
	
Microsoft	finds	new	elevation	of	privilege	
Linux	vulnerability,	Nimbuspwn	
Microsoft	365	Defender	Research	Team	

Microsoft	has	discovered	several	vulnerabilities,	collectively	referred	to	as	
Nimbuspwn,	that	could	allow	an	attacker	to	elevate	privileges	to	root	on	many	
Linux	desktop	endpoints.	The	vulnerabilities	can	be	chained	together	to	gain	
root	privileges	on	Linux	systems,	allowing	attackers	to	deploy	payloads,	like	a	
root	backdoor,	and	perform	other	malicious	actions	via	arbitrary	root	code	
execution.	Moreover,	the	Nimbuspwn	vulnerabilities	could	potentially	be	
leveraged	as	a	vector	for	root	access	by	more	sophisticated	threats,	such	as	
malware	or	ransomware,	to	achieve	greater	impact	on	vulnerable	devices.	

We	discovered	the	vulnerabilities	by	listening	to	messages	on	the	System	Bus	
while	performing	code	reviews	and	dynamic	analysis	on	services	that	run	as	
root,	noticing	an	odd	pattern	in	a	systemd	unit	called	networkd-dispatcher.	
Reviewing	the	code	flow	for	networkd-dispatcher	revealed	multiple	security	
concerns,	including	directory	traversal,	symlink	race,	and	time-of-check-time-
of-use	race	condition	issues,	which	could	be	leveraged	to	elevate	privileges	
and	deploy	malware	or	carry	out	other	malicious	activities.	We	shared	these	
vulnerabilities	with	the	relevant	maintainers	through	Coordinated	
Vulnerability	Disclosure	(CVD)	via	Microsoft	Security	Vulnerability	
Research	(MSVR).	Fixes	for	these	vulnerabilities,	now	identified	as	CVE-2022-
29799	and	CVE-2022-29800,	have	been	successfully	deployed	by	the	
maintainer	of	the	networkd-dispatcher,	Clayton	Craft.	We	wish	to	thank	
Clayton	for	his	professionalism	and	collaboration	in	resolving	those	issues.	
Users	of	networkd-dispatcher	are	encouraged	to	update	their	instances.	

As	organizational	environments	continue	to	rely	on	a	diverse	range	of	devices	
and	systems,	they	require	comprehensive	solutions	that	provide	cross-
platform	protection	and	a	holistic	view	of	their	security	posture	to	mitigate	
threats,	such	as	Nimbuspwn.	The	growing	number	of	vulnerabilities	on	Linux	
environments	emphasize	the	need	for	strong	monitoring	of	the	platform’s	
operating	system	and	its	components.	Microsoft	Defender	for	Endpoint	
enables	organizations	to	gain	this	necessary	visibility	and	detect	such	threats	
on	Linux	devices,	allowing	organizations	to	detect,	manage,	respond,	and	
remediate	vulnerabilities	and	threats	across	different	platforms,	including	
Windows,	Linux,	Mac,	iOS,	and	Android.	

In	this	blog	post,	we	will	share	some	information	about	the	affected	
components	and	examine	the	vulnerabilities	we	uncovered.	Detailing	how	our	
cross-domain	visibility	helps	us	uncover	new	and	unknown	threats	to	
continually	improve	security,	we	are	also	sharing	details	from	our	research	
with	the	larger	security	community	to	underscore	the	importance	of	securing	
platforms	and	devices.	

Background	–	D-Bus	

D-Bus	(short	for	“Desktop-Bus”)	is	an	inter-process	communication	channel	
(IPC)	mechanism	developed	by	the	freedesktop.org	project.	D-Bus	is	a	
software-bus	and	allows	processes	on	the	same	endpoint	to	communicate	by	
transmitting	messages	and	responding	to	them.	D-Bus	supports	two	main	
ways	of	communicating:	

a. Methods	–	used	for	request-response	communications.	
b. Signals	–	used	for	publish/subscribe	communications.	

An	example	of	D-Bus	usage	would	be	receiving	a	video	chat	by	a	popular	video	
conferencing	app–once	a	video	is	established,	the	video	conferencing	app	
could	send	a	D-bus	signal	publishing	that	a	call	has	started.	Apps	listening	to	
that	message	could	respond	appropriately–for	example,	mute	their	audio.	

