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ABSTRACT
The contact-free sensing nature of Wi-Fi has been leveraged to
achieve privacy breaches, yet existing attacks relying on Wi-Fi
CSI (channel state information) demand hacking Wi-Fi hardware to
obtain desired CSIs. Since such hacking has proven prohibitively
hard due to compact hardware, its feasibility in keeping up with
fast-developing Wi-Fi technology becomes very questionable. To
this end, we propose WiKI-Eve to eavesdrop keystrokes on smart-
phones without the need for hacking. WiKI-Eve exploits a new
feature, BFI (beamforming feedback information), offered by latest
Wi-Fi hardware: since BFI is transmitted from a smartphone to
an AP in clear-text, it can be overheard (hence eavesdropped) by
any other Wi-Fi devices switching to monitor mode. As existing
keystroke inference methods offer very limited generalizability,
WiKI-Eve further innovates in an adversarial learning scheme to
enable its inference generalizable towards unseen scenarios. We
implement WiKI-Eve and conduct extensive evaluation on it; the
results demonstrate that WiKI-Eve achieves 88.9% inference accu-
racy for individual keystrokes and up to 65.8% top-10 accuracy for
stealing passwords of mobile applications (e.g., WeChat).
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1 INTRODUCTION
Mobile devices (e.g., smartphones and tablets), along with their soft-
ware applications, have been increasingly adopted to identify hu-
man users in modern societies [5, 17]. Consequently, stealing pass-
words from these devices becomes almost like identify theft, hence
attracting diversified eavesdropping attacks, either direct [42, 70]
or indirect [2, 36, 37, 43, 53, 69, 73]. Bearing no need to have a vi-
sual on the target screen, the indirect attacks often incur a much
higher risk as they leverage side-channels to infer passwords in a
stealthy manner. Typical side-channels considered by prior works
include acoustic [36, 73], electromagnetic emission [31], indirect
vision [11, 53, 57, 69], and motion sensors [9, 37, 43]. Though they
have demonstrated successes for particular scenarios, these suc-
cesses often rely on strong assumptions [34], including i) eavesdrop-
ping devices are in proximity to the victim device (e.g., in centimeter
scale or within line-of-sight region) [11, 31, 36, 37, 43, 53], ii) rogue
software have been implanted to the victim device [9, 37, 73], and
iii) the content to eavesdrop has linguistic structure [2, 37, 43, 69].

Among all side-channels, Wi-Fi CSI (channel state information)
stands out as it appears to be void of all aforementioned weak-
nesses [34, 67]. Essentially, since keystrokes affect wireless chan-
nels as shown in Figure 1, the “twisted” CSIs can be used to infer
individual keys involved in typing a password. The practical sig-
nificance of this type of attack is also backed by the wide adoption
of Wi-Fi infrastructure and extensive reach of Wi-Fi signals (thus
CSIs). Nonetheless, this seemingly plausible attack actually bears
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Figure 1: Vision of WiKI-Eve: eavesdropping clear-text BFI
(representing downlink channel states) transmitted to the
AP, Eve can readily infer the Bob’s password typing that
physically “hits” the Wi-Fi channel.

one fatal issue: though CSI was hacked1 fromWi-Fi hardware more
than a decade ago [25], only a handful of such hardware have been
hacked by far while Wi-Fi standards/technologies are constantly
getting upgraded every two or three years.2 Therefore, it is highly
questionable if CSI-based side-channel attacks are able to keep up
with the technology developments, hence our passwords appear to
remain secure.

Unfortunately, technology developments of Wi-Fi also intro-
duce new vulnerability, as new Wi-Fi hardware (starting from Wi-
Fi 5 [21]) piggybacks BFI (beamforming feedback information), a
compressed digital version of analog CSI, in clear-text onto control
frames. Basically, BFIs are used to feed downlink channel states
back to an access point (AP), for the sake of guiding AP beamform-
ing [1]. Though they only account for part of the downlink CSIs
concerning the AP side, the fact that on-screen typing directly im-
pacts the Wi-Fi antennas (hence channels) right behind the screen
(see Figure 1) allows BFIs to contain sufficient information about
keystrokes. Consequently, any device capable of overhearing Wi-Fi
traffic (under the monitor mode [8]) may obtain BFIs for free. As
shown in Figure 1, our proposal aims to take advantage of this new
vulnerability, in order to achieve keystroke eavesdropping without
the need for hacking the constantly evolving Wi-Fi hardware.

However, we still face two challenges for realizing this idea.
On one hand, passwords lack linguistic structure in natural lan-
guages (e.g., word structure and occurrence frequency of letters)
to serve as prior information and features; this has forced existing
password inference methods to either rely on independent key-
stroke features [34] or leverage transition features between two
keystrokes [67]. Nonetheless, as these features have strong envi-
ronment dependency, the resulting inference methods can hardly
be generalized to unseen scenarios. Although supervised learn-
ing techniques may address this issue with a dataset containing
sufficient training data, gathering such a labeled dataset can be
prohibitively difficult due to diversified smartphone models and
human typing habits. On the other hand, BFIs, carried by control
traffic, can be sparse and sporadic. This relatively minor issue, if

1Instead of high-level software hacking, here we refer to a low-level hacking, including
firmware patching [52] and driver modification [30], on Wi-Fi hardware.
2As a matter of fact, most research proposals driven by Wi-Fi CSIs are still leveraging
the 15-year-old Wi-Fi 4 hardware [15].

not properly addressed, may exacerbate the data deficit challenge
for training a password inference model.

To tackle these challenges, we propose WiKI-Eve to steal nu-
merical passwords by eavesdropping on keystroke-induced BFI
variations. Thanks to BFI’s clear-text nature, no low-level hacking
is needed on Wi-Fi hardware. Given the lack of linguistic structure
in passwords, we follow the canonical way of identifying individual
keystrokes, but we leverage a deep learning model with a natural
segmentation as input to get rid of the artifacts introduced by rule-
based segmentation and environment interference. We exploit ad-
versarial learning [22] to extract features relevant only to individual
keystrokes; such a cross-domain training is capable of generalizing
keystroke inference to unseen scenarios with limited amount of
training data, makingWiKI-Eve achieve practical inference without
having to gather a prohibitively large dataset. Furthermore, we de-
sign a sparse recovery algorithm to address the data deficiency issue
for training the keystroke inference model. Finally, we implement a
prototype of WiKI-Eve using a laptop or a rooted smartphone, and
conduct extensive experiments on it to evaluate the performance
of WiKI-Eve. In summary, our main contributions are:

• We propose WiKI-Eve as the first WiFi-based hack-free key-
stroke eavesdropping system; leveraging the clear-text BFI,
it allows a wide range of Wi-Fi devices to eavesdrop on
confidential passwords at ease.

• We innovate in leveraging adversarial learning to remove
environment dependencies, rendering WiKI-Eve’s inference
model generalizable to unseen scenarios.

• We design a sparse recovery algorithm to address the sparsity
issue of BFI, handling the data deficiency issue for training
the keystroke inference model.

• We conduct extensive evaluations; the results indicate that
WiKI-Eve achieves 88.9% accuracy for identifying single nu-
merical keys, and a top-100 accuracy of 85.0% for inferring a
6-digit numerical password.

