
            

 

 

                
                  

                
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
    

 
 

 

TLP:CLEAR 

Exploring Memory Safety in 
Critical Open Source Projects 
Publication:  June  26,  2024  

Cybersecurity  and  Infrastructure  Security  Agency  (CISA)  
Federal  Bureau  of  Investigation  (FBI)  
Australian  Signals  Directorate’s  (ASD’s)  Australian  Cyber  Security  Centre  (ACSC)  
Canadian  Centre  for  Cyber  Security  (CCCS)  
 

This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information carries 
minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject 
to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For more information on the 
Traffic Light Protocol, see cisa.gov/tlp. 

https://www.cisa.gov/tlp


 

 2 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

 

Table of Contents 
Executive Summary ....................................................................................................................... 3 

Background .................................................................................................................................... 4 

Recent Efforts.............................................................................................................................. 4 

Report Terminology .................................................................................................................... 6 

Methodology and Results ............................................................................................................. 6 

Dependencies............................................................................................................................ 11 

Discussion .................................................................................................................................... 14 

Disclaimer .................................................................................................................................... 15 

Annex ............................................................................................................................................ 16 
 
  



 

 3 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Executive Summary 
In December 2023, the Cybersecurity and Infrastructure Security Agency (CISA), the National 
Security Agency (NSA), the Federal Bureau of Investigation (FBI), and international 
cybersecurity authorities from Australia, Canada, New Zealand, and the United Kingdom, 
published The Case for Memory Safe Roadmaps. This joint publication notes that memory 
safety vulnerabilities are among the most prevalent classes of software vulnerability and 
generate substantial costs for both software manufacturers and consumers related to 
patching, incident response, and other efforts. It further recommends software 
manufacturers create memory safe roadmaps, including plans to address memory safety in 
external dependencies, which commonly include open source software (OSS). 

This joint report, authored by CISA, FBI, the Australian Signals Directorate’s Australian Cyber 
Security Center (ASD’s ACSC), and the Canadian Centre for Cybersecurity (CCCS), provides a 
starting point for these roadmaps by investigating the scale of memory safety risk in 
selected OSS. To understand the state of memory unsafety in OSScode, we explored a set of 
critical open source projects to determine the extent to which they are written in memory-
unsafe languages.1 Memory-unsafe languages require developers to properly manage 
memory use and allocation. Mistakes, which inevitably occur, can result in memory-safety 
vulnerabilities such as buffer overflows and use after free. Successful exploitation of these 
types of vulnerabilities can allow adversaries to take control of software, systems, and data. 
Memory-safe languages shift the abstraction layer and responsibility for writing memory-safe 
code from the developer to the compiler or interpreter, vastly reducing opportunities to 
introduce memory-safety vulnerabilities. 

Upon analyzing a list of 172 projects derived from the Open Source Security Foundation 
(OpenSSF) Securing Critical Projects Working Group’s List of Critical Projects,2 we observe 
that: 

• 52% of the projects contain code written in a memory-unsafe language. 

• 55% of the total lines of code (LoC) for all projects were written in a memory-unsafe 
language. 

• The largest projects are disproportionately written in memory-unsafe languages. Of 
the ten largest projects by total LoC, each has a proportion of memory unsafe LoC 
above 26%. The median proportion using memory-unsafe languages across the ten 
projects is 62.5% and four of the ten project proportions exceed 94%. 

• Dependency analysis of three projects written in memory-safe languages 
demonstrated that each one depended on other components written in memory-
unsafe languages. 

 
1 Memory-unsafe languages used in this analysis are defined in Table 1. 
2 https://github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects. 

https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://urldefense.us/v3/__https:/github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects__;!!BClRuOV5cvtbuNI!CxelB9Zw7VzRQRs8Z6kczibMMaxcNzLa_A08igul6apzzjjx7JHRo8ogPuQm0t8PW331cc4rRarE3JjoKVUIZkAJfijTs0P5$


 

 4 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Hence, we determine that most critical open source projects analyzed, even those written in 
memory-safe languages, potentially contain memory safety vulnerabilities. This can be 
caused by direct use of memory-unsafe languages or external dependency on projects that 
use memory-unsafe languages. Additionally, low-level functional requirements to disable 
memory safety may create opportunities for memory safety vulnerabilities in code written in 
otherwise memory-safe languages. These limitations highlight the need for continued 
diligent use of memory safe programming languages, secure coding practices, and security 
testing. 

