
INVISIMOLE:
THE HIDDEN PART
OF THE STORY
UNEARTHING INVISIMOLE’S
ESPIONAGE TOOLSET AND
STRATEGIC COOPERATIONS

ESET Research white papers

Authors:
Zuzana Hromcová
Anton Cherepanov

TLP: WHITE

InvisiMole: The hidden part of the story2
TLP: WHITE

CONTENTS
1 EXECUTIVE SUMMARY � 4

2 ATTACKS AND INVESTIGATION � 4

2.1 InvisiMole’s toolset . 5

2.2 Cooperation between InvisiMole and Gamaredon . 5

3 BUILDING BLOCKS � 6

3.1 Structure . 6

3.1.1 InvisiMole blobs . 6

3.1.2 Execution guardrails with DPAPI .7

3.2 Payload . 8

3.2.1 TCP downloader . 9

3.2.2 DNS downloader . 9

3.2.3 RC2CL backdoor . 13

3.2.4 RC2FM backdoor .14

4 DELIVERY METHOD �16

5 LATERAL MOVEMENT �18

5.1 Network vulnerabilities .18

5.1.1 EternalBlue exploit chain .18

5.1.2 BlueKeep exploit chain . 20

5.2 Trojanized software and documents .21

6 EXECUTION CHAINS �23

6.1 Control Panel misuse chain . 24

6.1.1 Installation . 25

6.1.2 Stage 1—Control Panel.lnk . 25

6.1.3 Stage 2—Control.js . 25

6.1.4 Stage 3—Control Panel . 26

6.1.5 Stage 4—infocardadd.cpl . 27

6.2 SMInit exploit chain . 27

6.2.1 Installation . 27

6.2.2 Stage 0—scheduled task . 28

6.2.3 Stage 1—SMinit.exe . 28

6.2.4 Stage 2—SyncData entry . 29

6.3 Speedfan exploit chain . 30

6.3.1 Installation . 30

6.3.2 Stage 1—mscorscvs.exe . 31

6.3.3 Stage 2—NGEN.exe . 31

6.3.4 Stage 3—Ngen.cab . 32

6.3.5 Stage 4—speedfan.sys exploit . 32

InvisiMole: The hidden part of the story3
TLP: WHITE

6.3.6 Stage 5—kernel-mode inject . 34

6.3.7 Stage 6—loader . 34

6.3.8 Previous versions . 36

6.4 Wdigest exploit chain . 37

6.4.1 Installation . 37

6.4.2 Stage 0—scheduled task . 39

6.4.3 Stage 1—setupSNK.exe . 39

6.4.4 Stage 2—wdigest.dll . 41

6.4.5 Stage 3—M loader .42

6.4.6 Stage 4—A loader .42

6.4.7 Stage 5—B loader . 45

7 CONCLUSION � 45

8 ACKNOWLEDGEMENTS � 46

9 INDICATORS OF COMPROMISE (IOCS) � 46

10 MITRE ATT&CK TECHNIQUES � 55

10.1 InvisiMole .56

10.2 RC2CL backdoor .58

10.3 RC2FM backdoor . 60

Authors:
Zuzana Hromcová
Anton Cherepanov

June 2020

InvisiMole: The hidden part of the story4
TLP: WHITE

1 EXECUTIVE SUMMARY
The InvisiMole group is a threat actor operating since at least 2013, whose malware was first reported by ESET
in 2018 in connection with targeted cyberespionage operations in Ukraine and Russia.

We previously documented its two feature-rich backdoors, RC2CL and RC2FM, that provide extensive
espionage capabilities such as recording from the victim’s webcam and microphone, tracking the
geolocation of the victims, and collecting recently accessed documents.

However, little was known about the rest of the group’s tactics, techniques and procedures (TTPs).

In late 2019, the InvisiMole group resurfaced with an updated toolset, targeting a few high-profile
organizations in the military sector and diplomatic missions, both in Eastern Europe.

ESET researchers conducted an investigation of these attacks in cooperation with the affected organizations
and were able to uncover the extensive, sophisticated toolset used for delivery, lateral movement and
execution of InvisiMole’s backdoors—the missing pieces of the puzzle in our previous research. The
investigation also uncovered previously unknown cooperation between the InvisiMole group and Gamaredon,
a highly active threat group also operating since at least 2013, and mainly targeting Ukrainian institutions.

Analyzing InvisiMole’s updated toolset, we discovered that:

• The changes in the InvisiMole malware (compared to versions analyzed in 2018) aim to prevent
revealing and reconstructing the operation

• The updated InvisiMole toolset relies heavily on so-called “living off the land” techniques, abusing
legitimate applications to perform malicious operations while flying under the radar

• InvisiMole utilizes a variety of vulnerable executables and exploits them for covert code execution and
long-term persistence

• Apart from exploiting vulnerable executables it introduces to victims’ machines, InvisiMole also uses
EternalBlue and BlueKeep exploits for lateral movement in its victims’ networks

• InvisiMole employs long execution chains, crafted by combining legitimate tools and encrypted
shellcode stored in the registry

• The components are encrypted per-victim using a Windows feature named Data Protection API,
which ensures that the payload can only be decrypted and executed on the affected computer, thus
protecting it from analysis by security researchers

• The updated InvisiMole toolset features a new component that uses DNS tunneling for stealthier
C&C communication

In this white paper, we will provide an in-depth technical analysis of the newest InvisiMole toolset, offering
a unique look into the TTPs of the elusive InvisiMole group.