The paper is structured as follows. Section 2 introduces the back-
ground and motivation of our work. Section 3 presents the attack
design of WiKI-Eve in detail. Sections 4 and 5 respectively explain
WiKI-Eve’s implementation and report the extensive evaluations on
WiKI-Eve, followed by a discussion on extension from numerical to
general keystroke inference. In Section 6, we study the impact of dif-
ferent background traffic on BFI/CSI data flow and discuss defense
strategies against WiKI-Eve. Related works are briefly captured in
Section 7. Finally, we conclude our paper in Section 8.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce our keystroke inference (KI) attack
scenario, contrasting it to those considered by existing Wi-Fi CSI-
based proposals. Then we demonstrate the advantages of BFI over
CSI for realizing the keystroke eavesdropping.

2.1 Attack Scenarios and Methods
We consider a scenario where a victim, Bob, uses his mobile device
(smartphone or tablet) to connect to a Wi-Fi access point (AP) with
a shared password or even no password protection; this is a rea-
sonable assumption in public places such as shopping malls, office
buildings, airports, and restaurants, because such a Wi-Fi access
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Figure 2: CSI-based keystroke inference (KI) methods.

is often provided for the convenience to customers or visitors. Af-
ter connecting to the AP for accessing the Internet, Bob happens
to have the need to access a sensitive account (e.g., online pay-
ment) protected by a password, which makes him a target of attack
launched by Eve (see Figure 1). We follow the convention [34, 67]
to mainly focus on numerical passwords, but we also consider an
extension to general KI in Section 5.4.2. From here on, our method
diverges from existing ones that either demand a rogue AP to trick
Bob into using its service [19, 34], or require setting up extra Wi-Fi
communication links to “sense” Bob’s typing [2, 67].

Essentially, WiKI-Eve’s attack method allows Eve to launch an
attack on Bob regardless of which AP Bob is connected to. It lever-
ages only a laptop equipped with a network interface card (NIC);
in fact, WiKI-Eve may even use a mobile device, as far as its Wi-Fi
NIC can be switched to the monitor mode [8]. We term our method
o-IKI (overhearing in-band keystroke inference), named after the IKI
method proposed by Li et al. [34] where the Wi-Fi link (actually its
CSI) between Bob and the AP is exploited for password-stealing, as
shown in Figure 2(a). However, WiKI-Eve innovates in getting rid
of the need for hacking a Wi-Fi NIC and tricking Bob to use it as
an AP. This improvement of o-IKI over IKI is significant because,
while the feasibility of hacking the continuous evolving Wi-Fi NICs
is questionable (see Section 1), effectively deploying rogue AP has
been made extremely challenging due to the increasing alerts raised
by individuals and companies on such attacks [7, 13, 61].

Anothermethod known as out-of-band keystroke inference (OKI) [2,
67], shown in Figure 2(b), requires Eve to create a separate channel
irrelevant to Bob, using Eve’s Wi-Fi NIC and another device (e.g.,
an AP). Eve then infers Bob’s keystrokes by observing the CSIs
of this channel. Compared with OKI relying on analog CSIs, the
digital nature of o-IKI eavesdropping BFI leads to a significantly
larger sensing range, while the in-band sensing for KI ensures a
sufficiently high signal-to-noise ratio (SNR). Unlike IKI having Eve
directly observing data traffic via its rogue AP [34], both o-IKI and
OKI require Eve to be able to identify Bob’s device: whereas this
has proven very difficult to achieve under realistic scenarios for
OKI’s analog CSI sensing (given the low spatial resolution of Wi-Fi
sensing [27, 71]), we shall demonstrate in Section 3.1 that there
exists a natural solution for o-IKI’s digital BFI eavesdropping.

2.2 Why BFI instead of CSI?
BFI actually offers other advantages over CSI in terms of KI attack,
apart from its easy acquirement explained earlier. To be specific,
BFI behaves less sensitive to channel variation than CSI, rendering
the sensing outcome more stable especially upon IKI’s close impact
(from on-screen keystrokes) on Wi-Fi channels. This stability stems
from the way BFI is generated. Given the downlink CSI represented
as 𝐻 = 𝑌/𝑋 , where 𝑋 and 𝑌 respectively denote the transmitted
(Tx) and received (Rx) signals [34], BFI is generated by partitioning
𝐻 (hence the channels it represents) into separated Tx and Rx
components; only the Tx component is fed back to the AP for
guiding AP beamforming [1]. Thanks to this “channel splitting”, BFI
becomes less susceptible to channel variations caused by IKI’s on-
screen keystrokes, which otherwise leads to significant ambiguities
in CSI-enabled KI.

To showcase the superiority of BFI over CSI in KI, we conduct a
series of experiments, leveraging iPerf [59] to generate saturated
traffic and collecting only raw BFI and CSI samples; this temporarily
neglects the sample sparsity issue to be elaborated in Section 3.4.
In particular, Figure 3(a) and Figure 3(b) respectively depict the BFI
time series and spectrograms for clicking numerical keys ‘1’ and ‘5’

(a) Time series of the same keys.
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(h) Spectrogram of different keys.

Figure 3: BFI-KI (a)-(d) vs. CSI-KI (e)-(h): whereas BFIs exhibit both consistency for the same key and distinction for different
keys, CSI’s irregular patterns may cause ambiguities for keystroke inference.
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(a) BFI-KI. (b) CSI-KI.

Figure 4: Confusionmatrices for BFI- vs. CSI-based keystroke
inference, demonstrating the superiority of BFI over CSI in
completing this task.

four times. One may readily observe that the BFI patterns remain
consistent for clicking the same keys at different times, while the
distinctions between two keys are also pronounced. Additionally,
Figure 3(c) and Figure 3(d), presenting BFI time series and spectro-
grams for clicking four different keys, again confirm the remarkable
distinctions across these keys. In short, BFI is well-suited for KI
with minimal preprocessing.

As a comparison, Figures 3(e) and 3(f), with the same contents
as those for Figures 3(a) and Figures 3(b) but for CSIs collected
simultaneously with the aforementioned BFIs, fail to indicate either
remarkable consistence for the same key or pronounced distinc-
tions between two different keys. Meanwhile, the four-key tests
shown in Figures 3(g) and 3(h) also suggest the need for some heavy
denoising before using CSIs for KI, as the distinctions between cer-
tain keys (e.g., ‘4’ and ‘6’) appear to be overwhelmed by noises.
We suspect that such noises cannot be easily eliminated using con-
ventional signal processing techniques, since their wide spectrum
may confuse themselves with CSI features, as confirmed by the
following KI test with denoised CSI and raw BFI.

We collect both BFI and CSI samples from 20 subjects typing
numerical keys ‘0’ to ‘9’. The same denoising technique in [34] is
applied to the CSI samples, while the BFI samples are kept raw.
We then use a one-dimensional convolutional neural network (1-D
CNN) [33] to perform classification for the sake of KI and evaluate
the KI accuracy by cross-validation. Figures 4(a) and 4(b) present the
confusion matrices for BFI- and CSI-based KIs, respectively; these
results evidently demonstrate that BFI achieves higher accuracy
for individual keys, as indicated by the diagonal of the confusion
matrix. Overall, the average accuracy achieved by BFI is 78.9%,
notably higher than 64.5% achieved by CSI, confirming the benefit
of BFI’s stability over even denoised CSI in terms of realizing KI.

3 THE DESIGN OF WIKI-EVE
In this section, we introduce the attack strategy of WiKI-Eve. As
shown in Figure 5, the whole workflow consists of five steps: i)
identifying the victim, ii) determining the attack time when the
victim accesses the targeted application service, iii) capturing the
victim-associated BFI time series, iv) parsing and restoring the (pos-
sibly) sparse BFI series, and finally v) segmenting the BFI series and
performing KI to recover the intended password. Key contributions
in iv) and v) are respectively presented in Sections 3.4 and 3.3.