There	are	many	D-Bus	components	shipped	by	default	on	popular	Linux	
desktop	environments.	Since	those	components	run	at	different	privileges	and	
respond	to	messages,	D-Bus	components	are	an	attractive	target	for	attackers.	
Indeed,	there	have	been	interesting	vulnerabilities	in	the	past	related	to	buggy	
D-Bus	services,	including	USBCreator	Elevation	of	Privilege,	Blueman	
Elevation	of	Privilege	by	command	injection,	and	other	similar	scenarios.	

D-Bus	exposes	a	global	System	Bus	and	a	per-session	Session	Bus.	From	an	
attacker’s	perspective,	the	System	Bus	is	more	attractive	since	it	will	
commonly	have	services	that	run	as	root	listening	to	it.	

D-Bus	name	ownership	

When	connecting	to	the	D-Bus,	components	are	assigned	with	a	unique	
identifier,	which	mitigates	against	attacks	abusing	PID-recycling.	The	unique	
identifier	starts	with	a	colon	and	has	numbers	in	it	separated	by	dots,	such	as	
“:1.337”.	Components	can	use	the	D-Bus	API	to	own	identifiable	names	such	as	
“org.freedesktop.Avahi”	or	“com.ubuntu.SystemService”.	For	D-Bus	to	allow	
such	ownership,	the	requesting	process	context	must	be	allowed	under	the	D-
Bus	configuration	files.	Those	configuration	files	are	well	documented	and	
maintained	under	/usr/local/share/dbus-

1/system.conf	and	/usr/local/share/dbus-1/session.conf	(on	some	systems	
under	/usr/local/dbus-1directly).	Specifically,	the	default	system.conf	does	not	
allow	ownership	unless	specified	otherwise	in	other	included	configuration	
files	(commonly	under	/etc/dbus-1/system.d).	

Figure 1: Different ownership policies for the System Bus and the Session Bus

Additionally,	if	the	name	requested	already	exists–the	request	will	not	be	
granted	until	the	owning	process	releases	the	name.	

Vulnerability	hunting	

Our	team	has	started	enumerating	services	that	run	as	root	and	listen	to	
messages	on	the	System	Bus,	performing	both	code	reviews	and	dynamic	
analysis.	We	have	reported	two	information	leak	issues	as	a	result:	

1. Directory	Info	Disclosure	in	Blueman	
2. Directory	Info	Disclosure	in	PackageKit	(CVE-2022-0987)	

While	these	are	interesting,	their	severity	is	low	–	an	attacker	can	list	files	
under	directories	that	require	high	permissions	to	list	files	under.	Then	we	
started	noticing	interesting	patterns	in	a	systemd	unit	called	networkd-
dispatcher.	The	goal	of	networkd-dispatcher	is	to	dispatch	network	status	
changes	and	optionally	perform	different	scripts	based	on	the	new	status.	
Interestingly,	it	runs	on	boot	as	root:	

Figure 2: networkd-dispatcher running as root
Code	flow	for	networkd-dispatcher	

Upon	examination	of	the	networkd-dispatcher	source	code,	we	noticed	an	
interesting	flow:	

1. The	register	function	registers	a	new	signal	receiver	for	the	service	
“org.freedesktop.network1”	on	the	System	Bus,	for	the	signal	name	
”PropertiesChanged”.	

2. The	”_receive_signal“	signal	handler	will	perform	some	basic	checks	on	
the	object	type	being	sent,	concludes	the	changed	network	interface	
based	on	the	object	path	being	sent,	and	then	concludes	its	new	states–

“OperationalState”	and	“AdministrativeState”–each	fetched	from	the	
data.	For	any	of	those	states–if	they	aren’t	empty–the	“handle_state”	
method	will	get	invoked.	

3. The	“handle_state”	method	simply	invokes	“_handle_one_state“	for	each	
of	those	two	states.	

4. “_handle_one_state”	validates	the	state	isn’t	empty	and	checks	if	it’s	
different	than	the	previous	state.	If	it	is,	it	will	update	the	new	state	and	
invoke	the	“_run_hooks_for_state”	method,	which	is	responsible	of	
discovering	and	running	the	scripts	for	the	new	state.	

5. “_run_hooks_for_state”	implements	the	following	logic:	
o Discovers	the	script	list	by	invoking	the	“get_script_list”	method	

(which	gets	the	new	state	as	a	string).	This	method	simply	calls	
“scripts_in_path”	which	is	intended	to	return	all	the	files	under	
“/etc/networkd-dispatcher/<state>.d”	that	are	owned	by	the	root	
user	and	the	root	group,	and	are	executable.	

o Sorts	the	script	list.	
o Runs	each	script	with	subprocess.Popen	while	supplying	custom	

environment	variables.	