2 ATTACKS AND INVESTIGATION
In our tracking of InvisiMole activity, we detected a new campaign using updated versions of InvisiMole’s
RC2FM and RC2CL backdoors.

According to our telemetry, the campaign was ongoing from late 2019 to the time of writing this report
and targeted high-profile organizations in Eastern Europe, including military organizations and diplomatic
missions. Like in the previously reported InvisiMole campaign, the attacks were highly targeted, with naught
but a few dozen computers affected.

https://www.welivesecurity.com/2018/06/07/invisimole-equipped-spyware-undercover/
https://www.welivesecurity.com/2020/06/11/gamaredon-group-grows-its-game/

InvisiMole: The hidden part of the story5
TLP: WHITE

2.1 InvisiMole’s toolset
Our telemetry suggests that the attackers were actively developing their malware throughout the
campaign, redesigning and recompiling its components, as well as introducing new ones.

For example, we detected several versions of InvisiMole’s loader and RC2FM backdoor, with one of the
samples1 apparently freshly compiled before being deployed and detected by ESET. We also found that later
in the operation, the attackers abandoned the use of the PE format for their files, in an attempt to avoid
detection. As for the newly introduced components, we discovered a previously unreported TCP downloader
and a DNS downloader, the latter using DNS tunneling to communicate with the C&C server. These are
described in detail in the TCP downloader and DNS downloader sections.

Overall, the campaign is characterized by long execution chains with multiple layers of per-victim
encryption, making it difficult to reconstruct the attack. However, thanks to cooperating directly with the
affected organizations, we were able to recover the payloads and reconstruct four execution chains, which
are described in detail in the Execution chains section.

In these chains, the attackers used several interesting living off the land techniques—they abuse legitimate
applications (also called living off the land binaries or LOLBins) to execute their own code, set up persistence,
perform lateral movement and other operations, aiming to bypass application whitelisting and fly under the
radar. More information on this tactic can be found in the Delivery method and Execution chains sections.

Furthermore, we found that InvisiMole delivers vulnerable executables to compromised computers and
exploits them for covert code execution and long-term persistence.

Specifically, the attackers brought a vulnerable speedfan.sys driver onto a compromised computer and
exploited it in order to inject InvisiMole into a legitimate process from kernel mode (see the Speedfan exploit
chain section). This technique previously was used, for example, by the Slingshot APT and has been referred to
as Bring Your Own Vulnerable Driver (BYOVD) by fellow researchers.

Besides the driver, the attackers delivered a vulnerable Windows component from Windows XP
and exploited its input validation vulnerability (see the Wdigest exploit chain section), or a vulnerable
third-party software package and exploited its stack overflow vulnerability (see the SMInit exploit chain
section)—a technique we named Bring Your Own Vulnerable Software (BYOVS).

For lateral movement, we observed that the InvisiMole group steals documents or software installers
from the compromised organization, and replaces them in the original locations with their own trojanized
versions (see the Trojanized software and documents section), or uses EternalBlue and BlueKeep exploits to
spread to vulnerable hosts within the network (see the Network vulnerabilities section).

2.2 Cooperation between InvisiMole and Gamaredon
During our investigation, we discovered evidence of collaboration between the InvisiMole group and the
Gamaredon group.

In February 2020, we detected attempts to deploy the InvisiMole malware using server infrastructure that
is known to be used by the Gamaredon group. Specifically, we identified samples of Gamaredon group’s .NET
downloader (detected as MSIL/Pterodo) that download and execute an InvisiMole TCP downloader (see
details in the Delivery method section).

Our research showed that this component was used only against a small number of Gamaredon victims,
which may suggest that targets considered particularly significant by the attackers are “upgraded” from
Gamaredon’s relatively simple .NET downloader to the advanced InvisiMole malware.

1 SHA-1: 27FC1DCB1B3DCA3E496F799A2944E4FB070AF39C

https://github.com/LOLBAS-Project/LOLBAS/blob/master/README.md
https://securelist.com/apt-slingshot/84312/
https://medium.com/@gorkemkaradeniz/defeating-runasppl-utilizing-vulnerable-drivers-to-read-lsass-with-mimikatz-28f4b50b1de5
https://www.welivesecurity.com/2020/06/11/gamaredon-group-grows-its-game/

InvisiMole: The hidden part of the story6
TLP: WHITE

We previously suspected that InvisiMole is only deployed after the attackers have infiltrated the network,
and possibly gained administrative privileges, as many of InvisiMole’s execution methods require elevated
rights. This newly discovered delivery method supports that assumption, and allows the attackers to devise
more creative and stealthier ways to install and execute their malware.

This discovery also reveals a previously unreported cooperation between the Gamaredon and InvisiMole
groups. However, it should be noted these two groups use different TTPs and a varying level of
sophistication—the Gamaredon group seems to make no effort in trying to stay under the radar, in contrast
with the stealthiness of InvisiMole demonstrated in the recent campaign.

Despite the evidence of collaboration, we consider them to be two distinct groups with different TTPs,
rather than a single threat actor.

3 BUILDING BLOCKS
Before we explain various scenarios of how InvisiMole is executed, installed and spread within the network,
we introduce the basic building blocks of these execution chains:

• Payload components delivered in the final stages

• The techniques used to avoid detection of these components

Other specifics of the execution chains, including legitimate tools misused for persistence and vulnerable
components exploited for covert execution of the chains, will be discussed throughout the paper.