3.1 Victim Identification and Attack Timing
Following an implicit assumption of [34], we also allow Eve to have
prior knowledge of Bob’s device identity (e.g., MAC address). In

Keystroke
 classification

Signal Pre-processing

BFI Stream 
Restoration

Keystroke Inference

Password 
Recovery

“123456”

Attack Timing

Signal 
segmentation

1D-CNN

Victim 
Confirmed IP Address Matching

192.168.XXX.XX1

MAC address
“00:XX...XX:C6”

192.168.XXX.XX2

Adversarial learning

‘1’,‘2’,‘3’…‘9’?

Figure 5: The workflow of WiKI-Eve’s attack strategy.

reality, Eve can acquire this information beforehand by conducting
visual and traffic monitoring concurrently: correlating network
traffic originating from various MAC addresses with users’ behav-
iors should allow Eve to link Bob’s physical device to his digital
traffic, thereby identifying Bob’s MAC address. It is worth noting
that victim identification is only possible through IKI, since the
analog nature of OKI [2, 67] forbids the use of header information
to differentiate multiple subjects.

Once locked onto Bob’sMAC address, Evewaits for the right time
(when Bob is about to enter his password) to launch attack. This
timing issue can be readily addressed if visual hints are presented
(e.g., Bob scan the WeChat Pay QR code or Bob’s screen shows the
payment page); otherwise, Eve can inspect the requests made to a
payment service. Consider the case of WeChat [62], though most
of its traffic is secured via application-layer encryption [65], IP
addresses are not encrypted for the public Wi-Fi networks targeted
by WiKI-Eve. To exploit this vulnerability, Eve creates a database of
IP addresses associated with the payment service: though such IP
addresses can be dynamic, our experiments reveal that users from
the same region are directed to the same IP address within a certain
period. Subsequently, upon detecting an IP address recorded in the
database, the attack can be launched; the recording of BFI series
will be stopped once no more requests to the IP can be observed.

3.2 BFI Analysis and Parsing
We hereby provide more details on how password typing can man-
ifest in BFI to facilitate later developments, by first explaining how
BFI is generated. As explained in Section 2.2, BFI is the Tx com-
ponent of CSI 𝐻 and is fed back to guide AP beamforming. This
is accomplished by SVD (singular value decomposition) [56] that
decomposes the channel as 𝐻 = 𝑈𝑆𝑉 . Among these components,
only the right matrix 𝑉 is chosen as BFI, while the other two ma-
trices 𝑈 and 𝑆 (representing Rx beamforming and channel gains,
respectively) are not. As illustrated in Figure 6, Bob’s password
typing affects the diffraction pattern of the Wi-Fi signals around

Rx antenna in 
smartphone

AP
Tx!Tx"

SmartphoneFinger movement

Figure 6: Finger movements cause diffraction on the down-
link path, which is manifested in BFI variations.
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the phone body. This altered pattern is then reflected in downlink
CSI that is in turn decomposed with SVD to obtain BFI 𝑉 .

As BFI is transmitted in clear text, Eve can easily intercept it
using a Wi-Fi device in monitor mode, along with Wireshark [47].
The frame structure of 802.11ac can be followed to locate BFI in the
“VHT beamforming report” field within theWi-Fi Action frames [1].
To completely extract BFI, the length of the field can be calculated
based on the number of Tx and Rx antennas, as outlined in [21].
By continuously recording the BFIs in the Wi-Fi frames from Bob
during the time window of Bob’s password typing, Eve can obtain a
time series of BFI samples correlated with the password. If the BFI
time series is too sparse due to a low control frame rate during the
time window, WiKI-Eve tries to restore it. To remain focused on
the key component, we first explain the KI function in Section 3.3,
and postpone the discussion on BFI restoration to Section 3.4.

3.3 Keystroke Inference
In this section, we elaborate on how WiKI-Eve conducts BFI-KI.
We first discuss the drawbacks of previous proposals and explain
possible improvements upon them. After that, we specify the signal
segmentation on BFI series to kick off KI, which is then followed
by the design of the KI neural model and its adversarial learning
framework to generalize KI towards unseen scenarios.
3.3.1 What’s Wrong with Prior Art? Only two major contributions
exist for leveraging Wi-Fi side-channels to steal passwords. The
seminal proposal of WindTalker [34] performs classification upon
individual keystrokes with rule-based CSI series segmentation. In-
tuitively, such segmentation should not perform well because it can
result in information loss or introduce artifacts. To confirm this sus-
picion, we ask two subjects to type passwords on their respective
smartphones, and Figure 7(a) shows their corresponding CSI series.
Apparently, the duration of the keystrokes and the amount of over-
lap between them vary significantly due to the subjects’ distinct
typing habits. While rule-based segmentation may be effective for
Subject A who types more steadily, it most likely fails for Subject B
whose inter-keystroke patterns appear rather messy. In attempting
to forcibly assign different sections of the BFI series to individual
keys, the segmentation process introduces artifacts (e.g., clipping)
to each keystroke, potentially harming the KI performance.

A recent proposal WINK [67] claims to improve the KI per-
formance via series learning. However, it inherits the rule-based
segmentation adopted by [34] and hence the same weakness too.
Additionally, as linguistic structure cannot be exploited for series
learning, WINK argues that transition features between keystrokes
may serve as replacements for improving KI accuracy. Unfortu-
nately, factors such as typing habits and smartphone types can
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(a) Segmentation ambiguity.
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Figure 7: Two cases where previous methods fail.
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Figure 8: Signal segmentation with overlaps.

affect CSI during the transition period, resulting in different fea-
tures for the same password. To illustrate this, we ask two subjects
to type two keys ‘1’ and then ‘9’ on their phones, and Figure 7(b)
shows significant morphological and temporal differences in these
two transitions. Therefore, it is very questionable if transition fea-
tures can ever replace linguistic structure.

To overcome the disadvantages in previous proposals, the rule-
based segmentation needs to be replaced with a more sensible
method, preferably a data-driven one. Also, as using transition
features to replace linguistic structure cannot be reliable, WiKI-
Eve falls back to the canonical approach of inferring individual
keystrokes as executed by WindTalker. To prevent information
loss in segmentation, WiKI-Eve deems the environment-dependent
transition periods as different “domains” of the same numerical
keystroke. Consequently, an adversarial learning is exploited to
train the KI model, aiming to remove domain interference (i.e., envi-
ronment dependency) and hence generalize KI to unseen scenarios.
Note that the data-driven nature of WiKI-Eve also prevents it from
taking a series learning perspective, as it would otherwise demand a
prohibitively large training dataset whose size grows exponentially
with the password length.

3.3.2 Signal Segmentation. In reality, BFI series may not show
distinct boundaries between consecutive keystrokes, significantly
complicating signal segmentation. Figure 8 provides an example
for such a case, where the BFI series displays prominent peaks
corresponding to Bob’s finger hitting the screen, as well as fluctu-
ations between two peaks representing the transition movement
of his fingers. Since the transitions carry information about both
the preceding and succeeding keystrokes, segments of neighboring
keystrokes should contain the transition. Therefore, we propose
to employ an overlapping segmentation method that incorporates
all data samples located between two consecutive peaks, from the
preceding to the succeeding peaks, instead of the non-overlapping
segmentation achieved by windows of rule-defined sizes [34, 67].

