

Uncovering MosesStaff techniques:
Ideology over Money
November 15, 2021

Introduction

In September 2021, the hacker group MosesStaff began targeting Israeli
organizations, joining a wave of attacks which was started about a year ago
by the Pay2Key and BlackShadow attack groups. Those actors operated
mainly for political reasons in attempt to create noise in the media and
damage the country’s image, demanding money and conducting lengthy
and public negotiations with the victims.

MosesStaff behaves differently. The group openly states that their
motivation in attacking Israeli companies is to cause damage by leaking the
stolen sensitive data and encrypting the victim’s networks, with no ransom
demand. In the language of the attackers, their purpose is to “Fight against
the resistance and expose the crimes of the Zionists in the occupied
territories.”

Figure 1: Screenshot from a computer encrypted by MosesStaff.

In this article, we share our investigation of several incidents involving the
MosesStaff group. We provide their tactics, techniques and procedures
(TTPs), analyze their two main tools PyDCrypt and DCSrv, describe their
encryption scheme and its possible flaws, and provide several keys for
attribution.

Key Findings
• MosesStaff carries out targeted attacks against Israeli companies, leaks their

data, and encrypts their networks. There is no ransom demand and no
decryption option; their motives are purely political.

• Initial access to victims’ networks is presumably achieved through exploiting
known vulnerabilities in publicly facing infrastructure such as Microsoft
Exchange Servers.

• The lateral movement within the infected networks is made using basic tools:
PsExec, WMIC, and Powershell.

• The attacks utilize the open-source library DiskCryptor to perform volume
encryption and lock the victims’ computers with a bootloader that won’t allow
the machines to boot without the correct password.

• The group’s current encryption method may be reversible under certain
circumstances.

Infection Chain

To get initial access, the attackers exploited known vulnerabilities in an
external-facing infrastructure. As a result, a webshell was dropped to the
following path:
C:\inetpub\wwwroot\aspnet_client\system_web\IISpool.aspx
It’s a basic password-protected shell, where the MD5 of the entered
password is compared with the hardcoded
value 52a04efc6a0e7facf34dcc36a6d1ce6f (MD5 hash of joker123). The
webshell is obfuscated and based on one of webshells available in Github.

Figure 2: Obfuscated Webshell password authentication code.

Figure 3: Screenshot of obfuscated webshell after a successful
authentication.

The actors also uploaded several additional tools to the same folder:

• Multiple batch scripts which can enable SMB or disable the Windows firewall
on specific remote machines.

• A copy of PsExec, a portable tool from Microsoft that allows running processes
remotely with any user’s credentials.

• OICe.exe, a small Go executable which receives a command via its
command-line arguments, and executes it. This tool might be used on the
compromised server in the early steps of the attack to avoid executing
suspicious child processes like cmd or PowerShell.

After the attackers are inside the victims’ network, they collect information
on the machines in the network and combine it into a victim_info list. This

contains a domain name, machine names, and administrator credentials
that are later used to compile a specially-crafted PyDCrypt malware.

This malware is usually run from the C:\Users\Public\csrss.exe path and is
responsible for replicating itself inside the network and unleashing the main
encryption payload, DCSrv.

Figure 4: Infection Chain.

Technical Analysis

PyDCrypt

The main goals of PyDCrypt are to infect other computers and to make sure
the main payload, DCSrv, is executed properly. The executable is written in
Python and compiled with PyInstaller with encryption, using the --key flag
during the build phase. As we mentioned previously, the attackers build a
new sample for each infected organization, and hardcode the parameters
collected from the victim’s environment:

Figure 5: A dictionary hardcoded in the PyDCrypt sample shows what
information the attackers collect from victims’ environment at the

reconnaissance stage.

PyDCrypt can receive 2 or 3 arguments.

The first argument expected is 113. The malware checks and if the
argument is different, it does not proceed to the execution and removes
itself.

The second argument can be 0 or 1, indicating if PyDCrypt has already run
previously.

The third argument is optional. If provided, it is used as the encryption key
that is later passed to DCSrv as a parameter.

The main workflow of the malware:

• Create a lock file to prevent multiple instances of malware from running at the
same time.

• Decrypt and drop DCSrv (named C:\Users\Public\svchost.exe) to the disk
and execute it. The encryption algorithm is based on XOR and multiple
Base64 encoding operations, provided in Appendix A.