3.1 Structure
To thwart detection and analysis, InvisiMole uses a specific structure for its components, and execution
guardrails to ensure the malicious payload can only be decrypted on the victim’s computer.

3.1.1 InvisiMole blobs
InvisiMole’s characteristic shellcode-like structure is used for most of its components, including its RC2CL
backdoor, downloaders and many intermediate stages. We refer to this structure as an InvisiMole blob.

As Figure 1 shows, an InvisiMole blob starts with a magic value:

• 64 DA 11 CE for 64-bit payloads

• 86 DA 11 CE for 32-bit payloads

with the offset to the entry point located at a fixed address:

• 0x45 for 64-bit payloads

• 0x3D for 32-bit payloads

InvisiMole’s loaders are able to recognize and load this structure. The loaders write the addresses of the
GetProcAddress and LoadLibraryA functions to specific offsets (0x04 and 0x0C for 64-bit blobs; 0x04
and 0x08 for 32-bit blobs). Next, they pass execution to the blob, which then resolves its other imports.

The reason for using a custom executable file format, rather than the common PE format, is likely
an attempt to prevent detection and make analysis more difficult.

On the other hand, the parameters of this structure helped us identify InvisiMole components and link them
together, in particular to link InvisiMole with the Gamaredon threat group and reconstruct InvisiMole’s
execution chains (see the Delivery method and Execution chains sections).

InvisiMole: The hidden part of the story7
TLP: WHITE

Figure 1 // Part of 32-bit InvisiMole blob (left) and InvisiMole loader handling the blob (right)

Note that older InvisiMole backdoors used a different structure, but it was also shellcode starting with
a specific magic value—F9 FF D0 DE for 32-bit, 64 FF D0 DE for 64-bit payloads.

3.1.2 Execution guardrails with DPAPI
A notable change in the newest InvisiMole toolset is the introduction of execution guardrails. InvisiMole
individually encrypts its components per-victim, directly on the compromised computer, to make sure the
payload can only be decrypted (and executed) on the target computer.

To place these execution guardrails, it uses a Windows feature called Data Protection API (DPAPI).
DPAPI uses a symmetric encryption scheme with a key derived from user’s login secrets.

Two API functions are critical for this process:

• CryptProtectData for data encryption

• CryptUnprotectData for data decryption

The decryption must be done on the same computer where the data were encrypted.

The legitimate, intended use of DPAPI is local storage of credentials, such as login or Wi-Fi passwords,
for example by web browsers or mail applications. InvisiMole uses it to protect its payload from
security researchers—even if they find InvisiMole’s components in telemetry or on malware
sharing platforms, they can’t decrypt it outside of the victim’s computer.

We were able to overcome this obstacle by cooperating directly with the targeted organizations and having
the payload decrypted on the exact computers. This allowed us to analyze the decrypted payloads and
find further clues and components. Typically, a decrypted InvisiMole blob led to another DPAPI-encrypted
component, and so we worked iteratively to recover InvisiMole’s stages one by one. We present the
results of these efforts in the Execution chains section.

https://docs.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptprotectdata

InvisiMole: The hidden part of the story8
TLP: WHITE

Figure 2 // InvisiMole’s loader uses CryptUnprotectData API to decrypt the next stage, and then checks the decrypted
blob for InvisiMole magic value 64 DA 11 CE

Note that the use of execution guardrails and long execution chains is a feature new to the latest InvisiMole
version. Previously, its backdoors were embedded in the binary resources of the loader, encrypted with
a simple XOR cipher using a hardcoded key.

3.2 Payload
InvisiMole uses a combination of four payload components:

• Updated versions of the previously known RC2CL and RC2FM backdoors

• Two new downloaders—TCP- and DNS-based

InvisiMole’s flagship RC2CL backdoor has been adapted to the new structure and is deployed on the
compromised machines as the final stage.

In some instances, we observed InvisiMole’s second, smaller backdoor RC2FM deployed along with the RC2CL
backdoor, or within a short time span. However, the feature-rich RC2CL seems to be used more prominently.

A notable addition to InvisiMole’s toolset is a DNS downloader, with its C&C communication built on top
of the DNS protocol. Along with the new TCP downloader, its function is to download and execute updates
from the server, or to deploy additional components or external tools.

Figure 3 illustrates C&C servers used by these four InvisiMole payload components.

InvisiMole: The hidden part of the story9
TLP: WHITE

Figure 3 // C&C servers used by InvisiMole’s components

3.2.1 TCP downloader
The new TCP downloader is a simple component used to download further InvisiMole modules. Notably,
InvisiMole uses this component as the first payload delivered to a newly-compromised computer—see the
Delivery method and Lateral movement sections for how this component is used when InvisiMole gains the
initial foothold to and moves across the network.

The downloader uses a simple TCP protocol where it sends the name of the compromised PC to InvisiMole’s
C&C server and expects an XOR-encrypted InvisiMole blob as the response.

This blob is then decrypted and loaded in a new thread.

3.2.2 DNS downloader
The more notable addition to InvisiMole’s arsenal is its DNS downloader. Like the TCP downloader, this
plugin is used to download additional components from the remote server and execute them. However,
while the former is used to obtain the next stage after InvisiMole has infiltrated a new computer, the DNS
downloader is deployed as one of the final stages and used in the long run, allowing the attackers to
push updates. That’s why it uses DNS tunneling—a stealthier way to perform C&C communications.