Our segmentationmethod starts with utilizing the Constant False
Alarm Rate (CFAR) algorithm [45] to identify peaks in a BFI series.
Suppose Bob typing a 𝐾-digit numerical password to produce a
BFI series after sparse recovery (will be discussed in Section 3.4)
of length 𝐿, the CFAR algorithm conducts statistical analysis on
the series to determine an adaptive threshold and selects the peaks
exceeding this threshold as candidates. Among these candidate
peaks, we further eliminate minor ones within a distance of𝑊
sampling points from a major peak. We then select the top-𝐾 peaks
corresponding to the 𝐾 numbers in the password, assisted by an
inter-peak distance of𝑊 sampling points, where𝑊 = 𝛼 × 𝐿

𝐾
. For

each peak, we include all the data samples between itself and its
two neighboring peaks into the segment corresponding to a single
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keystroke; since the first and last numbers in the password have no
preceding and succeeding numbers, we choose to extend 𝑁 points
before and after as the segment boundaries, where 𝑁 = 𝛽 × 𝐿

𝐾
.

We shall empirically determine the values of 𝛼 and 𝛽 in Section 4.
As demonstrated in Figure 8, this approach effectively partitions a
BFI series (for password “175249”) into segments corresponding to
individual keystrokes, while preserving the feature-rich transitions
between keystrokes caused by finger movements.

3.3.3 Adversarial Learning Framework. This section explains how
adversarial learning is employed to generalize KI to unseen domains.
Prior to that, we briefly describe the basic design of KI network.
The classification of time series is a well-established task that can
be effectively addressed using a 1-D CNN. However, as discussed
in Section 3.3.2, the BFI segments may differ in length, posing
a challenge to conventional 1-D CNNs. To overcome this issue,
we employ an adaptive average pooling layer [26] to enhance the
flexibility of 1-D CNNs. To be specific, this layer automatically
calculates the appropriate kernel size required to yield a fixed-
size output feature map, thus enabling 1-D CNNs to accommodate
inputs of varying lengths.

In fact, the direct deep learning approach mentioned above over-
looks the impact of the domain on each keystroke. Here domain
refers to the context arising from the diversified transitions from
the preceding and to the succeeding keystrokes; it includes the dis-
tinctions caused by, for example, typing speed, inter-typing irregu-
larities, and the adjacent keystrokes. To illustrate this, we consider
the numerical key ‘1’ in three different domains: ‘5-1-3’, ‘6-1-8’,
and ‘4-1-2’, and present their segments and corresponding feature
maps in Figure 9. Although the segments of key ‘1’ under different
domains, in Figure 9(a), exhibit a high degree of similarity near the
peak, the ‘1’ in ‘6-1-8’ displays drastic fluctuations during transi-
tions between neighboring keystrokes, while those in ‘5-1-3’ and
‘4-1-2’ have rather smooth transitions. Such differences can be at-
tributed to larger channel variations induced by finger movements
over greater distances between the keys in ‘6-1-8 ’. Additionally,
we show the feature heatmaps for different ‘1’s after the adaptive
average pooling layer in Figure 9(b): the same key ‘1’ in differ-
ent domains exhibit distinct feature maps, thus posing significant
challenges to the subsequent keystroke classifier.

The aforementioned domain interference entails the need for a
method ensuring KI’s invariance to such interference, so we employ
the idea of domain adaptation [6] to learn keystroke representations
invariant across different domains. Given the complexity of BFI
segment features due to the diversity of inter-keystroke transition
patterns, employing an explicit feature space transformation as
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Figure 9: Difference in BFI segments and features maps of
key ‘1’ indicates the domain dependency of KI.
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Figure 10: The training strategy enabled by adversarial learn-
ing removes domain-specific information.

in [48] could be challenging. Instead, WiKI-Eve aims to achieve a
consistent feature space representation in different domains, by har-
nessing the power of adversarial learning [22] to integrate domain
adaptation with KI in a unified training process. To incorporate
adversarial learning, we revamp the training strategy of 1-D CNN
as illustrated in Figure 10, whose training and inference processes
are introduced as follows.

During the training phase, we first prepare a dataset consisting
of randomly paired BFI segments corresponding to the same key
(e.g., ‘1’) but under different domains, e.g., two ‘6-1-8’ from different
passwords or a pair of ‘4-1-2’ and ‘5-1-3’. We concatenate the pair
as input 𝒙 and process them through the feature extractor 𝐺f . The
resulting features are then fed into both the keystroke classifier
𝐺c and domain discriminator 𝐺d: 𝐺c infers the key 𝑦 shared by
both segments within the pair, and 𝐺d predicts the domain dis-
crepancy Δ ∈ {0, 1}, with 0 and 1 denoting the keys from the two
segments are and are not from the same domain, respectively. While
𝐺d aims to improve the accuracy of predicting Δ, the adversarial
learning strategy “cheats” 𝐺d by inverting its loss via reversing
the gradient during backpropagation using the Gradient Reversal
Layer (GRL) [20]; this procedure tends to suppress domain-specific
features from the output of 𝐺f and thus allows the 1-D CNN to
learn keystroke representations invariant across domains. Denoting
the parameters of 𝐺f , 𝐺c, and 𝐺d as 𝜃f , 𝜃c, and 𝜃d, respectively, the
above training procedure can be formulated as:

(𝜃f , 𝜃c) = argmin𝜃f ,𝜃cL(𝑦,Δ, 𝒙), 𝜃d = argmax𝜃dL(𝑦,Δ, 𝒙),
where L(𝑦,Δ, 𝒙) = Lc (𝑦,𝐺c (𝐺f (𝒙))) − 𝜆Ld (Δ,𝐺d (𝐺f (𝒙)), Lc
and Ld are respectively the cross-entropy losses for𝐺c and𝐺d, and
𝜆, a balance factor controlling the trade-off between Lc and Ld,
should have its value empirically determined in Section 4. 𝐺d is
discarded during the inference phase, and the input of segment pair
𝒙 is emulated by replicating the original BFI segment.

3.4 Recovering Sparse BFI Time Series
Another potential challenge to WiKI-Eve is traffic sparsity under
extreme background traffic conditions: the BFI series may hence
become temporally sparse, containing discontinuous samples that
negatively impact the KI. To study how sparse traffic affects key-
stroke missed and classification accuracy, we use iPerf [59] to gen-
erate data traffics constantly exchanged between the device and AP.
We define five different traffic ratios as 100% (saturated), 80%, 60%,
40%, and 20%. Given a certain ratio, the traffic generation follows
a Poisson process [32]. Take the 6-digit password as an example,
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Figure 11: Keystroke missing and affected classification ac-
curacy under different traffic rates.

one may observe that the number of keystrokes missed almost
increases linearly with sparsity as shown in Figure 11(a). When
the traffic ratio is 20%, up to 2 keystrokes can be missed. Even for
those keystrokes not missed, as shown in Figure 11(b), the accuracy
of classifying a single digit decreases from 80% to less than 20%
when the traffic ratio decreases to 20%. In Section 6.1, we study the
impact of five different real-life background traffic on BFI sparsity.
Unlike the emulated results in Figure 11(a), real-life background
traffic appears to be more benign so that we barely observe severe
sparsity causing missed keystrokes.

To this end, we propose SRA (sparse recovery algorithm) for
WiKI-Eve; it is invoked only if no keystroke is missing. Specifically,
we use a sliding window of length Δ𝑡 = 1s to check whether suf-
ficient samples are included; if there is a continuous 50% period
without BFI within the sliding window, the attack fails; otherwise,
the SRA is initiated. As illustrated in Figure 12, SRA starts with
resampling the collected series to make it evenly spaced with a
sampling frequency of 𝑓𝑠 . Subsequently, the series is normalized to
the range of [0, 1], and sparse segments void of data samples are
further tagged with -1 to denote their missing status. After resam-
pling, We represent the input data to SRA as the one-dimensional
time series 𝑥𝑡 extracted from the BFI, where 𝑡 is the sampling time.
SRA outputs 𝑦𝑡 as a uniform and densely sampled time series.