Figure 3: _run_hooks_for_state source code – some parts omitted for brevity

Step	5	has	multiple	security	issues:	

1. Directory	traversal	(CVE-2022-29799):	none	of	the	functions	in	the	flow	
sanitize	the	OperationalState	or	the	AdministrativeState.	Since	the	states	
are	used	to	build	the	script	path,	it	is	possible	that	a	state	would	contain	
directory	traversal	patterns	(e.g.	“../../”)	to	escape	from	the	
“/etc/networkd-dispatcher”	base	directory.	

2. Symlink	race:	both	the	script	discovery	and	subprocess.Popen	follow	
symbolic	links.	

3. Time-of-check-time-of-use	(TOCTOU)	race	condition	(CVE-2022-29800):	
there	is	a	certain	time	between	the	scripts	being	discovered	and	them	
being	run.	An	attacker	can	abuse	this	vulnerability	to	replace	scripts	
that	networkd-dispatcher	believes	to	be	owned	by	root	to	ones	that	are	
not.	

Figure 4: Building the script list in the “scripts_in_path” method, including the vulnerable
code with “subdir” poisoned.

Exploitation	

Let	us	assume	an	adversary	has	a	malicious	D-Bus	component	that	can	send	an	
arbitrary	signal.	An	attacker	can	therefore	do	the	following:	

1. Prepare	a	directory	”/tmp/nimbuspwn”	and	plant	a	symlink	
”/tmp/nimbuspwn/poc.d“	to	point	to	“/sbin”.	The	“/sbin”	directory	was	
chosen	specifically	because	it	has	many	executables	owned	by	root	that	
do	not	block	if	run	without	additional	arguments.	This	will	abuse	
the	symlink	race	issue	we	mentioned	earlier.	

2. For	every	executable	filename	under	“/sbin”	owned	by	root,	plant	the	
same	filename	under	“/tmp/nimbuspwn”.	For	example,	if	“/sbin/vgs”	is	
executable	and	owned	by	root,	plant	an	executable	file	
“/tmp/nimbuspwn/vgs”	with	the	desired	payload.	This	will	help	the	
attacker	win	the	race	condition	imposed	by	the	TOCTOU	vulnerability.	

3. Send	a	signal	with	the	OperationalState	“../../../tmp/nimbuspwn/poc”.	
This	abuses	the	directory	traversal	vulnerability	and	escapes	the	script	
directory.	

4. The	networkd-dispatcher	signal	handler	kicks	in	and	builds	the	script	
list	from	the	directory	“/etc/networkd-
dispatcher/../../../tmp/nimbuspwn/poc.d”,	which	is	really	the	symlink	
(“/tmp/nimbuspwn/poc.d”),	which	points	to	“/sbin”.	Therefore,	it	creates	
a	list	composed	of	many	executables	owned	by	root.	

5. Quickly	change	the	symlink	“/tmp/nimbuspwn/poc.d”	to	point	to	
“/tmp/nimbuspwn”.	This	abuses	the	TOCTOU	race	
condition	vulnerability–the	script	path	changes	without	networkd-
dispatcher	being	aware.	

6. The	dispatcher	starts	running	files	that	were	initially	under	“/sbin”	but	
in	truth	under	the	“/tmp/nimbuspwn”	directory.	Since	the	dispatcher	
“believes”	those	files	are	owned	by	root,	it	executes	them	blindly	with	
subprocess.Popen	as	root.	Therefore,	our	attacker	has	successfully	
exploited	the	vulnerability.	

Note	that	to	win	the	TOCTOU	race	condition	with	high	probability,	we	plant	
many	files	that	can	potentially	run.	Our	experiments	show	three	attempts	
were	enough	to	win	the	TOCTOU	race	condition.	

Figure 5: Flow-chart of the attack in three stages

Since	we	do	not	wish	to	run	the	exploit	every	time	we	want	to	run	as	root,	the	
payload	that	we	ended	up	implementing	leaves	a	root	backdoor	as	such:	

1. Copies	/bin/sh	to	/tmp/sh.	
2. Turns	the	new	/tmp/sh	it	into	a	Set-UID	(SUID)	binary.	

3. Run	/tmp/sh	-p.	The	“-p”	flag	is	necessary	since	modern	shells	drop	
privileges	by	design.	

Owning	the	bus	name	

The	astute	reader	will	notice	that	the	entire	exploit	elevates	privileges	
assuming	our	exploit	code	can	own	the	“org.freedesktop.network1”	bus	name.	
While	this	sounds	non-trivial,	we	have	found	several	environments	where	this	
happens.	Specifically:	

1. On	many	environments	(e.g.	Linux	Mint)	the	service	systemd-
networkd	that	normally	owns	the	“org.freedesktop.network1”	bus	name	
does	not	start	at	boot	by	default.	