With DNS tunneling, the compromised client does not directly contact the C&C server; it only communicates
with a benign DNS server where it sends requests to resolve a domain to IP address. The DNS server then
contacts the name server responsible for that domain, which is an attacker-controlled server, and relays its
response back to the client, as illustrated in Figure 4.

The actual C&C communication is embedded in the DNS requests and DNS replies, unbeknownst to
the benign DNS server that serves as a middleman in the communication.

InvisiMole: The hidden part of the story10
TLP: WHITE

Figure 4 // Overview of DNS tunneling

Unrelated to its DNS tunneling functionality, this component also serves as a loader for previously installed
InvisiMole blobs stored under registry values HKCU\Software\Microsoft\EventSystem\AutoEx{A,B,C}.

Communication protocol
For C&C communication, the DNS downloader uses a custom implementation of DNS tunneling, building
its own protocol on top of the DNS protocol. The downloader sends DNS NULL and DNS AAAA requests for
subdomains of attacker-controlled domain names, such as 153[.]re.

The downloader encodes the clientserver part of the protocol in the subdomain. The subdomain is
generated for each request from information such as the request type, current timestamp, PC name,
system volume serial number and other identifiers, using the following domain encoding algorithm:

1. The binary message is converted to bit strings, with LSB first, e.g. 0xC0  “00000011”

2. The resulting long bit string is padded to multiples of 5.

3. The bit string is encoded using a modified base32 encoding, with the custom conversion table
abcdefghiklmnopqrstvxyz123456789 and no padding.

Example of a generated subdomain with encoded message:

a8y3g5f2h2aaybyfplr4xcbaaaaaaaaaaaaaahoraaaaaaaaaaaaaaaagiacaa.aaaaaaaaaaaae.153[.]re

For the serverclient part of the protocol, the attacker-controlled name server encodes the response
in DNS NULL records or in DNS AAAA records, instead of what normally would be a list of IPv6 addresses.

The size of a DNS record is limited, so a typical communication between the DNS downloader and the C&C
server consists of a series of DNS requests and replies, with the command or file transmitted in chunks.

To keep track of such a pseudo-connection, both client- and server-side requests have embedded type and
transmission ID. All possible request types are listed in Table 1.

InvisiMole: The hidden part of the story11
TLP: WHITE

Table 1 // InvisiMole’s DNS tunneling protocol request types

ID Sender Comment

D7C0 Client Start of communication

D7C2 Server No operation

D7C3 Server Start of transmission (of blob)

D7C4 Client/server Data transmission

D7C5 Server Start of transmission (of EXE file)

D7C6 Server Start of transmission (of DLL file)

D7C7 Server Sleep for 30 minutes

D7C8 Server Sleep for 2 hours

D7C9 Server

Load blob from the specified registry keyD7CA Server

D7CB Server

Each pseudo-connection consists of the following steps, with one of the possible scenarios being illustrated
in Figure 5:

1. The client sends a 0xD7C0 request to the server to initiate the pseudo-connection.

2. The server replies with a command to:

a� sleep for a configured amount of time (0xD7C2/0xD7C7/0xD7C8 requests),

b� load InvisiMole blob from a specified registry key/value (0xD7C9/0xD7CA/0xD7CB
 requests), or

c� start transmission of a new module (0xD7C3/0xD7C5/0xD7C6 requests).

1. In case a transmission is started, the server sends the module size, transmission ID and then the server
and client continue to communicate using the 0xD7C4 request type, until the full module is transmitted.

2. Finally, the DNS downloader executes the module or loads it in a new thread. If the transmitted module
is a DLL or EXE file, it is first dropped under a randomly generated name in the %APPDATA%\Microsoft\
AddIns\ folder.

DNS uses UDP as a transport protocol in most cases, which is not reliable, and so the DNS
downloader can repeat each DNS request for up to 4 times, to provide better stability for the
pseudo-connection.

InvisiMole: The hidden part of the story12
TLP: WHITE

Figure 5 // Example of how the DNS downloader retrieves an InvisiMole blob from the server

Detection prevention
To make sure the C&C communication stays unnoticed, the DNS downloader refrains from contacting the
server if it suspects it is executed in an analytical environment.

Before it contacts the C&C server, it checks whether the compromised computer has network connectivity
and access to a DNS server, by sending DNS A queries (using DnsQuery_A API) for these legitimate domains:

• time.windows.com

• crl.microsoft.com

• download.windowsupdate.com

• cdn.globalsign.com

It also checks for presence of selected network sniffers, by looking for artifacts listed in Table 2 on the
system. If detected, the downloader waits 60 seconds until the next network activity attempt.

InvisiMole: The hidden part of the story13
TLP: WHITE

Table 2 // Artifacts associated with network sniffers scanned by the DNS downloader

Object type Object name Associated network sniffer

Mutex
Wireshark-is-running-{9CA78EEA-EA4D-4490-9240-
FC01FCEF464B} Wireshark

Window name
TCPViewClass TCPView

PROCMON_WINDOW_CLASS ProcMon

Running process

procmon.exe ProcMon

wireshark.exe Wireshark

dumpcap.exe Dumpcap (Wireshark)

3.2.3 RC2CL backdoor
RC2CL is the larger of InvisiMole’s backdoors, with extensive espionage capabilities. Depending on the
version, this backdoor supports up to 87 commands, with capabilities such as:

• Turning on webcam and microphone devices to capture photos, record video and sound;

• Capturing screenshots of display or individual windows;

• Collecting network configuration information, including information about wireless networks (MAC
address, SSID, beacon interval), that can be used for geo-location of the victims;

• Collecting information about installed software, about software used by specific users, and about
software executed on user login;

• Monitoring, sorting and collecting specific documents, such as recently accessed documents.