To generate the missing samples, SRA employs a TCN (temporal
convolutional network) based AE (autoencoder) network, consisting
of an encoder and a decoder as depicted in Figure 12. TCN is a
more suitable choice over other types of neural networks, such as
LSTMs [68], as it uses convolutional layers with dilated kernels
to capture long-range dependencies in samples while keeping the
number of parameters manageable [4]. The encoder network maps
the input BFI series to a latent representation containing the in-
trinsic features of the input. Subsequently, the decoder network

Resample

Encoder Decoder Output

Input

TCN block

Dilated Conv
WeightNorm

Dropout
ReLU

1D Conv Pooling

Upsampling

Nomalize

Figure 12: The neural models of WiKI-Eve’s SRA.

relies on this representation to reconstruct a non-sparse series. The
TCN-AE is trained in a self-supervised manner: we first generate
non-sparse BFI series as ground truth using saturated traffic, then
we randomly remove data samples to create sparse series that em-
ulate realistic sparsity by following the temporal distribution of
real-life BFI series generated under sparse traffic.

4 IMPLEMENTATION AND SETUP
In this section, we elaborate on WiKI-Eve’s implementation, as well
as introduce the experiment setup and metrics.

System Implementation. Though a rooted smartphone under the
monitor mode can act as Eve, Android systems offer minimal sup-
port in capturing Wi-Fi traffic at application layer. Therefore, we
focus on a laptop implementation in our experiments. We use an
Acer TravelMate laptop [29] with an Intel AX210 Wi-Fi NIC [16]
supporting 802.11b/g/n/ac as the basis; setting the NIC to the moni-
tor mode, we then useWireShark to capture the BFI series contained
in Action No-ACK frames. The captured BFIs are analyzed using
Matlab and Python, with the neural models built upon PyTorch
1.7.1 [49]. For the segmentation, the two parameters 𝛼 and 𝛽 are
set to 0.6 and 0.5, respectively. In the adversarial learning frame-
work, the balance factor 𝜆 is set to 0.5. For sparse recovery, the
sampling frequency 𝑓𝑠 is set to 40Hz. Our collected data and code
for preprocessing the data are publicly available online [63].

Experiment Setup. We recruit 20 subjects, of 12 males and 8 fe-
males, between the ages of 20 and 53. All subjects are right-handed
and use their own smartphones of various models, including iPhone
13 [3], OnePlus 10T [46], Xiaomi 13 Pro [66], Huawei P40 Pro [28],
Samsung Galaxy S20 [51], and Google Pixel 6a [23]. The subjects
type a total of 1,500 predefined passwords of 4, 6, and 8 digits, with
each length having 5,000 passwords. During typing, background
apps remain active to emulate daily smartphone usage. The subjects
adopt different postures while typing on the smartphones, such as
holding it with one or both hands or placing it on a stand or table.
The typing speed of the subjects ranges from 0.5 to 2cps (characters
per second). These experiments have strictly followed our IRB.

We conduct experiments and collect BFI series in six environ-
ments, including a library, bookstore, auditorium, cafeteria, corridor,
and conference room. In each environment, a Wi-Fi router work-
ing as an AP for the subjects to connect. Besides BFI collection,
we simultaneously obtain CSIs from the AP and another laptop to
respectively serve as comparison baselines of WindTalker [34] and
WINK [67]. The distance between a subject and the AP ranges from
1 to 10m, and the distance between the attacker and the subject
ranges from 3 to 10m. Figure 13 shows an example experiment
scene and the hardware we use. WiKI-Eve segments the BFI series
using the overlapping scheme described in Section 3.3.2, while the
baselines conduct segmentation according to their respective pro-
posals [34, 67]. We use 70% of the collected data for training and
the remaining 30% for testing.

Metrics. We adopt two metrics for our evaluations, namely key-
stroke classification accuracy and top-𝑁 password inference accu-
racy. For single keystroke classification, the classification accuracy
measures the percentage of correctly classified keystrokes. For pass-
word inference, since an attacker may try multiple passwords to
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Figure 13: Evaluative WiKI-Eve: (a) experiment scene in a
conference room and (b) hardware configurations.

increase the success rate, we adopt the top-𝑁 accuracy as the evalu-
ation metric: the probability of a candidate password is computed as
the product of the probability of each key present in the password,
then the top-𝑁 accuracy is measured by checking if any of the
candidates within top-𝑁 probability matches the true one.

5 EVALUATION
We start with two micro-benchmark studies to demonstrate the
effectiveness of WiKI-Eve’s building blocks. These are followed by
evaluations on overall performance and the impact of practical fac-
tors. Finally, we conduct real-world experiments to showcase how
WiKI-Eve steals passwords of WeChat Pay, while also extending it
to general KI on QWERTY keyboards.

5.1 Micro-benchmark Studies
5.1.1 Domain Adaptation. To demonstrate the effectiveness of
WiKI-Eve’s adversarial learning framework in Section 3.3.3, we
use t-SNE (t-Distributed Stochastic Neighbor Embedding) [41] to
visualize the feature maps of 10 numerical keys segmented from
100 random passwords in Figure 14. As shown in Figure 14(a), the
normal feature extractor𝐺f fails to find a domain-invariant feature
map: features of different keys apparently get mixed together due
to domain interference. In contrast, Figure 14(b) demonstrates that,
with adversarial learning, the features of the same keys are con-
sistent across domains and form distinct clusters, indicating that
domain-invariant representations have been successfully learned.

5.1.2 Sparse Recovery. We apply SRA to recover the non-sparse
BFI time series from passwords typed by a subject, and evaluate
its effectiveness using the Root Mean Squared Error (RMSE) be-
tween the recovered and the ground truth series. As shown in
Figure 15(a), our TCN-AE enabled SRA is able to recover a series
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Figure 14: t-SNEs of the features output by the feature extrac-
tor𝐺f evidently confirm that adversarial learning results in
domain-invariant representations.
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Figure 15: Performance of sparse recovery.

with high similarity to the ground truth, capturing details when the
subject’s finger hits on screen as well as during transition periods.
Furthermore, Figure 15(b) illustrates how RMSE changes with the
proportion of missing BFI segments: even when 60% of the BFI
segments are missing, SRA still achieves a sufficiently low RMSE at
3.3% of the mean amplitude of the ground truth series, indicating
a successful recovery and providing a solid basis for WiKI-Eve’s
ultimate password inference.

5.2 Overall Performance
5.2.1 Classification Accuracy. In this section, we present the ac-
curacy of classifying numerical keys of WiKI-Eve, and compare it
with two baseline methods WindTalker [34] and WiPOS [72]. We
do not compare WiKI-Eve with WINK [67] in terms of keystroke
classification accuracy because WINK is based on series learning
that predicts the password as a whole. As shown in Figure 16(a),
the classification accuracy of WiKI-Eve for keys ‘0’ to ‘9’ remains
steady at around 88.9%, while WindTalker and WiPOS achieve an
average accuracy of only 58.2% and 55.1%, respectively, which is
significantly lower than that reported in [34], and should hence
be further explained in Section 5.2.2. To further analyze the clas-
sification accuracy for each key, we present the confusion matrix
of WiKI-Eve in Figures 16(b). It is intuitive that each key is most
commonly confused with adjacent keys (e.g., the key ‘5’ is most
commonly confused with ‘2’, ‘4’, ‘6’, and ‘8’). Despite the inevitable
confusion, the high success rate of classifying individual keys lays
a solid foundation for later password inference.

