
Project Zero

News and updates from the Project Zero team at Google
W e d n e s d a y , J u l y 2 9 , 2 0 2 0

	

Detection	Deficit:	A	Year	in	Review	of	0-days	Used	In-The-
Wild	in	2019	
Posted by Maddie Stone, Project Zero	
	
In May 2019, Project Zero released our tracking spreadsheet for 0-days used “in the wild”
and we started a more focused effort on analyzing and learning from these exploits. This is
another way Project Zero is trying to make zero-day hard. This blog post synthesizes many
of our efforts and what we’ve seen over the last year. We provide a review of what we can
learn from 0-day exploits detected as used in the wild in 2019. In conjunction with this blog
post, we are also publishing another blog post today about our root cause analysis work that
informed the conclusions in this Year in Review. We are also releasing 8 root cause
analyses that we have done for in-the-wild 0-days from 2019. 	
	
When I had the idea for this “Year in Review” blog post, I immediately started brainstorming
the different ways we could slice the data and the different conclusions it may show. I
thought that maybe there’d be interesting conclusions around why use-after-free is one of the
most exploited bug classes or how a given exploitation method was used in Y% of 0-days
or… but despite my attempts to find these interesting technical conclusions, over and over I
kept coming back to the problem of the detection of 0-days. Through the variety of areas I
explored, the data and analysis continued to highlight a single conclusion: As a community,
our ability to detect 0-days being used in the wild is severely lacking to the point that
we can’t draw significant conclusions due to the lack of (and biases in) the data we
have collected. 	
	
The rest of the blog post will detail the analyses I did on 0-days exploited in 2019 that
informed this conclusion. As a team, Project Zero will continue to research new detection
methods for 0-days. We hope this post will convince you to work with us on this effort.	

The Basics	
In 2019, 20 0-days were detected and disclosed as exploited in the wild. This number, and
our tracking, is scoped to targets and areas that Project Zero actively researches. You can
read more about our scoping here. This seems approximately average for years 2014-2017
with an uncharacteristically low number of 0-days detected in 2018. Please note that Project
Zero only began tracking the data in July 2014 when the team was founded and so the
numbers for 2014 have been doubled as an approximation. 	
	

	
	
	
The largely steady number of detected 0-days might suggest that defender detection
techniques are progressing at the same speed as attacker techniques. That could be true. Or
it could not be. The data in our spreadsheet are only the 0-day exploits that were detected,
not the 0-day exploits that were used. As long as we still don’t know the true detection rate of
all 0-day exploits, it’s very difficult to make any conclusions about whether the number of 0-
day exploits deployed in the wild are increasing or decreasing. For example, if all defenders
stopped detection efforts, that could make it appear that there are no 0-days being exploited,
but we’d clearly know that to be false.	
	
All of the 0-day exploits detected in 2019 are detailed in the Project Zero tracking
spreadsheet here. 	
	

0-days by Vendor	
One of the common ways to analyze vulnerabilities and security issues is to look at who is
affected. The breakdown of the 0-days exploited in 2019 by vendor is below. While the data
shows us that almost all of the big platform vendors have at least a couple of 0-days
detected against their products, there is a large disparity. Based on the data, it appears that
Microsoft products are targeted about 5x more than Apple and Google products. Yet Apple
and Google, with their iOS and Android products, make up a huge majority of devices in the
world. 	
	

While Microsoft Windows has always been a prime target for actors exploiting 0-days, I think
it’s more likely that we see more Microsoft 0-days due to detection bias. Because Microsoft
has been a target before some of the other platforms were even invented, there have been
many more years of development into 0-day detection solutions for Microsoft products.
Microsoft’s ecosystem also allows for 3rd parties, in addition to Microsoft themself, to deploy
detection solutions for 0-days. The more people looking for 0-days using varied detection
methodologies suggests more 0-days will be found.	
	

	
	
	

Microsoft Deep-Dive	
For 2019, there were 11 0-day exploits detected in-the-wild in Microsoft products, more than
50% of all 0-days detected. Therefore, I think it’s worthwhile to dive into the Microsoft bugs to
see what we can learn since it’s the only platform we have a decent sample size for. 	
	