Please refer to our earlier blogpost for the full list of RC2CL backdoor’s commands.

In this recent campaign, the backdoor continues to support these capabilities, with added functionality to
scan the compromised network for hosts that support the vulnerable SMBv1.0 protocol. InvisiMole
uses this capability to spread in the network via the EternalBlue exploit, as detailed in the EternalBlue exploit
chain section.

The backdoor also continues to use a central staging location for collected data prior to the exfiltration.
Updated were the magic values used as markings for various types of data, as listed in Table 3, as well as
specific file and folder name prefixes:

• Filename prefixes: “T0Q2_”, “~S0PM”, “~A0FM”, “~N031E”, “~E070C”, “70zf_”

• Subfolder name prefixes: “~T0QM”, “MT0”, “CE55”, “~70Z63”, “~D0E5”

https://www.welivesecurity.com/2018/06/07/invisimole-equipped-spyware-undercover/

InvisiMole: The hidden part of the story14
TLP: WHITE

Table 3 // Magic values—the first four bytes of the files, storing various types of collected data.

Magic value File content

91 89 01 DD Unknown

93 21 01 DA Audio recordings

93 89 01 DA Webcam photos

95 89 01 DA Audio recordings

A1 CA F1 08 Data from removable drives

A1 CE F2 24 Unknown

A2 CA F1 08 Data from removable drives

B1 CB F2 18 zlib-compressed packages

BA AB 00 19 Data from removable drives

C0 AF F2 08 Internal data

C0 CC F1 08 Data from removable drives

DF E4 3A 08 Screenshots

For C&C communication, RC2CL mimics HTTP protocol with custom HTTP “verbs”—HIDE, ZVVP and NOP.

The new versions of the RC2CL backdoor also have added measures to avoid detection—the backdoor
injects itself into another process, rather than running directly, if Bitdefender firewall is detected running,
that is, if any of these artifacts is found on the system:

• Loaded driver named bdfwfpf.sys

• Running process with bitdefender substring in name

• Substring enabled=”1” in any of these Bitdefender settings files:

%PROGRAM_FILES%\Bitdefender\Bitdefender\settings\firewall\settings.xml

%PROGRAM_FILES%\Bitdefender\Bitdefender 2010\Firewall\settings.xml

%PROGRAM_FILES%\Bitdefender\Bitdefender 2013\settings\firewall\settings.xml

%PROGRAM_FILES%\Bitdefender\Bitdefender 2015\settings\firewall\settings.xml

%PROGRAM_FILES%\Bitdefender\Bitdefender 2016\settings\firewall\ig_settings.xml

%PROGRAM_FILES%\Bitdefender\Bitdefender 2017\settings\firewall\ig_settings.xml

3.2.4 RC2FM backdoor
RC2FM is the smaller of InvisiMole’s backdoors, supporting up to 19 commands depending on the version.

Several commands of the older version were used to collect and exfiltrate documents—in specific folders,
on mapped drives or network shares. In the new version, the backdoor can also exfiltrate jpeg images from
connected devices using the WPD interface. The attackers probably use this capability to exfiltrate photos
from Media Transport Protocol (MTP) devices, e.g. mobile devices. Many people take photos with
their smartphones, so it indeed makes sense for an espionage actor to collect information not only
from laptop or desktop computers, but also from smartphones.

This functionality is achieved using functions such as IPortableDeviceValues and
IPortableDeviceConnector; a fragment is illustrated in Figure 6.

https://www.welivesecurity.com/2018/06/07/invisimole-equipped-spyware-undercover/

InvisiMole: The hidden part of the story15
TLP: WHITE

Figure 6 // Part of decompiled RC2FM backdoor responsible for opening a connected device via the WPD interface

Other added capabilities include keylogging, process discovery, UAC bypass, and ability to create and operate
a reverse shell.

Similar to the RC2CL backdoor, the newest version of RC2FM has added means to avoid detection.

• It modifies its behavior if selected AV products are detected. More specifically, it suppresses the
keylogging functionality or injects itself into another process if these processes are found running:

Process name Associated AV

qhsafetray.exe 360 Total Security

avastsvc.exe Avast Free Antivirus

bdagent.exe Bitdefender Total Security

• It terminates itself if a virtualized environment is detected.

a� VirtualBox is assumed if the HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX__
 registry key exists

b� Virtual PC environment is tested using vpcext instruction

c� VMware environment is tested using cpuid instruction, searching for VMwareVMware signature

https://shasaurabh.blogspot.com/2017/07/virtual-machine-detection-techniques.html
https://kb.vmware.com/s/article/1009458

InvisiMole: The hidden part of the story16
TLP: WHITE

4 DELIVERY METHOD
When we first reported on InvisiMole’s capabilities in 2018, we didn’t know how it gained its initial foothold in
the network:

All infection vectors are possible, including installation facilitated by
physical access to the machine.