Figure 6: Deobfuscated code of PyDCrypt responsible for DCSrv execution.

• Decrypt and drop PSExec (named ps.exe). The decoding method is the same
as for DCSrv.

• Modify firewall rules to allow incoming SMB, Netbios and RPC connections
using netsh.exe on remote machines:

netsh advfirewall firewall add rule name=SMB dir=in action=allow

protocol=TCP localport=445

netsh advfirewall firewall add rule name=NETBIOS dir=in action=allow

protocol=TCP localport=135

netsh advfirewall firewall add rule name=FileShare1 dir=in action=allow

protocol=TCP localport=139

netsh advfirewall firewall add rule name=FileShare2 dir=in action=allow

protocol=TCP localport=138

• Iterate over machines in the network and infect each of them: the malware
attempts to copy and execute csrss.exe (PyDCrypt) remotely
with Powershell, PSExec, or WMIC (whatever is available), using compromised
administrator credentials. Probing for each method is done by
running whoami or echo 1233dsfassad on the destination machines.

• Remove all created artifacts such as the ps.exe binary and
the PyDCrypt executable.

Figure 7: Example of Forensics report for single execution tree of PyDCrypt.

DCSrv

This malicious process masquerades as a legitimate svchost.exe process
and has a single purpose: to encrypt all computer volumes, and deny any
access to the computer.

It contains several resources:

• Resource 1 – Contains an encrypted configuration, and depending on the
code, can also contain a hardcoded encryption key. Some of the configuration
values are:

o Boot loader custom message: Hacked By <https://moses-staff.se>
! Join Us in Telegram : <https://t.me/moses_staff>

•
o Time to wait before restarting the computer after installing the

DiskCryptor driver.
o Time to wait before restarting the computer after encrypting the

volumes.
o Detonation time – The exact minute when the encryption should start.

• Resource 2 – Signed DCDrv.sys driver for 64 bit.
• Resource 3 – Signed DCDrv.sys driver for 32 bit.
• Resource 4 – Encrypted DLL for installing the boot loader.

In addition to the configuration, the execution flow can also be controlled by
the command line parameters received for this tool, and it can take from 0
to 2 parameters.

If the first one exists, it is the encryption key, and if the second one exists, it
is an identifier that is also compared with the string saved in the malware
configuration. An example for it would be string “113” which was used in
both the DCSrv and PyDCrypt parameters. However, the standard execution
chain, as we mentioned previously, is PyDCrypt passing its parameters
(including the encryption key) to DCSrv.

The complete encryption tool is based on a powerful 3rd party open-source
tool called DiskCryptor. MosesStaff used several parts of that tool, primarily
the signed driver and custom boot loaders.

The execution flow of this tool can be divided into three parts: driver
installation, volume encryption, and boot loader installation.

Installing the driver

The first action is to create two services named DCUMSrv and DCDrv. Each of
these has different purposes.

DCUMSrv is used solely for the persistence mechanism to run the same
executable, svchost.exe, on startup with the originally provided
parameters. DCDrv runs the supplied filter driver DCDrv.sys. For the
installation, it extracts the embedded driver from resources 2 or 3
(depending on whether it is running on a 32-bit system or 64-bit), and writes
its content into C:\windows\system32\drivers\DCDrv.sys. It then configures its
registry parameters the same way the DiskCryptor open-source project did.

Figure 8: Service used for persistence mechanism.

Figure 9: Installation of DCSrv.sys filter driver.

Due to the valid signature of the drivers, as we can see below, the
DSE (Driver Signature Enforcement) feature does not stop its installation.

Figure 10: DCDrv.sys valid signature.

When the malware finishes installing the driver, it performs a reboot after a
few minutes to make the driver operational.

Encrypting the volumes

On the second run, the malware waits for the exact time given in the
configuration before it detonates its encryption mechanism. This is yet
another proof that the payloads are targeted and created per victim.

Figure 11: Code that checks the current time and compares it with the value
provided in the configuration.

When the specific time arrives, the program iterates over all available
drives, from C: to Z:, and encrypts them simultaneously using several
threads.