Of the 11 Microsoft 0-days, only 4 were detected as exploiting the latest software release of
Windows . All others targeted earlier releases of Windows, such as Windows 7, which was
originally released in 2009. Of the 4 0-days that exploited the latest versions of Windows, 3
targeted Internet Explorer, which, while it’s not the default browser for Windows 10, is still
included in the operating system for backwards compatibility. This means that 10/11 of the
Microsoft vulnerabilities targeted legacy software. 	
	
Out of the 11 Microsoft 0-days, 6 targeted the Win32k component of the Windows operating
system. Win32k is the kernel component responsible for the windows subsystem, and
historically it has been a prime target for exploitation. However, with Windows 10, Microsoft
dedicated resources to locking down the attack surface of win32k. Based on the data of
detected 0-days, none of the 6 detected win32k exploits were detected as exploiting the
latest Windows 10 software release. And 2 of the 0-days (CVE-2019-0676 and CVE-2019-
1132) only affected Windows 7.	
	
Even just within the Microsoft 0-days, there is likely detection bias. Is legacy software really
the predominant targets for 0-days in Microsoft Windows, or are we just better at detecting
them since this software and these exploit techniques have been around the longest?

	
	

CVE
Windows
7 SP1

Windows
8.1

Windows
10

Win
10
1607

WIn
10
1703

WIn
10
1803

Win
10
1809

Win
10
1903

Exploitation
of Latest SW
Release? Component

CVE-
2019-
0676 X X X X X X X Yes (1809) IE
CVE-
2019-
0808 X N/A (1809) win32k
CVE-
2019-
0797 X X X X X X

Exploitation
Unlikely
(1809) win32k

CVE-
2019-
0703 X X X X X X X Yes (1809)

Windows
SMB

CVE-
2019-
0803 X X X X X X X

Exp More
Likely (1809) win32k

CVE-
2019-
0859 X X X X X X X

Exp More
Likely (1809) win32k

CVE-
2019-
0880 X X X X X X X X

Exp More
Likely (1903) splwow64

CVE-
2019-
1132 X N/A (1903) win32k
CVE-
2019-
1367 X X X X X X X X Yes (1903) IE
CVE-
2019-
1429 X X X X X X X Yes (1903) IE
CVE-
2019-
1458 X X X X N/A (1909) win32k
	

Internet Explorer JScript 0-days CVE-2019-1367 and CVE-2019-1429	
While this blog post’s goal is not to detail each 0-day used in 2019, it’d be remiss not to
discuss the Internet Explorer JScript 0-days. CVE-2019-1367 and CVE-2019-1429 (and
CVE-2018-8653 from Dec 2018 and CVE-2020-0674 from Feb 2020) are all variants of each
other with all 4 being exploited in the wild by the same actor according to Google’s Threat
Analysis Group (TAG). 	
	
Our root cause analysis provides more details on these bugs, but we’ll summarize the points
here. The bug class is a JScript variable not being tracked by the garbage collector. Multiple
instances of this bug class were discovered in Jan 2018 by Ivan Fratric of Project Zero. In

December 2018, Google's TAG discovered this bug class being used in the wild (CVE-2018-
8653). Then in September 2019, another exploit using this bug class was found. This issue
was “fixed” as CVE-2019-1367, but it turns out the patch didn’t actually fix the issue and the
attackers were able to continue exploiting the original bug. At the same time, a variant was
also found of the original bug by Ivan Fratric (P0 1947). Both the variant and the original bug
were fixed as CVE-2019-1429. Then in January 2020, TAG found another exploit sample,
because Microsoft’s patch was again incomplete. This issue was patched as CVE-2020-
0674. 	
	
A more thorough discussion on variant analysis and complete patches is due, but at this time
we’ll simply note: The attackers who used the 0-day exploit had 4 separate chances to
continue attacking users after the bug class and then particular bugs were known. If we as
an industry want to make 0-day harder, we can’t give attackers four chances at the same
bug. 	