The superiority ofWiKI-Eve overWindTalker andWiPOS can be
attributed to two reasons. As discussed in Section 2.2, BFI dampens
the close impact of IKI from its on-screen keystrokes, making WiKI-
Eve more stable than CSI-based approaches. This allows WiKI-Eve
to extract consistent features effectively learnable by its neural
models. WindTalker and WiPOS, on the contrary, suffers from CSI
noises possibly confused with useful features. Moreover, the over-
lapping segmentation technique proposed in Section 3.3.2 endows

1 2 3 4 5 6 7 8 9 0
Numerical key

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

WiKI-Eve
WindTalker
WiPOS

(a) Overall accuracy.
Predicted label

Tr
ue

 la
be

l

(b) Confusion matrix.

Figure 16: Comparing the classification accuracy of WiKI-
Eve with WindTalker and WiPOS.
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Figure 17: Comparison for password inference accuracy un-
der different numbers of password candidates.

WiKI-Eve with richer domain “context” for its adversarial learn-
ing framework. In contrast, WindTalker’s and WiPOS’s rule-based
segmentation potentially discards certain essential parts of the CSI
features already overwhelmed by noises, thus failing to obtain full
representations for individual keystrokes.

5.2.2 Password Inference Accuracy. Let us further evaluate WiKI-
Eve’s password inference capability, focusing on 6-digit numeri-
cal passwords due to their widespread usage in daily scenarios,
but leaving the performance assessment for different password
lengths to Section 5.3.6. Figure 17(a) compares the top-1 to -10 ac-
curacy of WiKI-Eve, WindTalker, WiPOS, and WINK: while WiKI-
Eve’s accuracy varies from 40% to 65% for top-1 to -10 candidates,
WindTalker’s, WiPOS’s, and WINK’s only reach 37%, 32%, and 12%
for top-10 accuracy, respectively. Figure 17(b) indicates that WiKI-
Eve can infer passwords with an 85% success rate in 100 attempts,
yet WindTalker, WiPOS, and WINK can only achieve a rate of 54%,
42%, and 31% at the same number of attempts.

The reasons for WiKI-Eve’s superiority in Section 5.2.1 also
apply to explain WiKI-Eve’s much better performance in password
inference than all baselines. Additionally, WiKI-Eve has an edge
over WiPOS and WINK because o-IKI has a higher SNR than OKI,
and the digital nature of BFI prevents fidelity loss of sensing signal.
One may notice the performance discrepancy of all baselines from
that reported in [34, 67, 72], as also highlighted in Section 5.2.1 for
WindTalker. This may stem from their designs failing to properly
take into account the influence of domain, thereby limiting their
ability to effectively handle diverse data collected from various
domains in our experiment setup.

5.3 Impact of Practical Factors
5.3.1 Environments and Subjects. We use the “leave-one-out” strat-
egy [64] to study the impacts of different environments and subjects.
This means that the test set consists of all data from one of the
6 environments or one of the 20 subjects, leaving the rest to the
training set. Figure 18(a) and 18(b) respectively show the top-100
password inference accuracy for each environment and each sub-
ject. Although the testing environments and subjects are unseen
during training, WiKI-Eve’s top-100 accuracy across all cases is
consistently above 75%, thanks to the generalizability of the adver-
sarial learning. Moreover, WiKI-Eve is robust across environments
since o-IKI relies on the diffraction pattern around the phone body
that are rarely influenced by environment-specific interference. In
contrast, the average top-100 accuracy of WindTalker and WINK
drops from that in Figure 17 to less than 39% and 18%, due to their
limited generalizability to unseen environments and subjects.
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Figure 18: Impact of environments and subjects.

5.3.2 Device Diversity. We again use the “leave-one-out” strategy
to evaluate the performance of WiKI-Eve on 6 smartphones spec-
ified in Section 4. Figure 19(a) shows that WiKI-Eve can reliably
identify keystrokes on different devices, with an average keystroke
classification accuracy of over 80%, but WindTalker’s accuracy is
under 58%. Furthermore, Figure 19(b) indicates that the top-100 pass-
word inference accuracy of WiKI-Eve, WindTalker, and WINK is
respectively above 76%, below 53%, and below 27%. The consistently
high accuracy of WiKI-Eve across different smartphone devices
confirms that our adversarial learning framework can generalize to
unseen devices. In contrast, the low accuracy of the baselines (evi-
dently worse than the results in Figure 17) highlights their failure
on unseen devices. One may also observe some accuracy variations
among smartphones, which we attribute to different screen sizes.
Specifically, WiKI-Eve achieves the highest accuracy on Xiaomi 13
Pro having the largest screen size (6.73 inch), while on Google Pixel
6a, with the smallest screen size (6.1 inch), it achieves the lowest
accuracy. A possible explanation is smartphones with larger screens
tend to have larger key distances that result in longer transition pe-
riods, thus making the incurred BFI features more distinguishable.
Due to the consistently worse performance of the baselines, we do
not compare WiKI-Eve with them in subsequent experiments.
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Figure 19: Impact of device diversity.

5.3.3 Distance. We evaluate the effect of distances on WiKI-Eve,
i.e., the distances from Bob to the AP and from Eve to Bob. Figure 20
presents the top-20, 50, 80, and 100 password inference accuracy
at various distances. Figure 20(a) shows that the average accuracy
decreases by about 23% as the distance between Bob and the AP
increases from 1m to 10m, because a longer distance from Bob to
the AP weakens the Wi-Fi signal and takes in more interference.
On the contrary, Figure 20(b) confirms that the distance between
Eve and Bob barely affects the performance of WiKI-Eve, as the
digital nature of BFI makes it robust to long-range transmission.
Consequently, Eve can eavesdrop stealthily from a long distance
without compromising inference accuracy, clearly demonstrating
the advantage of WiKI-Eve’s o-IKI method.
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Figure 20: Impact of different distances.

5.3.4 Typing Speed. In this section, we examine how WiKI-Eve’s
performance varies with typing speeds. Figures 21(a) and 21(b) re-
spectively show the keystroke classification and top-[1, 100] accu-
racy for tying speed ranges of [0.5, 1.0], [1.0, 1.5], and [1.5, 2.0] cps.
As expected, both metric values decrease with higher typing speeds,
probably due to stronger inter-typing irregularities. Nevertheless,
WiKI-Eve still achieves sufficiently good performance in fast typing
case with speed from [1.5, 2.0] cps, with only a minor decrease of
around 3% in keystroke classification and less than 7% in password
inference accuracy when compared with those in slow typing case
with speed from [0.5, 1.0]cps. The relatively consistent performance
of WiKI-Eve across different typing speeds is also the consequence
of adopting adversarial learning.
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Figure 21: Impact of typing speed.

5.3.5 Typing Scenarios. We further investigate the performance
of WiKI-Eve across different typing scenarios, including holding
the phone with one or both hands and placing the phone on a
stand or a table. Figures 22(a) and 22(b) show that when the smart-
phone is placed on a stand or a table, WiKI-Eve achieves higher
keystroke classification and password inference accuracy, likely
due to the stability inherent to these scenarios. Despite the accuracy
differences across scenarios, keystroke classification and password
inference accuracy variations are less than 2.5%. These consistent
results demonstrate that WiKI-Eve is robust to various occlusions
and different typing scenarios, further validating the effectiveness
of our adversarial learning framework.
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Figure 22: Comparison of 4 different typing scenarios.
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Figure 23: Impact of 3 different password length.