We encourage additional efforts to understand the scope of memory-unsafety risks in OSS 
and continued discussion of the best approaches to managing and reducing this risk. These 
discussions should not only consider the risk reduction of a given approach, but also 
resource constraints, performance requirements, and direct and indirect costs of 
implementation. We note that while memory safety vulnerabilities are the most prevalent 
class of vulnerabilities, there is important work to be done to reduce other systemic classes 
of vulnerabilities.3 Please read further recommendations to address memory safety in the 
joint document, The Case for Memory Safe Roadmaps and CISA’s Technical Advisory Council 
of CISA’s Cybersecurity Advisory Committee report on memory safety. 

Background 
Recent Efforts 

The cybersecurity community renewed its focus on memory safety in recent years. Consumer 
Reports released an October 2022 report noting that “roughly 60 to 70 percent of browser 
and kernel vulnerabilities—and security bugs found in C/C++ code bases—are due to 
memory unsafety.”4 The report also cited an interesting discussion of the security costs and 
benefits of using memory-safe languages instead of memory-unsafe ones.5 

In November 2022, the NSA released guidance for software developers and operators on 
protecting against memory safety issues.6 The 2023 National Cybersecurity Strategy (March 
2023) and corresponding implementation plan (July 2023) both discuss investing in 
memory safety and collaborating with the open source community.7 The National 
Cybersecurity Strategy Implementation Plan Initiative 4.1.2, titled “Promote Open Source 
Software Security and the Adoption of Memory Safe Programming Languages,” directs the 
establishment of “an Open Source Software Security Initiative (OS3I) to champion the 

 
3 CVE-2022-44228 is an example of an impactful vulnerability that is outside the class of memory safety vulnerabilities: 
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance. 
4 Grauer, Yael. “Future of Memory Safety,” Consumer Reports, January 2023. https://advocacy.consumerreports.org/wp-
content/uploads/2023/01/Memory-Safety-Convening-Report.pdf. 
5 Gaynor, Alex. “What science can tell us about C and C++'s security.” 27 May 2020. 
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/. 
6 National Security Agency, “Software Memory Safety Cybersecurity Information Sheet” 
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF. 
7 “National Cybersecurity Strategy.” March 2023. https://www.whitehouse.gov/wp-content/uploads/2023/03/National-
Cybersecurity-Strategy-2023.pdf. 

https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report.pdf
https://advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report.pdf
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf


 

 5 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

adoption of memory safe programming languages and open source software security.”8 
Initiative 4.2.1 in the same document, titled “Accelerate Maturity, Adoption, and Security of 
Memory Safe Programming Languages,” also calls for investment in memory-safe 
programming languages and seeks the involvement of the newly-established OS3I.9 In 
February 2024, the Office of the National Cyber Director released a report calling on 
technology manufacturers to migrate to memory safe programming languages.10 

In August 2023, CISA and the Office of the National Cyber Director, in coordination with the 
OS3I, the National Science Foundation, Defense Advanced Research Projects Agency, and 
the Office of Management and Budget, published a request for information on OSS security 
seeking input on “areas of long-term focus and prioritization efforts.”11 

In a 2023 speech, CISA’s Director remarked on the need to address memory-unsafety, via 
“migrating to memory safe code from legacy code bases,” and by addressing memory-
unsafety in open source projects and university coursework.12 In December 2023, CISA 
jointly published The Case for Memory Safe Roadmaps. In the same month, the Technical 
Advisory Council of CISA’s Cybersecurity Advisory Committee issued recommendations for 
CISA action in the area of memory safety.13  

The OSS community produced a wealth of commentary and research relating to memory 
safety. Of particular interest is the work of the OpenSSF Best Practices Working Group.14 The 
mission of this working group’s Memory Safety Special Interest Group is to “understand and 
reduce memory safety vulnerabilities in OSS.”15 Another OpenSSF working group, Securing 
Critical Projects Working Group, produced the list of software from which we derived our 
dataset.16 

Other efforts to promote memory safety across the open source ecosystem include 
Prossimo, an Internet Security Research Group project whose “first goal is to move the 
Internet's security-sensitive software infrastructure to memory safe code.”17 Another is 
Google’s OSS-Fuzz, a tool for debugging open source projects that evolved to detect 
problems in both memory-safe and memory-unsafe languages.18 