As we mentioned previously, the core encryption mechanism is based on
the DiskCryptor driver. Therefore, all it has to do is to initiate the right
IOCTL messages with the proper parameters which are packaged
into dc_ioctl struct:

typedef	struct	_dc_ioctl	{

dc_pass	passw1;	/*	password	*/

dc_pass	passw2;	/*	new	password	(for	changing	pass)	*/

wchar_t	device[MAX_DEVICE	+	1];

u32	flags;	/*	mount/unmount	flags	*/

int	status;	/*	operation	status	code	*/

int	n_mount;	/*	number	of	mounted	devices	*/

crypt_info	crypt;

}	dc_ioctl;

There are several communication methods between user-mode
applications and kernel-mode drivers. The most popular method is to send
special codes called IO Control Codes (IOCTL) using the Windows
API DeviceIoControl.

In our case, the relevant IOCTL codes for encrypting the drives
are DC_CTL_ENCRYPT_START and DC_CTL_ENCRYPT_STEP, and the parameters are:
the key from the command line in passw1 field, the iterated device
in device field, and CF_AES encryption mode in crypt field.

This process could take a while, so the malware has a two hour sleep
period before rebooting with the custom boot loaders.

Installing DiskCryptor bootloader

This is usually done before the encryption process but depending on the
configuration values, can also wait for it to end. The incentive for overwriting
the boot-loader beforehand is clear, as even if the encryption wasn’t
finished, the damage to the organization is done by locking their computers.

The bootloader installer is embedded as resource 4 in the executable and is
decrypted before it is dropped
as <executable_directory>/<executable_name>.dll. This DLL file has two
export functions named IsEFI and InstallLoader and their names pretty
much describe their functionality.

The malware dynamically loads the dropped library and
calls InstallLoader with the boot loader text message as a parameter:

Figure 12: Loading of the bootloader installer.

We didn’t find any custom malicious changes introduced into the bootloader
itself. Therefore, it contains the exact functionality we expect to see in

volume disk encryption software with a bootloader to decrypt the main
volume.

Encryption scheme

The most notorious ransomware gangs (e.g. Conti, Revil, Lockbit etc.),
almost without exception, always ensure that their encryption system is
well-designed and unassailable. They do their due diligence and at the very
least, dutifully copy the hybrid approach of symmetric and asymmetric
encryption that has been the staple of well-designed ransomware since the
mid-10’s; they know a serious mistake can end up costing them hundreds
of thousands of dollars in potential revenue. For whatever reasons,
including non-financial motivation, lack of experience with ransomware, or
amateur coding skills, the MosesStaff group didn’t make as much of an
effort.

When we add the fact that MosesStaff didn’t negotiate for money, we can
assume that this malware strain isn’t ransomware, but an attempt to cause
irreversible damage for Israelis organizations.

Using this knowledge, let us dig deeper into their method of key generation,
and how can we potentially reverse it.

Key Generation

MosesStaff uses three methods for generating the symmetric keys used by
the encryption mechanism:

• As a command-line parameter generated automatically by PyDCrypt.
• As a command-line parameter given by the user.
• If a certain bit in the configuration is turned on, the key is hardcoded in the

executable.

The most common method is running PyDCrypt, and sending exclusive
encryption keys per hostname, based on MD5 hash, and crafted salt. The
code which generates the keys looks like this:

from	hashlib	import	md5

#	Salt	may	vary	between	samples	('Facebook5'	and	'4Skype4'	strings)

def	custom_hash_func(hostname,	ring=10):

m1	=	'Facebook5'	+	md5(hostname.encode()).hexdigest()	+	'4Skype4'

for	x	in	range(ring):

m1	=	md5(m1.encode()).hexdigest()

return	m1[0:31]

Decryption Process

As we mentioned previously, simple symmetric-key-based encryption is
usually not sufficient to make a bulletproof, hard-to-reverse encryption
scheme. By using the analysis above, we do have several options to
potentially reverse the encryption.

The first and foremost option is to look at the EDR product logs if they were
installed in the environment. A properly designed EDR records all process
creations, together with their command line parameters, which are the keys
in our case.

Figure 13: Screenshot from an EDR solution replicating the attack
with svchost.exe parameters used for decryption.