However, there were hints the attackers had already obtained administrative privileges before InvisiMole
was installed on the system—InvisiMole’s loader was placed in the Windows directory. Similarly, most of the
execution methods used in the recent campaign require elevated privileges, as documented in the Execution
chains section.

We solved the mystery in 2020 when we observed InvisiMole being delivered by network
infrastructure used by the Gamaredon threat group—specifically by Gamaredon’s .NET downloader2 that
ESET detects as MSIL/Pterodo.

This Gamaredon .NET downloader delivers a 7-Zip SFX package3, which unpacks to a legitimate tool
winapiexec4—a small tool that enables running Windows API functions through command line parameters.
The attackers execute the tool using a batch script shown in Figure 7, with shellcode in the command line.

Figure 7 // Batch script that passes InvisiMole’s shellcode to the legitimate winapiexec tool

Winapiexec interprets the command line arguments as Windows API calls, and so it allocates new memory,
copies the supplied shellcode into that memory and creates a new thread to execute it. The shellcode is
the InvisiMole TCP downloader, connecting to 80.255.3[.]66:443 to download and then execute a 64-bit
InvisiMole blob (with 64 DA CE 11 magic).

2 SHA-1: 857EEB37DB2B666981779005DD5E55CEA7A53233
3 SHA-1: 303A63CE12AD42900DA257428E2FD4DE4F9829DC
4 ESET classifies this tool as a potentially unsafe application, with detection names Win{32,64}/Winapiexec.A potentially unsafe application

“

“

https://www.welivesecurity.com/2018/06/07/invisimole-equipped-spyware-undercover/
https://attack.mitre.org/groups/G0047/
https://rammichael.com/winapiexec

InvisiMole: The hidden part of the story17
TLP: WHITE

The components used in InvisiMole’s delivery chain are illustrated in Figure 8.

Figure 8 // Overview of InvisiMole’s delivery chain

Later, we observed a variation of this delivery method, where the Gamaredon .NET downloader delivered
InvisiMole’s TCP downloader5 with added support for user-configured proxies. The downloader was probably
updated after an unsuccessful attempt to use a direct internet connection without using the proxy.

Table 4 // InvisiMole’s components delivered by Gamaredon’s .NET downloader

SHA-1 Filename Comment

303A63CE12AD42900DA257428E2FD4DE4F9829DC -
droppers

4B8E11E0734D3109627FF8871EF7DB14C0DE9C41 -

4A6DC6A32A777DC5DD47221BF79604BC0258A987 intel_log64.exe winapiexec tool

6F98B12C98DA1FCFF078256970E9B8EF12139640 api64.cmd
batch scripts

76FC2E29524C6AD58B0AF05251C419BB942CCED0 intel_log64.cmd

Note that the Gamaredon group typically uses spearphishing emails as the initial vector, attaching documents
with malicious macros—which is likely how the network was first compromised in this case as well.

As previously reported, this group is known for using simple tools, with the main objective to infiltrate the
target organization and spread as far as possible in the target’s network. Now we know they are paving
the way for the more sophisticated InvisiMole toolset.

This tactic of using a simpler backdoor to infiltrate the target network, and only then deliver the more
sophisticated tool, has several benefits for the attackers. In this case, the Gamaredon toolset is used for
reconnaissance—to confirm the target is of special interest, to collect information about security products
or security policies and to use this information to customize the next steps—for example, to choose which of
InvisiMole’s execution chains should be used.

This all minimizes the risk that the more advanced infiltration—InvisiMole’s toolset—will be discovered.

Note that we were able to trace the cooperation between Gamaredon and InvisiMole groups back to 2018,
but only after the publication of our first blogpost about InvisiMole. This discovery is thus only relevant for
the recent campaign, and does not invalidate our earlier hypothesis about possible physical access.

5 SHA-1: 4B8E11E0734D3109627FF8871EF7DB14C0DE9C41

https://www.welivesecurity.com/2020/06/11/gamaredon-group-grows-its-game/

InvisiMole: The hidden part of the story18
TLP: WHITE

5 LATERAL MOVEMENT
Once in the compromised network, InvisiMole uses two methods to move laterally—actively by exploiting
vulnerabilities in network protocols, and passively by deploying trojanized applications and documents, while
relying on them to be shared and executed by the victims themselves.

5.1 Network vulnerabilities
We have observed InvisiMole using the BlueKeep and EternalBlue vulnerabilities (CVE-2019-0708 and
CVE-2017-0144, respectively) to spread within the network and deploy InvisiMole’s backdoors or downloaders.

Three of InvisiMole’s components assist by scanning the compromised network:

• The Portscan plugin searches for open ports; see Figure 9 for examples of strings extracted from the plugin.

• The BlueKeep plugin searches for hosts vulnerable to the BlueKeep vulnerability in the RDP protocol.
• The RC2CL backdoor searches for hosts vulnerable to the EternalBlue vulnerability in the SMB protocol.

Figure 9 // Selected strings extracted from the Portscan plugin

5.1.1 EternalBlue exploit chain
InvisiMole deploys its RC2CL backdoor and TCP downloader on hosts vulnerable to EternalBlue, using
components shown in Figure 10.

Figure 10 // InvisiMole’s lateral movement via the EternalBlue exploit

Reconnaissance
To identify vulnerable hosts in the compromised network, InvisiMole uses the added functionality in the
RC2CL backdoor. Its command 222 was previously used for controlling backdoor configuration values—now
the attackers use it to send a range of IP addresses to the compromised computer.