 
8Initiative 4.1.2, “National Cybersecurity Strategy Implementation Plan,” July 2023. https://www.whitehouse.gov/wp-
content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf p. 36. 
9 Initiative 4.2.1, “National Cybersecurity Strategy Implementation Plan,” July 2023. https://www.whitehouse.gov/wp-
content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf p. 39. 
10 Office of the National Cyber Director, “Back to the Building Blocks: A Path Toward Secure and Measurable Software,” February 
2024. https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf. 
11 Office of the National Cyber Director, https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-for-
information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization. 
12Easterly, “CISA Director Easterly Remarks at Carnegie Mellon University.” https://www.cisa.gov/cisa-director-easterly-remarks-
carnegie-mellon-university. 
13 CISA Cybersecurity Advisory Committee Technical Advisory Council, “Report to the CISA Director,” December 2023. 
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf. 
14 https://openssf.org/; https://best.openssf.org/. 
15 https://github.com/ossf/Memory-Safety. 
16 https://github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects. 
17 Prossimo, ”About Prossimo,” https://www.memorysafety.org/about/. 
18 ”OSS-Fuzz“ https://google.github.io/oss-fuzz/. 

https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-for-information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization
https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-for-information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf
https://openssf.org/
https://best.openssf.org/
https://github.com/ossf/Memory-Safety
https://urldefense.us/v3/__https:/github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects__;!!BClRuOV5cvtbuNI!CxelB9Zw7VzRQRs8Z6kczibMMaxcNzLa_A08igul6apzzjjx7JHRo8ogPuQm0t8PW331cc4rRarE3JjoKVUIZkAJfijTs0P5$
https://www.memorysafety.org/about/
https://google.github.io/oss-fuzz/


 

 6 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Report Terminology 

This report refers to code, programming languages, and projects as “memory-safe” or 
“memory-unsafe” (or simply, “unsafe”). This terminology is based on our designation of 
certain programming languages in Table 1 as memory unsafe for the purposes of this 
analysis. A memory-safe language handles memory management on behalf of the developer. 
In theory, a program written in a memory safe language will never encounter a memory 
allocation or memory use error, two error types that the report collectively describes as 
“memory-safety” errors.19 Our language designations simplify the complexities of 
determining memory safety to make it possible to draw rough conclusions from millions of 
lines of code (MLoC). We acknowledge that more granular analysis would identify numerous 
instances of memory unsafety within code written in languages other than those designated 
to be generally “memory-unsafe,” (e.g., Rust code contained within an “Unsafe” block). We 
make no judgments about code quality, other security aspects, or other kinds of safety such 
as physical safety of material property. 

Methodology and Results 
This section describes the methods (how) and the results (what) of our analysis. 
Interpretation (why) and recommendations follow in the Discussion section. 

Our analysis is based on the OpenSSF Securing Critical Projects Working Group’s Securing 
Critical Projects List.20 This list is developed using a combination of quantitative and expert 
qualitative inputs, including the OpenSSF Criticality Score.21 The list acknowledges various 
potential sources of bias, including that the Criticality Score, “…prefers projects that are 
extremely active on specific forges. Such projects are likely to be important (at least to the 
participants). However, this is not a perfect measure; some projects will score low here and 
yet be very critical.”22 

While we identified GitHub repositories for all projects in the list, GitHub is only one code 
hosting provider and does not represent all open source repositories.23 Despite these 
potential sources of bias, we consider the Securing Critical Projects List to be a reasonable 
selection of open source projects to analyze. 

We modified the Securing Critical Projects List as necessary to identify specific repositories 
for analysis. In some cases, these modifications excluded projects that were not clearly 
defined at the repository level (e.g., Alpine Linux), and in other cases, selected specific 
repositories from multiple repositories that could potentially represent a given project. 

 
19 Yang H, O’Hearn P. A semantic basis for local reasoning. International Conference on Foundations of Software Science and 
Computation Structures 2002 Mar 15 (pp. 402-416). Berlin, Heidelberg: Springer Berlin Heidelberg. 
20 https://github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects. 
21 https://openssf.org/blog/2023/07/28/understanding-and-applying-the-openssf-criticality-score-in-open-source-projects/. 
22 https://github.com/ossf/wg-securing-critical-projects#meetings-times. 
23 Trujillo, Milo Z., Laurent Hébert-Dufresne, James Bagrow, ”The penumbra of open source: projects outside of centralized 
platforms are longer maintained, more academic and more collaborative.” Cornell University. 22 May 2022. 
https://doi.org/10.48550/arXiv.2106.15611. 