5.3.6 Password Length. We finally examine how password length
affects WiKI-Eve’s performance. Figure 23(a) demonstrates that
the password length does not affect the accuracy of keystroke clas-
sification because WiKI-Eve treats each keystroke independently
regardless of how many keys are typed. However, it significantly
impacts password inference accuracy, as shown in Figure 23(b).
For instance, the top-20 and top-100 accuracy for 4-digit numerical
passwords is 69% and 89%, respectively, yet it becomes 64% and
83%, respectively, for 8-digit numerical passwords. The accuracy
loss is attributed to the increased uncertainty caused by involving
more keys. Nevertheless, even for an 8-digit numerical password,
the remarkable success rate of 64% after 20 attempts still poses a
severe threat to smartphone users.

5.4 Real-World Experiment
5.4.1 WeChat Pay Password Inference. To showcase the practicality
of WiKI-Eve, we conduct a real-world experiment by acting as Eve
to steal password from WeChat Pay, a digital payment service
integrated into WeChat [62]. The victim Bob uses an iPhone 13
for his daily activities, typically including WeChat usage, and he
is supposed to make a mobile payment transaction with WeChat
Pay, for which a numerical password is required, in a conference
room of size 5m × 8m. The AP is placed on a table and the distance
between Bob and the AP ranges from 1.5 to 5m, as confined by
the room layout. Meanwhile, Eve leverages WiKI-Eve to achieve a
stealthy eavesdropping at a distance of 3m from Bob.

Following the method in Section 3.1, WiKI-Eve first identifies
Bob’s Wi-Fi traffic; this is followed by detecting an IP address
“43.156.222.205” coinciding with an entry in a pre-recorded IP data-
base, as shown in Figure 24(a), which in turns starts BFI recording.
The recording is stopped once no more requests to that address
are made. Subsequently, WiKI-Eve performs SRA on the BFI time
series, and the resulting non-sparse BFI series is shown in Fig-
ure 24(b). It appears that the BFI series includes not only the 6-digit
numerical password but also other keys entered beforehand (e.g.,
the transfer amount and confirmation), so we extract the last six

(a) Attack timing identification.
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Figure 24: Real-world experiment with WeChat Pay.
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peaks corresponding to the password specifically for WeChat Pay,
as highlighted by the red box.

After segmenting the signal, WiKI-Eve initiates the password
inference. Since WeChat Pay freezes after five incorrect password
inputs, we focus on identifying correct passwords among the top
5 candidates. In the experiment shown in Figure 24(b), the actual
password entered by Bob is “517294”, and the top 5 candidates are
“547294”, “517204”, “517294”, “517594”, and “517394”, indicating a
successful password stealing. We conduct 50 such experiments in
total, each with a different password. The results indicate that, out
of these 50 input passwords, WiKI-Eve achieves a top-5 accuracy
of 50%, which is quite close to that shown in Figure 17(a), albeit
with a potentially biased statistics given only a small amount of
trials. These experiments evidently demonstrate the practicality of
WiKI-Eve in real-world scenarios.

5.4.2 Extending to Virtual QWERTY Keyboard. Many applications
need more diversified characters than what a numerical keyboard
can offer. Typically, banking applications (e.g., the popular Chase
Mobile [14]) handling sensitive financial transactions and identity
information demand using a virtual (on-screen) QWERTY keyboard
for users to create more secure alphanumeric passwords. To test the
applicability of WiKI-Eve in such scenario, we conduct keystroke
classification experiments on the QWERTY keyboard of Chase
Mobile. We collect a dataset of 4,000 pre-defined passwords with
varying lengths: 1,500with 6 characters, 1,500with 8 characters, and
1,000 with 10 characters. The passwords consist of lowercase letters
from ‘a’ to ‘z’ and numbers from ‘0’ to ‘9’. Except for the larger
dataset size, we adopt the same experiment settings in Section 4.

Figure 25(a) shows that WiKI-Eve achieves an average keystroke
classification accuracy of 40%. Additionally, Figure 25(b) indicates
that WiKI-Eve’s top-[1, 100] accuracy of 6-character alphanumeric
password ranges from 12% to 32%, surpassing WindTalker and
WINK whose top-100 accuracy is only 11% and 14%, respectively.
Although the accuracy is lower than those in Section 5.2.1 and 5.2.2,
it still poses a severe threat to smartphone users. The performance
drop on QWERTY keyboards can be attributed to these keyboards
having approximately four times more keys than numerical key-
boards within the same area. Consequently, the BFI features of
clicking different keys are less distinguishable due to their prox-
imity. Additionally, shorter distances (hence shorter transition pe-
riods) among keys increase inter-keystroke interference, thereby
decreasing KI accuracy.

We also find that KI on a QWERTY keyboard demands a much
larger training dataset than on a numerical keyboard. According to
Figure 26, WiKI-Eve performs similarly to the baselines when the
training set is small. Fortunately, as the training set size increases

(a) Keystroke classification.
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Figure 25: Performance on QWERTY keyboards.
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Figure 26: Extending WiKI-Eve to QWERTY keyboards re-
quires more training data.

from 1,000 to 4,000, WiKI-Eve begins to show its strengths: it im-
proves the keystroke classification accuracy from 6% to 40%, and
the top-100 accuracy from 6% to 32%, outperforming the baselines
by large margins. The need for a large training set can be explained
(again) by the drastic increase in the number of keys on QWERTY
keyboards, along with the corresponding increase in the number of
domains. By employing the adversarial learning framework, WiKI-
Eve can fully utilize the training data and perform adequate KI
under domain interference. In contrast, WindTalker and WINK
struggle with interference and artifacts caused by a large number
of domains, barely improving KI performance.

This experiment also reveals a few challenges to be tackled in
future for general KI on QWERTY keyboards. First, more diver-
sified password length should be considered, as over 20% of user
may have passwords longer than 10 characters [55]. Second, han-
dling more general passwords containing special characters and
uppercase letters is also a crucial aspect: typing these characters
may require combinations of multiple keys (e.g., “shift” and its
paired keys) and thus complicating the BFI series. Third, certain
applications have separate keyboard layouts for distinct groups
of keys, requiring users to switch between layouts while entering
passwords. Performing KI for such applications requires accurate
detection of the layout switching, as well as training two separate
neural models for each layout, potentially increasing system com-
plexity. Instead of increasing training data in a brute-force manner,
other side-channel attacks and social engineering techniques [24]
may be combined with WiKI-Eve to enhance its KI capability in
tackling these challenges.

6 TRAFFIC IMPACT AND DEFENSE
In this section, we first study the impact of five different background
traffic on the sparsity of BFI (and CSI) time series, then we propose
four different defense strategies against WiKI-Eve.

6.1 Background Traffic Analysis
To showcase how real-life background traffic intensities affect the
sparsity of BFI (and CSI), we set five types of background traffic in
(rate) descending order: (artificially) saturated traffic, video confer-
encing, software update, music streaming, and background chat.
Take the 6-digit password as an example, the sparsity of the BFI (and
CSI) time series varies with the intensity of the background traffic
as shown in Figure 27. Figure 27(a) depicts the dense and contin-
uous time series under saturated traffic. Since video conferencing
and software update have their traffic patterns go very close to
saturated ones, the resulting time series, as shown in Figures 27(b)
and 27(c), again exhibit dense and continuous nature, which can
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(a) Saturated traffic.
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(b) Video conferencing.
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(c) Software update.
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(d) Music streaming.