The backdoor first tests whether these addresses are active by sending them ICMP echo requests, and
retrieves their MAC addresses using the SendARP API.

https://en.wikipedia.org/wiki/BlueKeep
https://en.wikipedia.org/wiki/EternalBlue

InvisiMole: The hidden part of the story19
TLP: WHITE

To determine whether the host supports the vulnerable SMBv1.0 protocol, the backdoor:

• Opens SMB session on port 445 (and optionally on another port).

• Sends SMB_COM_NEGOTIATE packet (0x72) to negotiate the SMB protocol (see Figure 11). It only
lists “NT LM 0.12” as a supported dialect, forcing the server to choose SMBv1.0 protocol for the session,
as long it is supported by the server.

Figure 11 // SMB_COM_NEGOTIATE packet

• Sends SMB_COM_SESSION_SETUP_ANDX packet (0x73) to setup the SMB session (see Figure 12).
The only command in the packet is No further commands (0xFF). The backdoor doesn’t send any more
commands within the session.

Figure 12 // SMB_COM_SESSION_ANDX packet

• Logs off the session by sending SMB_COM_LOGOFF_ANDX packet (0x74) with the command
No further commands (0xFF), as shown in Figure 13.

Figure 13 // SMB_COM_LOGOFF_ANDX packet

The results of this scan are reported back to the C&C server.

After identifying vulnerable hosts, we assume the attackers push a tool that tries to exploit the vulnerability
via the same backdoor—RC2CL already has mechanisms in place to download and execute additional code.

InvisiMole: The hidden part of the story20
TLP: WHITE

Exploit
We haven’t seen the actual code used by the attackers to exploit the vulnerability. However, on multiple
computers within one of the targeted networks, we detected DoublePulsar, a backdoor typically deployed by
the EternalBlue exploit.

Moreover, we reviewed Windows Security Logs from the network and identified the following sequence
of events:

• An SMB session was created.

• A few seconds later, InvisiMole’s loader6 was executed.

As shown in Figure 14, the loader’s internal name is PULSAR_LOADER.DLL, likely referring to being deployed
by the DoublePulsar backdoor.

Figure 14 // InvisiMole’s component with internal name PULSAR_LOADER.dll

Payload
The loader deployed by the DoublePulsar backdoor is bundled with an InvisiMole blob that is the
TCP downloader, used to download and execute additional InvisiMole blobs.

We also detected another loader7 with the same internal name PULSAR_LOADER.DLL, this time bundled
with InvisiMole’s RC2CL backdoor.

5.1.2 BlueKeep exploit chain
As another lateral movement technique, InvisiMole exploits the BlueKeep vulnerability in the RDP protocol
to deploy InvisiMole’s TCP downloader on the target machines, as illustrated in Figure 15. In this case, all
parts of the exploit—from identifying the vulnerable hosts to deploying the malicious payload—are bundled
in a single component, the BlueKeep plugin, which is implemented as a 64-bit InvisiMole blob. Figure 16
shows a fragment of the strings extracted from the plugin, referring to exploiting the vulnerability.

Figure 15 // Three parts of BlueKeep plugin

6 SHA-1: 02F4242F7CA7289C8EDFA7B4F465C62C7A6815E2
7 SHA-1: 00EA86AAB3D616A24A5E13D592FABC26416DFDBD

https://en.wikipedia.org/wiki/DoublePulsar

InvisiMole: The hidden part of the story21
TLP: WHITE

Reconnaissance
Reconnaissance is implemented in the first part of the BlueKeep plugin, which scans the network for hosts
vulnerable to the BlueKeep vulnerability.

Exploit
The main part is ported from the open-source Metasploit implementation of the BlueKeep exploit.

Payload
As the user-mode code, the plugin finally executes the embedded InvisiMole TCP downloader.

Figure 16 // Selected strings hardcoded in the BlueKeep plugin

5.2 Trojanized software and documents
Apart from exploiting network vulnerabilities, the attackers also use a more passive approach to move
laterally. They use trojanized files—SFX archives bundling InvisiMole malware with a benign software
installer or, in one instance, a PDF document.

When executed, the SFX archive drops and executes or opens the benign file, while it also loads an
embedded InvisiMole blob that drops InvisiMole components and installs them on the system. Trojanized
files are used to distribute two of InvisiMole’s execution chains, as illustrated in Figure 17 and described in the
Control Panel misuse chain and SMInit exploit chain sections.

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/rdp/cve_2019_0708_bluekeep_rce.rb

InvisiMole: The hidden part of the story22
TLP: WHITE

Figure 17 // Two InvisiMole execution chains delivered by trojanized files

We have detected almost 30 different trojanized applications—among them Bitdefender USB Immunizer, 7-Zip,
remote desktop and employee monitoring utilities, but also region-specific software and software specific
to the organization’s sector. Along with the PDF document, the benign versions of these applications were
clearly stolen from the compromised organization.

InvisiMole replaces the original files on the compromised computer with the trojanized versions,
while preserving their names, icons and metadata. This is both a lateral movement and persistence
technique, as users naturally open and share their own documents.

This technique is especially powerful if the trojanized file happens to be a software installer placed on
a central server—a common way to deploy software in larger organizations. That way, InvisiMole is
organically distributed to many computers that use this server.