https://urldefense.us/v3/__https:/github.com/ossf/wg-securing-critical-projects/tree/main/Initiatives/Identifying-Critical-Projects__;!!BClRuOV5cvtbuNI!CxelB9Zw7VzRQRs8Z6kczibMMaxcNzLa_A08igul6apzzjjx7JHRo8ogPuQm0t8PW331cc4rRarE3JjoKVUIZkAJfijTs0P5$
https://openssf.org/blog/2023/07/28/understanding-and-applying-the-openssf-criticality-score-in-open-source-projects/
https://github.com/ossf/wg-securing-critical-projects#meetings-times
https://arxiv.org/abs/2106.15611


 

 7 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Through this process, we confirmed and identified public source code repositories for 172 
projects on the Securing Critical Projects List, most of them hosted on GitHub. We then 
analyzed these repositories using the “cloc” tool, which identifies files that contain source 
code and counts LoC within each such file that correspond to a given programming 
language.24 We did not evaluate the accuracy of “cloc.” It is possible that “cloc” incorrectly 
classified some files or LoC. 

Table 1: Memory-Unsafe and Non-Executable Languages and File Types 

Language and File Type Languages and File Types 

Memory-unsafe Assembly, C, C++, C/C++ Header, Cython, D 

Non-executable CSV, diff, HTML, INI, JavaScript Object 
Notation (JSON), Markdown, 
reStructuredText, Text, Web Services 
Description, XHTML, XML, XSD, XSLT, YAML 

In the following results (including the full project list in Table 6), “Unsafe LoC” represents the 
sum of LoC written in the set of languages that we defined as memory-unsafe in Table 1 and 
“Total LoC” represents the sum of LoC written in any language, excluding blank lines, 
comments, and non-executable languages as defined in Table 1. The categories in Table 1 
are based on our analysis of languages detectable by “cloc” and are not necessarily 
comprehensive or complete sets of all memory-unsafe or non-executable languages or file 
types.25  

We observed that source code repositories often include test code that is usually only used 
in development and not by the fielded software. For example, the “packaging” project has 
six lines of memory-unsafe C code in a single file: ./tests/hello-world.c. It would make 
sense to exclude development test code that is not likely to be exposed to attacks, however, 
broadly excluding repository directories named /test and /tests may be too coarse of an 
approach. Thus, our analysis did not attempt to identify or exclude test code and therefore 
includes some LoC that are not likely to be exposed to attacks. 

The “By Project” heading in Table 2 identifies projects containing any amount of memory-
unsafe code, and the “By LoC” heading identifies memory-unsafe LoC in the aggregate, 
independent of project. Roughly half of the projects contain some code written in a memory-
unsafe language and slightly more than half of the total executable LoC in our analysis were 
written in a memory-unsafe language. 

  

 
24 https://github.com/AlDanial/cloc. 
25 https://github.com/AlDanial/cloc?tab=readme-ov-file#recognized-languages. 

https://github.com/AlDanial/cloc


 

 8 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Table 2: Proportion of Memory Unsafety 

 By Project By LoC   

Only memory-
safe language 

82 48% 141,167,614 45% 

Any memory-
unsafe 
language 

90 52% 173,588,291 55% 

Total 172  314,755,905  

Table 3 and Figures 1 and 2 describe the interquartile ranges for total and memory-unsafe 
LoC by project. Note that the ranges are calculated independently for each column (e.g., the 
project with the maximum Total LoC is not necessarily the same as the project with the 
maximum Unsafe ratio). The largest projects (Chromium, the Linux kernel, gecko-dev, kvm, 
and linux-yocto-contrib) contain 25 million or more LoC, much of which is written in memory-
unsafe languages. Most projects are smaller than one million LoC. These characteristics 
create the skewed distribution and compressed interquartile ranges visible in Figure 1. 
Figure 2 limits the maximum vertical axis value to 3 MLoC to zoom in on the interquartile 
ranges. 

Table 3: Interquartile Ranges 

 Total LoC Unsafe LoC Unsafe Ratio 

Minimum 234 0 0% 

Q1 82,498 0 0% 

Q2 (median) 310,495 25 0% 

Q3 1,012,546 136,124 53% 

Maximum 34,677,183 24,721,815 99% 

 



 

 9 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

 
Figure 1: Interquartile Ranges 

 
Figure 2: Interquartile Ranges, Y Axis Limited to 3 MLoC 



 

 10 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Figures 3 and 4 compare project size (in MLoC) to the proportion of memory-unsafe code 
used in each project. Figure 4 limits the maximum vertical axis value to 3 MLoC to zoom in 
on smaller projects. Note that the locations of project name labels in Figures 3 and 4 are 
approximate. 