The second option is to extract and reverse the PyDCrypt malware which
attacked the victim in the first place. This method is a little trickier due to the
code deleting itself after finishing running. From the PyDCrypt sample, we
can extract the crafted hashing function which generates the keys per
computer.

By using the extracted keys from each of these methods, we can insert
them into the boot login screen, and unlock the computer. This way we can
restore access to the operating system, but the disks remain encrypted and
the DiskCryptor boot loader is active on every restart. This can be solved by
creating a simple program that initiates proper IOCTL to the DiskCryptor
driver, and eventually, removes it from the system.

Attribution

Attributing politically motivated cyberattacks is always complicated.
Currently, with all the information we have available, we can’t draw any
definitive conclusions. However, a couple of artifacts caught our attention:

• One of the tools used in the attack, OICe.exe, was submitted to VT from
Palestine a few months before the group began an active phase (encryption
and public leaks) of their activity.

Figure 14: Screenshot of VT submission of command proxy tool left by
attackers on the compromised server.

Although this is not a strong indication, it might betray the attackers’ origins;
sometimes they test the tools in public services like VT to make sure they
are stealthy enough.

• The background and logo PNG image files used on the site moses-
staff[.]se (all of whom had metadata available) were created and/or
modified a few days after the domain was registered on the machine with the
time zone GMT+3. That is the time zone of Israel and the Palestinian territories
at that time of the year.

Figure 15: Example of metadata of the images from MosesStaff site.

Conclusion

As we described above, MosesStaff has a specific modus operandi of
exploiting vulnerabilities in public-facing servers, then using a combination

of unique tools and living-off-the-land maneuvers to leave the targeted
network encrypted, with encryption used solely for destruction purposes.
Like the Pay2Key and BlackShadow gangs before them, the MosesStaff
group is motivated by politics and ideology to target Israeli organizations.
Unlike those predecessors, however, they made an outright mistake when
they put together their own encryption scheme, which is honestly a surprise
in today’s landscape where every two-bit cybercriminal seems to know at
least the basics of how to put together functioning ransomware.

MosesStaff are still active, pushing provocative messages and videos in
their social network accounts. As the saying goes, “a clever person solves a
problem, a wise person avoids it.” The vulnerabilities exploited in the
group’s attacks are not zero days, and therefore all potential victims can
protect themselves by immediately patching all publicly-facing systems.

Check Point products block this attack with the following
signatures: Ransomware.Wins.DCSrv.A, Ransomware.Win.MosesStaff.A, Ransomware.
Win.MosesStaff.B, Ransomware.Win.MosesStaff.C.

IOCs

Hashes

Hash Description Name
680ce7d56fc427ee2fbedb5baea59d68 MosesStaff Webshell V1 IISpool.aspx
1094aa25e2d637e7f5795edd6c0f60e4 MosesStaff Webshell V2 IISpool.aspx
5ffc255557796512798617ae61c4274d MosesStaff Webshell V2 IISpool.aspx
3dde69212234c98b503081d64b9beb52 MosesStaff Webshell V2 IISpool.aspx
a44775e7568b790505bbcaadbd61c993 MosesStaff Webshell V2 IISpool.aspx
3649c106c6edd7ef47acd46586c74d8e MosesStaff Webshell V2 warn.aspx
c1bc20a9bbebbbdd19869999b9cec03b MosesStaff Webshell V2 IISpool.aspx
a06c125e6da566be67aacf6c4e44005e CMD wrapper OICe.exe
e776c4e24c00fa3eeba68cde38ae24f3 PyDCrypt csrss.exe
3dfb7626dbe46136bc19404b63c6d1dc PyDCrypt csrss.exe
7be30062c1a2c42a7061dfbfec364588 DCSrv svchost.exe
93c19436e6e5207e2e2bed425107f080 DCSrv svvhost.exe
2372c7639e70820f253a098dfcaf5060 Bootloader Installer svchost.dll

File paths

c:\users\public\svchost.exe

c:\users\public\svvhost.exe

c:\users\public\svchost.dll

c:\users\public\svchost.bat

c:\users\public\csrss.exe

c:\users\public\ps.exe

c:\users\dc1\dcl.txt

c:\users\public\account

c:\users\public\systemserial

c:\windows\system32\drivers\dcdrv.sys

C:\inetpub\wwwroot\aspnet_client\system_web\IISpool.aspx