2. Using	advanced	hunting	in	Microsoft	Defender	for	Endpoint	we	were	
able	to	spot	several	processes	running	as	the	systemd-network	user	
(which	is	permitted	to	own	the	bus	name	we	require)	running	arbitrary	
code	from	world-writable	locations.	These	include	several	gpgv	plugins	
(launched	when	apt-get	installs	or	upgrades)	as	well	as	the	Erlang	Port	
Mapper	Daemon	(epmd)	which	allows	running	arbitrary	code	under	
some	scenarios.	

The	query	we	used	can	also	be	run	by	Microsoft	Defender	for	Endpoint	
customers:	

DeviceProcessEvents
| where Timestamp > ago(5d)
 and AccountName == "systemd-network"
 and isnotempty(InitiatingProcessAccountName)
 and isnotempty(FileName)
| project DeviceId, FileName, FolderPath, ProcessCommandLine

We	were	therefore	able	to	exploit	these	scenarios	and	implement	our	own	
exploit:	

Figure 6: Our exploit implemented and winning the TOCTOU race

While	capable	of	running	any	arbitrary	script	as	root,	our	exploit	
copies	/bin/sh	to	the	/tmp	directory,	sets	/tmp/sh	as	a	Set-UID	(SUID)	
executable,	and	then	invokes	“/tmp/sh	-p”.	Note	that	the	“-p”	flag	is	necessary	
to	force	the	shell	to	not	drop	privileges.	

Hardening	device	security	and	detection	strategy	

Despite	the	evolving	threat	landscape	regularly	delivering	new	threats,	
techniques,	and	attack	capabilities,	adversaries	continue	to	focus	on	
identifying	and	taking	advantage	of	unpatched	vulnerabilities	and	
misconfigurations	as	a	vector	to	access	systems,	networks,	and	sensitive	
information	for	malicious	purposes.	This	constant	bombardment	of	attacks	
spanning	a	wide	range	of	platforms,	devices,	and	other	domains	emphasizes	
the	need	for	a	comprehensive	and	proactive	vulnerability	management	
approach	that	can	further	identify	and	mitigate	even	previously	unknown	
exploits	and	issues.	

Microsoft’s	threat	and	vulnerability	management	capabilities	help	
organizations	monitor	their	overall	security	posture,	providing	real-time	
insights	into	risk	with	continuous	vulnerability	discovery,	contextualized	
intelligent	prioritization,	and	seamless	one-click	flaw	remediation.	Leveraging	

our	research	into	the	Nimbuspwn	vulnerabilities	to	improve	solutions,	our	
threat	and	vulnerability	management	already	covers	CVE-2022-29799	and	
CVE-2022-29800	and	indicates	such	vulnerable	devices	in	the	threat	and	
vulnerability	module	in	Microsoft	Defender	for	Endpoint.	

To	address	the	specific	vulnerabilities	at	play,	Microsoft	Defender	for	
Endpoint’s	endpoint	detection	and	response	(EDR)	capabilities	detect	the	
directory	traversal	attack	required	to	leverage	Nimbuspwn.	Additionally,	the	
Microsoft	Defender	for	Endpoint	detection	team	has	a	generic	detection	for	
suspicious	Set-UID	process	invocations,	which	detected	our	exploit	without	
prior	knowledge.	

Figure 7: Microsoft Defender for Endpoint detecting a suspicious SUID process used in our
exploit

Defending	against	the	evolving	threat	landscape	requires	the	ability	to	protect	
and	secure	users’	computing	experiences,	be	it	a	Windows	or	non-Windows	
device.	Microsoft	continuously	enriches	our	protection	technologies	through	
robust	research	that	protects	users	and	organizations	across	all	the	major	
platforms	every	single	day.	This	case	displayed	how	the	ability	to	coordinate	
such	research	via	expert,	cross-industry	collaboration	is	vital	to	effectively	
mitigate	issues,	regardless	of	the	vulnerable	device	or	platform	in	use.	By	
sharing	our	research	and	other	forms	of	threat	intelligence,	we	can	continue	to	
collaborate	with	the	larger	security	community	and	strive	to	build	better	
protection	for	all.	

Jonathan	Bar	Or	

Microsoft	365	Defender	Research	Team	