 

Figure 3: Comparison of Project Size to Memory-Unsafety 

 
Figure 4: Comparison of Smaller Project Sizes to Memory-Unsafety, Y Axis Limited to 3 MLoC 



 

 11 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Most of the largest projects (including the Linux kernel) predominantly use memory-unsafe 
languages. Some other large projects (Chromium and Gecko web browser frameworks) use 
memory-unsafe languages for roughly half of their code. This is expected since operating 
systems and web browsers perform functions, such as providing multiple code execution 
environments and managing memory directly, that have traditionally been difficult to 
implement in fully memory-safe ways. 

Table 4 shows the count and distribution of projects based on the percentage of code in each 
project that is written in a memory-unsafe language. 

Table 4: Proportional Memory-Unsafe Language Use 

Dependencies 

The initial LoC analysis did not consider dependencies because dependency analysis at 
scale is complex. Different projects and languages have different, and sometimes multiple, 
ways to specify dependencies. The computation time required to identify and analyze 
dependencies increases substantially compared to analyzing the project alone. Due to the 
effort required to perform comprehensive dependency analysis on all the projects, we 
selected three: Ansible, Distribution, and Home Assistant. 

Of the three projects, only Distribution directly contained any memory-unsafe code. 
Distribution contained approximately ten thousand lines of code (10 KLoC), making up 
1.72% of the total LoC. This code is part of a Go module dependency that is included as part 
of the Distribution repository for cryptography and low-level interactions with operating 
systems.26 The inclusion of dependencies bundled with a project source repository further 
complicates the comparison of “project only” to “project with all dependencies.” 

 
26 https://pkg.go.dev/golang.org/x/sys, https://github.com/distribution/distribution/tree/main/vendor/golang.org/x/sys/unix. 

Percentage of 
memory-unsafe 

language use 

Number of projects Proportion of all 
projects 

Proportion of 
memory-unsafe 

projects 

0% 82 48%  

> 0%, ≤ 25% 31 18% 34% 

> 25%, ≤ 50%  12 7% 13% 

> 50%, ≤ 75% 23 13% 26% 

> 75%, ≤ 95% 20 12% 22% 

> 95%, ≤ 100% 4 2% 5% 

https://pkg.go.dev/golang.org/x/sys
https://github.com/distribution/distribution/tree/main/vendor/golang.org/x/sys/unix


 

 12 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

We evaluated multiple source code dependency analysis tools and primarily used It-
Depends, ScanCode Toolkit, CMake, and—for visualization--Graphviz.27,28,29,30 These tools 
examine source code repositories, sometimes relying on included dependency information, 
and sometimes analyzing source code directly. For example, It-Depends looks for 
requirements.txt or setup.py but does not analyze import statements.31 To understand and 
confirm the tool results we performed manual analysis, primarily using mechanisms 
inherent to the languages (such as pip show and requirements.txt for Python and go 
list -m all for go). We also limited the analysis to dependencies specified by the project 
in some way. We did not include development or build requirements, operating system 
libraries, or application programming interfaces (APIs). 

The tools typically output lists of dependencies, their relationships, and sometimes the type 
of dependency. Output is usually graph information in a variety of formats such as JSON, 
comma-separated values, or Graphviz DOT.32 For each dependency, we downloaded the 
source code, performed the “cloc” tool analysis to measure use of unsafe languages, and 
compared the LoC counts for each project by itself to the project with all dependencies 
included, as shown in Table 5. 

Table 5: Selected Projects and Their Dependencies 

Superficially, the projects alone contain very little memory-unsafe code, but each has 
dependencies that do contain memory-unsafe code. Cursory analysis shows that 
dependencies using unsafe languages commonly provide features such as interfaces to 
memory-unsafe languages (typically C), graphics, cryptography, and compression. 

 
27 https://github.com/trailofbits/it-depends. 
28 https://github.com/nexB/scancode-toolkit. 
29 https://cmake.org/. 
30 https://graphviz.org/. 
31 https://github.com/trailofbits/it-depends/blob/master/it_depends/pip.py. 
32 https://graphviz.org/doc/info/lang.html. 