Memory Corruption	
63% of 2019’s exploited 0-day vulnerabilities fall under memory corruption, with half of those
memory corruption bugs being use-after-free vulnerabilities. Memory corruption and use-
after-free’s being a common target is nothing new. “Smashing the Stack for Fun and Profit”,
the seminal work describing stack-based memory corruption, was published back in 1996.
But it’s interesting to note that almost two-thirds of all detected 0-days are still exploiting
memory corruption bugs when there’s been so much interesting security research into other
classes of vulnerabilities, such as logic bugs and compiler bugs. Again, two-thirds of
detected 0-days are memory corruption bugs. While I don’t know for certain that that
proportion is false, we can't know either way because it's easier to detect memory corruption
than other types of vulnerabilities. Due to the prevalence of memory corruption bugs and that
they tend to be less reliable then logic bugs, this could be another detection bias. Types of
memory corruption bugs tend to be very similar within platforms and don’t really change over
time: a use-after-free from a decade ago largely looks like a use-after-free bug today and so I
think we may just be better at detecting these exploits. Logic and design bugs on the other
hand rarely look the same because in their nature they’re taking advantage of a specific flaw
in the design of that specific component, thus making it more difficult to detect than standard
memory corruption vulns.	
	
Even if our data is biased to over-represent memory corruption vulnerabilities, memory
corruption vulnerabilities are still being regularly exploited against users and thus we need to
continue focusing on systemic and structural fixes such as memory tagging and memory safe
languages.	

More Thoughts on Detection	
As we’ve discussed up to this point, the same questions posed in the team's original blog
post still hold true: “What is the detection rate of 0-day exploits?” and “How many 0-day
exploits are used without being detected?”. 	
	
We, as the security industry, are only able to review and analyze 0-days that were detected,
not all 0-days that were used. While some might see this data and say that Microsoft
Windows is exploited with 0-days 11x more often than Android, those claims cannot be made
in good faith. Instead, I think the security community simply detects 0-days in Microsoft
Windows at a much higher rate than any other platform. If we look back historically, the first
anti-viruses and detections were built for Microsoft Windows rather than any other platform.
As time has continued, the detection methods for Windows have continued to evolve.
Microsoft builds tools and techniques for detecting 0-days as well as third party security
companies. We don’t see the same plethora of detection tools on other platforms, especially
the mobile platforms, which means there’s less likelihood of detecting 0-days on those

platforms too. An area for big growth is detecting 0-days on platforms other than Microsoft
Windows and what level of access a vendor provides for detection..	
	

Who is doing the detecting? 	
Another interesting side of detection is that a single security researcher, Clément Lecigne of
the Google's TAG is credited with 7 of the 21 detected 0-days in 2019 across 4 platforms:
Apple iOS (CVE-2019-7286, CVE-2019-7287), Google Chrome (CVE-2019-5786), Microsoft
Internet Explorer (CVE-2019-0676, CVE-2019-1367, CVE-2019-1429), and Microsoft
Windows (CVE-2019-0808). Put another way, we could have detected a third less of the 0-
days actually used in the wild if it wasn’t for Clément and team. When we add in the entity
with the second most, Kaspersky Lab, with 4 of the 0-days (CVE-2019-0797, CVE-2019-
0859, CVE-2019-13720, CVE-2019-1458), that means that two entities are responsible for
more than 50% of the 0-days detected in 2019. If two entities out of the entirety of the global
security community are responsible for detecting more than half of the 0-days in a year,
that’s a worrying sign for how we’re using our resources. . The security community has a lot
of growth to do in this area to have any confidence that we are detecting the majority of 0-
days exploits that are used in the wild. 	
	
Out of the 20 0-days, only one (CVE-2019-0703) included discovery credit to the vendor that
was targeted, and even that one was also credited to an external researcher. To me, this is
surprising because I’d expect that the vendor of a platform would be best positioned to detect
0-days with their access to the most telemetry data, logs, ability to build detections into the
platform, “tips” about exploits, etc. This begs the question: are the vendor security teams that
have the most access not putting resources towards detecting 0-days, or are they finding
them and just not disclosing them when they are found internally? Either way, this is less
than ideal. When you consider the locked down mobile platforms, this is especially
worrisome since it’s so difficult for external researchers to get into those platforms and detect
exploitation.	
	