0 2 4 6
Time (s)

0

20

40

60

B
FI

 A
m

pl
itu

de

0 2 4 6
Time (s)

40

60

80

C
SI

 A
m

pl
itu

de

(e) Background chat.

Figure 27: BFI (first row) and CSI (second row) time series under real-life background traffic.

be directly used for KI without enhanced by SRA. On the contrary,
the time series under two types of low-rate background traffic, as
shown in Figures 27(d) and 27(e), apparently behave much sparser,
potentially demanding the assistance of SRA.

It is worth noting that, although the BFI (and CSI) time series can
be sparse and bursty under real-life background traffic, we barely
observe cases where a whole keystroke goes missing due to traffic
sparsity. As a result, the BFI time series collected under real-life
background traffic, even when sparse and bursty, can almost always
be accommodated (hence enhanced) by our SRA presented in Sec-
tion 3.4. In fact, all existing Wi-Fi-based password eavesdropping
scheme [34, 67, 72] have to face the challenge of sparse background
traffic, yet we are the first in rising to this challenge, enabling Wi-Fi
based password eavesdropping under most real-life traffic condi-
tions. The BFI and CSI data collected under real-life background
traffic are online as specified in Section 4. Finally, WiKI-Eve can
even steal passwords not sent over the WiFi (e.g., phone unlock)
with sufficient background traffic. However, the challenge lies in
acquiring the precise timing of the beginning and end of a pass-
word input process, for which limited visual cues might be the only
feasible approach for now, as discussed in Section 3.1.

6.2 Defense Strategies
Since WiKI-Eve achieves keystroke eavesdropping by overhear-
ing Wi-Fi BFI, the most direct defense strategy is to encrypt data
traffic, hence preventing attackers from obtaining BFI in clear text.
In fact, this strategy is commonly used in institutional Wi-Fi de-
ployments, which indeed invalidates the basic assumption required
by WiKI-Eve as stated in Section 2.1. However, this strategy may
cause trouble for scenarios with high user dynamics, as frequently
performing key exchanges substantially increases system complex-
ity. One may consider keyboard randomization [34] as an indirect
defense strategy, where a randomly keyboard layout is generated
whenever a user attempts to enter password. By shifting the trou-
ble to user side, this strategy, as indicated by [31], forces users to
pay more effort when searching for keys on random keyboards,
especially affects those used to relying on muscle memory to enter
passwords without much visual aid.

A novel strategy against sensing attacks is signal obfuscation.
In particular, IRShield [54] leverages IRSs (intelligent reflecting
surfaces) installed beside an AP to physically scramble CSI, so as
to thwart all sensing attempts. Unfortunately, this proposal goes

against the current trend of evovling Wi-Fi towards ISAC (Inte-
grated Sensing And Communications) [27] where legitimate sens-
ing users should be catered. To this end, we suggest to exploit
MIMO (multiple-in multiple-out) technology adopted by Wi-Fi
hardware to scramble Wi-Fi channels [40]. Acting at physical layer,
this strategy can be void of limitations inherent to earlier upper-
level digital strategies (e.g., no need for per-user key generation),
hence potentially applicable to a much wider range of application
scenarios. Of course, this strategy requires hardware or firmware
reconstruction, resulting in extra cost compared with digital strat-
egyies. Fortunately, realizing ISAC framework by revising Wi-Fi
architecture [12] is more and more recognized as a desirable devel-
opment path.

7 RELATEDWORKS
We classify existing KI proposals related to WiKI-Eve into the fol-
lowing five different categories:

Radio-Frequency. WiKey [2] pioneers in leveraging Wi-Fi CSI
distortions induced by keystrokes to conduct KI, but the OKI mode
used by WiKey is soon exceeded (in SNR) by the IKI mode intro-
duced byWindTalker [34] for password inference, which is followed
by Fang et al. [19] who exploit English linguistic structure to infer
(non-password) keystrokes from CSI obtained via IKI. Recently,
WiPOS [72] uses the OKI model for POS (point of sale) terminal
keystroke eavesdropping. SpiderMon [35] attempts to perform pas-
sive serial keystroke eavesdropping using signals transmitted by
commercial cell towers. WINK [67] also leverages OKI but claims
that spatiotemporal analysis could enhance the performance of
password inference.

Acoustic. Liu et al. [36] propose to classify keys on a keyboard
based on the time difference of arrival of the acoustic signals (gen-
erated by pressing and releasing a key) at the two microphones on
a smartphone. Similarly, KeyListener [39] performs KI on touch-
screen based on different attenuation of the signals (generated by
phone speaker) at the two microphones. PatternListener [73] com-
promises pattern locks by using acoustic signals reflected from
fingertips to measure their relative movement and infer the pattern
lines. These methods can be deemed as acoustic version of OKI.

Vision. Early vision-based KI attacks depend on directly observ-
ing the contents displayed on a screen [42, 70]. To make it more
practical, later works explore side-channel visual cues. KI can be
achieved by analyzing changes in the device’s physical appearance,
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such as shadows and deformations on the screen [69], as well as
backside motions of tablet computers [57]. Moreover, capturing
videos of the victim’s biometric features during typing, such as
finger [53] and eye [11] movements, may also enable KI. Recent
work [10] claims to achieve KI even when victims cover the typing
hand with the other hand. Although vision-based side-channel at-
tacks have shown a high success rate, the corresponding defense
strategies [38, 50] have also grown mature and effective. Compared
with the action features required by vision-based KI attacks, WiKI-
Eve only requires visual hints (e.g., actions before starting input)
rather than the complete input process, as explained in Section 3.1.

Motion Sensors. TouchLogger [9] uses the accelerometer and gy-
roscope on smartphones to capture phone bodymovement and infer
numerical keys typed on its touchscreen. (sp)iPhone [43] leverages
the accelerometer on a nearby phone to detect vibrations from a
physical keyboard for enabling KI. Liu et al. [37] further exploit
the accelerometer on a smartwatch to capture hand movement and
infer keystrokes on POS terminals or QWERTY keyboards.

Electromagnetic Emission. Vuagnoux et al. [60] propose to eaves-
drop on keystrokes fromwired and wireless keyboards by capturing
electromagnetic emissions during their communications. A later
work Periscope [31] extends this idea to a broader range of mobile
devices by exploiting human-coupled emission from touchscreens
to estimate finger movement trajectories and infer numerical pass-
words. Vulnerabilities in USB data transfers have also been exploited
for password-stealing [44] and malicious command execution [58].
Charger-Surfing [18] further demonstrates that, even without any
data transfer over USB, variations of consumed power can be ex-
ploited to extract private information such as user passwords.

8 CONCLUSION
In this paper, we have proposedWiKI-Eve as the firstWi-Fi based KI
attack with no need for hacking or specialized hardware, making it
widely applicable to diversified Wi-Fi devices and attack scenarios.
Moreover, WiKI-Eve’s adversarial learning framework enables KI to
be generalized towards unseen domains, further lifting its practical
significance. Finally, we propose SRA to restore the sparse BFI series.
Our extensive evaluations confirm that WiKI-Eve achieves suffi-
ciently high inference accuracy for both individual keystrokes and
numerical passwords, and we also tentatively explore extensions
to general keyboards. Our results expose critical vulnerabilities in
widely-used applications (e.g., WeChat) and hence underscore an
urgent need for enhanced security measures against such risks.
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