Project (language) 

Project only Project and dependencies 

Total 
KLoC 

Unsafe 
KLoC 

Ratio 
Dependency 
count 

Total 
KLoC 

Unsafe 
KLoC 

Ratio 

Ansible (python) 171 0 0% 8 693 19 2.7% 

Distribution (go) 600 10 
1.72

% 
283 18,001 227 1.3% 

Home Assistant 
(python) 

1,792 0 0% 44 2,379 44 1.9% 

https://github.com/trailofbits/it-depends
https://github.com/nexB/scancode-toolkit
https://cmake.org/
https://graphviz.org/
https://github.com/trailofbits/it-depends/blob/master/it_depends/pip.py
https://graphviz.org/doc/info/lang.html


 

 13 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

For the purpose of our initial dependency analysis, the tools worked reasonably well for 
languages that explicitly support dependencies (for example, requirements.txt for 
Python, pom.xml for Java Maven, package.json for Node.js npm, go.sum for go). Some 
complexity remains, however, because even languages with explicit dependency 
specifications may have multiple ways to create dependencies. In Python, for example, 
import statements may create dependencies on modules that are not included in the 
standard Python library or a specific Python distribution.33 Both requirements.txt and 
install_requires (setuptools) are methods to specify dependencies needed to install a 
Python project. All three methods may be necessary to analyze dependencies. 

 

Figure 5: Ansible Dependencies 

Graphs are a common way to visualize dependencies, subject to practical limitations on the 
size of the graph. Ansible has eight effective dependencies (the lowest number of the 
projects analyzed). Its dependencies are displayed in Figure 5. 

The graph in Figure 5 is limited to explicitly declared Python package dependencies, 
effectively the results of pip show. A cursory examination of the Python cryptography 
package reveals additional static dependencies on a number of Rust crates and OpenSSL 
(written primarily in C).34 We did not attempt to analyze the extent of memory unsafety 
introduced by the Rust or OpenSSL dependencies. Nonetheless, this example further 
illustrates the challenges of dependency analysis, specifically that multiple methods and 
abstractions are necessary to fully resolve dependencies and that otherwise memory-safe 
code can include memory-unsafe dependencies that use different programming languages. 

 
33 A custom analysis of Python dependencies: https://www.hudsonrivertrading.com/hrtbeat/dependency-graph-python-codebase/. 
34 https://cryptography.io/en/latest/faq/#why-does-cryptography-require-rust and https://cryptography.io/en/latest/openssl. 

https://www.hudsonrivertrading.com/hrtbeat/dependency-graph-python-codebase/
https://cryptography.io/en/latest/faq/#why-does-cryptography-require-rust
https://cryptography.io/en/latest/openssl


 

 14 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Discussion 
We observed that many critical open source projects are partially written in memory-unsafe 
languages and limited dependency analysis indicates that projects inherit code written in 
memory-unsafe languages through dependencies. 

Where performance and resource constraints are critical factors, we have seen, and expect 
the continued use of, memory-unsafe languages. Examples include operating system 
kernels and drivers, cryptography, and networking, particularly in embedded applications. It 
may, however, be an effective security investment to transition these types of projects to 
memory safe languages, and new projects should also consider using memory safe 
languages. Recent advancements allow memory safe programming languages, such as 
Rust, to parallel the performance of memory-unsafe languages.35 

Even when using memory-safe languages, developers may disable memory-safety features. 
In their response to the Request for Information on Open Source Software Security, Amazon 
Web Services (AWS) included a recommendation to "write new code in memory safe 
languages like Rust, but note that not all code written in nominally memory-safe languages 
is actually memory-safe." AWS cites two studies that support a comment that "…it’s easy and 
fairly common (and often reasonable) for developers to disable the compiler features that 
make Rust memory safe."36 

Our analysis explored the challenges of assessing memory safety at scale, especially with 
limited resources for dependency analysis. Complete dependency analysis is difficult, 
possibly intractable, for at least two major reasons. First, languages often have multiple 
mechanisms to specify or create dependencies. In some cases, and more commonly among 
memory-safe languages, there are explicit mechanisms to define dependencies for a project. 
As noted in a previous example, Python dependencies can be created using import 
statements and specified using requirements.txt and install_requires/setup.py 
(setuptools). The second, related issue, is the computational cost of comprehensively and 
recursively identifying dependencies to some limit. This report only examined dependencies 
for a few selected projects and limited the recursion depth to what was readily available 
using language-specific dependency mechanisms. 