“Clandestine” 0-day reporting	
Anecdotally, we know that sometimes vulnerabilities are reported surreptitiously, meaning
that they are reported as just another bug, rather than a vulnerability that is being actively
exploited. This hurts security because users and their enterprises may take different actions,
based on their own unique threat models, if they knew a vulnerability was actively exploited.
Vendors and third party security professionals could also create better detections, invest in
related research, prioritize variant analysis, or take other actions that could directly make it
more costly for the attacker to exploit additional vulnerabilities and users if they knew that
attackers were already exploiting the bug. If all would transparently disclose when a
vulnerability is exploited, our detection numbers would likely go up as well, and we would
have better information about the current preferences and behaviors of attackers.	
	

0-day Detection on Mobile Platforms	
As mentioned above, an especially interesting and needed area for development is mobile
platforms, iOS and Android. In 2019, there were only 3 detected 0-days for all of mobile: 2 for
iOS (CVE-2019-7286 and CVE-2019-7287) and 1 for Android (CVE-2019-2215). However,
there are billions of mobile phone users and Android and iOS exploits sell for double or more
compared to an equivalent desktop exploit according to Zerodium. We know that these
exploits are being developed and used, we’re just not finding them. The mobile platforms,
iOS and Android, are likely two of the toughest platforms for third party security solutions to
deploy upon due to the “walled garden” of iOS and the application sandboxes of both
platforms. The same features that are critical for user security also make it difficult for third
parties to deploy on-device detection solutions. Since it’s so difficult for non-vendors to

deploy solutions, we as users and the security community, rely on the vendors to be active
and transparent in hunting 0-days targeting these platforms. Therefore a crucial question
becomes, how do we as fellow security professionals incentivize the vendors to prioritize
this?	
	
Another interesting artifact that appeared when doing the analysis is that CVE-2019-2215 is
the first detected 0-day since we started tracking 0-days targeting Android. Up until that
point, the closest was CVE-2016-5195, which targeted Linux. Yet, the only Android 0-day
found in 2019 (AND since 2014) is CVE-2019-2215, which was detected through documents
rather than by finding a zero-day exploit sample. Therefore, no 0-day exploit samples were
detected (or, at least, publicly disclosed) in all of 2019, 2018, 2017, 2016, 2015, and half of
2014. Based on knowledge of the offensive security industry, we know that that doesn’t
mean none were used. Instead it means we aren’t detecting well enough and 0-days are
being exploited without public knowledge. Therefore, those 0-days go unpatched and users
and the security community are unable to take additional defensive actions. Researching
new methodologies for detecting 0-days targeting mobile platforms, iOS and Android, is a
focus for Project Zero in 2020.	
	

Detection on Other Platforms	
It’s interesting to note that other popular platforms had no 0-days detected over the same
period: like Linux, Safari, or macOS. While no 0-days have been publicly detected in these
operating systems, we can have confidence that they are still targets of interest, based on
the amount of users they have, job requisitions for offensive positions seeking these skills,
and even conversations with offensive security researchers. If Trend Micro’s OfficeScan is
worth targeting, then so are the other much more prevalent products. If that’s the case, then
again it leads us back to detection. We should also keep in mind though that some platforms
may not need 0-days for successful exploitation. For example, this blogpost details how iOS
exploit chains used publicly known n-days to exploit WebKit. But without more complete
data, we can’t make confident determinations of how much 0-day exploitation is occurring
per platform.	

Conclusion	
Here’s our first Year in Review of 0-days exploited in the wild. As this program evolves, so
will what we publish based on feedback from you and as our own knowledge and experience
continues to grow. We started this effort with the assumption of finding a multitude of
different conclusions, primarily “technical”, but once the analysis began, it became clear that
everything came back to a single conclusion: we have a big gap in detecting 0-day exploits.
Project Zero is committed to continuing to research new detection methodologies for 0-day
exploits and sharing that knowledge with the world. 	
	
Along with publishing this Year in Review today, we’re also publishing the root cause
analyses that we completed, which were used to draw our conclusions. Please check out
the blog post if you’re interested in more details about the different 0-days exploited in the
wild in 2019.	

