seems he was right. While the threat actors successfully 
injected plenty of malicious executables, trojans, and a simpler 
ransomware kit into a carefully picked typosquat, given the textual 

https://blog.sonatype.com/rubygems-laced-with-bitcoin-stealing-malware


hints and the spooky video contained in the package, this incident 
appears to be more of a prank attack. But, it demonstrates the 
myriad possibilities that adversaries look at when targeting open 
source registries with clever typosquatting and dependency 
hijacking attacks.

October has been an eventful month in terms of malware being 
repeatedly discovered on npm from the legitimate “ua-parser-js” 
library being hacked to dependency hijacking proof-of-concept 
(PoC) copycats Sonatype is continuing to catch on a daily basis.

This particular discovery is a further indication that adversaries 
aren’t going to stop anytime soon. Sonatype has been tracing 
novel brandjacking, typosquatting, and cryptomining malware 
lurking in software repositories. We’ve also found critical 
vulnerabilities and next-gen supply-chain attacks, as well as 
copycat packages targeting well-known tech companies.

The good news is our automated malware detection system, 
powered by Nexus Intelligence, has caught thousands of 
suspicious packages on npm - helping keep our customers safe. 
These components are either confirmed malicious, previously 
known to be malicious, or dependency confusion copycats

Further, users of Sonatype’s Nexus Firewall are protected from 
these suspicious packages while the review is underway. Existing 
components are quarantined before they are pulled “downstream” 
into a developer’s open source build environment.

https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/pypi-and-npm-flooded-with-over-5000-dependency-confusion-copycats
https://blog.sonatype.com/open-source-attacks-on-the-rise-top-8-malicious-packages-found-in-npm
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection
https://blog.sonatype.com/netmask-flaw-leaves-millions-vulnerable-while-a-php-git-server-is-hacked-in-software-supply-chain-attack
https://blog.sonatype.com/netmask-flaw-leaves-millions-vulnerable-while-a-php-git-server-is-hacked-in-software-supply-chain-attack
https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://www.sonatype.com/products/intelligence
https://blog.sonatype.com/sonatype-releases-new-nexus-firewall-policy-to-secure-software-supply-chains-from-dependency-confusion-attacks


Sonatype’s world-class security research data, combined with 
our automated malware detection technology safeguards your 
developers, customers, and software supply chain from infections.

https://www.sonatype.com/press-release-blog/next-generation-nexus-intelligence