Obstacles to achieving full memory safety are fundamental to how computers work. Source 
code must be compiled or interpreted to execute as native code on a given operating system 
and hardware platform. Somewhere underneath every programming language stack and 
dependency graph, memory-unsafe code is written and executed. Despite these 
fundamental issues, using memory-safe languages clearly reduces memory-safety 
vulnerabilities. Memory-safe languages shift the abstraction layer and responsibility for 

 
35 The Computer Language Benchmarks Game https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html. 
36 Comment from Amazon Web Services https://www.regulations.gov/comment/ONCD-2023-0002-0082. 

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://www.regulations.gov/comment/ONCD-2023-0002-0082


 

 15 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

writing memory-safe code from the developer to the compiler or interpreter, decreasing 
reliance on fallible humans. 

This analysis is primarily limited by data selection issues associated with both the choice of 
projects and the lack of systemic dependency resolution. Improved project selection and 
dependency resolution would offer increased accuracy and greater insight into the use of 
memory-unsafe languages but would also require significant tooling and analysis effort. 
Analyzing closed-source or proprietary software would require different techniques and 
additional effort but would grant insight into otherwise opaque software. A more extensive 
dataset, especially one designed to include important projects that are not hosted on 
centralized platforms, may provide a more representative sample of OSS. Additional analysis 
would be required to estimate the costs of rewriting existing projects and the future benefits 
associated with reducing the number of memory-safety vulnerabilities. 

We encourage others to build on this analysis to further expand our collective understanding 
of memory-unsafety risk in OSS, evaluate approaches—such as targeted rewrites of critical 
components in memory-safe languages—to reducing this risk, and to continue efforts to 
drive risk-reducing action by software manufacturers. For those considering further 
investment in memory safe programming practices, we recommend two references: The 
Case for Memory Safe Roadmaps and the December 2023 report on memory safety by the 
Technical Advisory Council of CISA’s Cybersecurity Advisory Committee.37  

Disclaimer 
CISA, FBI, ASD’s ACSC, and CCCS do not endorse any commercial entity, product, company, 
or service, including any entities, products, or services mentioned within this document. Any 
reference to specific commercial entities, products, processes, or services by service mark, 
trademark, manufacturer, or otherwise, does not constitute or imply endorsement, 
recommendation, or favoring by CISA, FBI, ASD’s ACSC, or CCCS. 

  

 
37 CISA Cybersecurity Advisory Committee Technical Advisory Council, “Report to the CISA Director,” December 2023. 
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf. 

https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://www.cisa.gov/sites/default/files/2023-12/CSAC_TAC_Recommendations-Memory-Safety_Final_20231205_508.pdf


 

 16 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Annex 
Table 6 contains the list of projects and basic KLoC statistics. 

Table 6: Summary Project List and Data Set 

Project Total KLoC Unsafe KLoC Ratio 

chromium 34,677 17,718 51% 

gecko-dev 33,821 11,084 33% 

kvm 26,024 24,722 95% 

linux 26,023 24,721 95% 

linux-yocto-contrib 25,860 24,570 95% 

linux-yocto 22,765 21,751 96% 

llvm-project 14,133 8,775 62% 

gcc 10,874 6,814 63% 

jdk 8,172 2,101 26% 

node 7,963 3,602 45% 

bitwarden-clients 5,393 0 0% 

kubernetes 5,039 9 0% 

mysql-server 4,289 3,589 84% 

tensorflow 3,932 2,527 64% 

DefinitelyTyped 3,141 0 0% 

nixpkgs 2,872 5 0% 

php-src 2,798 1,391 50% 

pytorch 2,489 1,254 50% 

ua-parser-js 2,320 2,169 94% 

TypeScript 2,316 0 0% 

go 2,213 133 6% 

magento2 2,206 0 0% 

MariaDB_server 2,192 1,771 81% 

ceph 1,951 1,278 66% 



 

 17 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

zephyr 1,822 1,530 84% 

rubygems 1,802 425 24% 

home-assistant 1,792 0 0% 

Rust 1,747 6 0% 

Postgres 1,689 962 57% 

cpython 1,566 629 40% 

glibc 1,560 1,328 85% 

vscode 1,545 0 0% 

perl5 1,494 676 45% 

grafana 1,474 0 0% 

gradle 1,421 15 1% 

spark 1,421 0 0% 

symfony 1,362 0 0% 

solr 1,356 0 0% 

flutter 1,284 4 0% 

kata-containers 1,212 8 1% 

nss 1,164 859 74% 

WordPress 1,043 0 0% 

CMake 1,014 682 67% 

git 1,012 282 28% 

openssl 989 588 60% 

cli 949 0 0% 

material-ui 928 0 0% 

systemd 906 588 65% 

keycloak 905 0 0% 

salt 900 0 0% 

drupal 889 0 0% 



 

 18 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

PrestaShop 886 0 0% 

Signal-Desktop 851 0 0% 

amphtml 817 38 5% 

three.js 804 0 0% 

gatsby 779 0 0% 

cassandra 759 0 0% 

angular 691 0 0% 

gettext 662 366 55% 

babel 639 0 0% 

PowerShell 628 0 0% 

vault 609 0 0% 

distribution 604 10 2% 

gnupg 537 284 53% 

pandas 534 33 6% 

numpy 508 212 42% 

react-native 492 88 18% 

arm-trusted-firmware 491 438 89% 

Signal-iOS 486 7 1% 

guava 479 0 0% 

Signal-Android 450 0 0% 

bitwarden-server 425 0 0% 

tomcat 410 0 0% 

bash 390 125 32% 

sqlite 389 278 72% 

julia 384 113 30% 

rabbitmq-server 378 0 0% 

rails 370 0 0% 



 

 19 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

resolvelib 365 0 0% 

httpd 351 242 69% 

homebrew-core 349 0 0% 

tor 343 320 93% 

poky 338 3 1% 

grub 322 281 87% 

joomla-cms 318 0 0% 

puppet 314 0 0% 

redis 307 199 65% 

haproxy 278 230 83% 

cryptography 272 0 0% 

yocto-kernel-cache 241 0 0% 

storybook 232 0 0% 

buildroot 231 17 7% 

kong 230 0 0% 

curl 226 173 77% 

framework 222 0 0% 

busybox 220 192 88% 

logging-log4j2 214 0 0% 

jackson-databind 203 0 0% 

mbedtls 202 147 73% 

webpack 183 0 0% 

zookeeper 177 26 15% 

libarchive 172 162 94% 

pip 172 0 0% 

ansible 171 0 0% 

nginx 166 163 99% 



 

 20 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

electron 165 78 47% 

ant-design-charts 158 0 0% 

brew 155 0 0% 

openssh-portable 142 120 85% 

traefik 139 0 0% 

ruby 127 0 0% 

bootstrap 118 0 0% 

openvpn 112 98 88% 

zstd 111 92 83% 

meson 111 9 9% 

maven 111 0 0% 

jackson-core 106 0 0% 

commons-lang 105 0 0% 

Signal-Server 105 0 0% 

pro-components 103 0 0% 

libpng 102 57 56% 

coreutils 98 67 69% 

async 93 0 0% 

homebrew-cask 92 0 0% 

musl 91 90 99% 

mobile 91 0 0% 

mosquitto 90 52 58% 

automake 85 0 0% 

httpcomponents-core 84 0 0% 

httpcomponents-client 77 0 0% 

logback 77 0 0% 

libsignal 72 1 1% 



 

 21 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

reprepro 65 52 81% 

ant-design 60 0 0% 

commons-io 53 0 0% 

ant-design-mobile 49 0 0% 

memcached 48 32 68% 

rekor 48 0 0% 

libjpeg 44 37 83% 

zlib 44 30 68% 

cffi 44 15 34% 

autoconf 42 0 0% 

make 34 30 87% 

commons-codec 32 0 0% 

cosign 32 0 0% 

readable-stream 32 0 0% 

lodash 23 0 0% 

libtool 18 4 24% 

jinja 18 0 0% 

fulcio 17 0 0% 

u-boot 17 0 0% 

slf4j 16 0 0% 

sigstore-java 15 0 0% 

yocto-kernel-tools 15 0 0% 

m4 12 6 51% 

pycparser 11 2 18% 

isarray 10 0 0% 

pyyaml 8 1 17% 

packaging 8 0 0% 



 

 22 CISA | FBI | ASD’s ACSC | CCCS 

TLP:CLEAR 

TLP:CLEAR 

Project Total KLoC Unsafe KLoC Ratio 

inherits 8 0 0% 

ant-design-pro 7 0 0% 

community 7 0 0% 

sigstore-python 6 0 0% 

qs 4 0 0% 

natives 3 0 0% 

string_decoder 3 0 0% 

markupsafe 2 0 18% 

coa 1 0 0% 

kind-of 1 0 0% 

minimist 1 0 0% 

rc 0 0 0% 

safe-buffer 0 0 0% 
 


	Executive Summary
	Background
	Recent Efforts
	Report Terminology

	Methodology and Results
	Dependencies

	Discussion
	Disclaimer
	Annex