InvisiMole: The hidden part of the story23
TLP: WHITE

Table 5 // Examples of trojanized software, stolen from the compromised organization and bundled with InvisiMole.The
list excludes documents and software specific to the affected organization.

SHA-1 Filename Application

125FCA6EBD82682E51364CF93C9FFA8EB4F6CA5F WebComponents.exe Web Components (Hikvision)

3B923FA1E5DCB4F65DAA138BECEB123D7C431D1B AIDA64.exe AIDA64 Network Audit

3BB2C05DEA077835A79499A0BB81410D27EEBFAF poweriso6-full.exe PowerISO Setup

4C13AD9AD9C134DE15F3AE5E2F0D2EC1E290DEE8 SamsungUniversalPrintDriver3.exe Samsung Universal Print Driver

728386C6D6EAF43148FE25F86E6AF248019D9842 Daemon.Tools.Lite.v5.0.1.0407.exe DAEMON Tools

793F4DD2B765ECD962A053246646ED0D6144D249 adberdr11000_ru_ru.exe Adobe Reader

8147E85E13B3624FA290F1F218647A0D1FD70204 UltraVNC_1_2_24_X86_Setup.exe
UltraVNC (remote desktop
software utility)

8C5F463FA79601DE38D0A77808226B1A8E67459A 7-Zip.exe 7-Zip

9B1E0A22DEB124FF36FCF7ED2EA82E799B49B070 lanscope_setup.exe LanScope (employee monitoring)

9B48090704C3F62D6B768780845E2D04862F5219 UltraVNC_1_2_24_X64_Setup.exe
UltraVNC (remote desktop
software utility

CD3419B4B3958BE5BE1CAEA60A4EE98E4D427A6D epson373260eu.exe Epson (printer driver)

D5D3A01A5944D55E5DDF1F915E88043691BE6F58 putty.exe Putty

D8EB2429253E82729F34373068EC350D1B2DA8AB WinSetupFromUSB-1-6.exe WinSetupFromUSB

DDB871AD5823BE31F5176F2B0CE149D4B6E44F24 BDUSBImmunizerLauncher.exe
BitDefender USB Immunizer
Launcher

E936E857A812690178ED049FD4A1766E281B9F1D DMMultiView.exe
Geovision DMmultiview Software
for Remote Monitoring

6 EXECUTION CHAINS
For execution and persistence, InvisiMole’s operators use long execution chains and rely on living-off-the-
-land. We have observed the attackers using a BYOVD technique, and the aforementioned BYOVS technique,
to deliver vulnerable components to the system and then exploit their vulnerabilities—not to gain initial
access to the system, but to achieve covert code execution and long-term persistence.

Their tactic is exclusively to install legitimate tools, and reserve malicious components for later
stages within the execution chain.

Moreover, the later stages are encrypted using DPAPI, to make it harder to reconstruct the full chain outside
the victim’s computer. Despite these issues, we were able to reconstruct four distinct types of InvisiMole
execution chains in cooperation with the compromised organizations, as illustrated in Figure 18.

We named the four chains by the component that InvisiMole misuses or exploits to achieve covert
execution. Attackers use these methods in various situations:

• Control Panel misuse chain is the least elaborate, possibly used in earlier stages of development, when
the attackers tested the use of DPAPI and InvisiMole blob structure. This is the only chain where the
attackers used a malicious PE file—all the other chains were crafted by combining legitimate tools
and encrypted shellcode stored in registry keys.

• SMInit exploit chain exploits a vulnerability in Total Video Player software, and is used on systems where
the attackers don’t have administrative privileges.

• Speedfan exploit chain exploits a vulnerability in Windows speedfan.sys driver, and is used on older
32-bit systems where the attackers have managed to gain administrative privileges.

InvisiMole: The hidden part of the story24
TLP: WHITE

• Wdigest exploit chain exploits a vulnerability in Windows wdigest.dll library. This is InvisiMole’s
flagship chain, the most elaborate, used on the newest versions of Windows, where the attackers
have administrative privileges.

Figure 18 // Four reconstructed InvisiMole execution chains

5Note we haven’t observed InvisiMole’s RC2FM backdoor executed by these chains. On the other hand,
we were not able to obtain one of the three final stages in the Speedfan exploit chain, and it is possible the
unknown component is precisely RC2FM backdoor.

This backdoor may also be is executed by another, yet undiscovered execution chain. As seen in Figure 19,
the debug artifacts in one of InvisiMole’s components reveal other possible execution methods.

Figure 19 // Debug artifact suggesting other possible execution methods

6.1 Control Panel misuse chain
The specialty of the Control Panel misuse chain is a rare technique known from Vault 7 leaks, used to achieve
covert execution. InvisiMole installs one of its components as a control panel item, thus forcing Control Panel
to load it every time it is executed. The malicious control panel item then loads InvisiMole’s TCP downloader.

Overview of the chain is illustrated in Figure 20.

InvisiMole: The hidden part of the story25
TLP: WHITE

Figure 20 // Control Panel misuse chain

6.1.1 Installation
The chain is set up by a patched RAR SFX dropper with an added InvisiMole blob. As a decoy, it uses a
software installer, or a document previously stolen from the victim.

The dropper encrypts the final stage—InvisiMole’s TCP downloader—with CryptProtectData API and
drops it along with Stage 4. Then, it registers Stage 4 as a control panel item under this registry key:

HKCU\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs

“infocard” = “%APPDATA%\Microsoft\AddIns\infocardadd.cpl”

and opens the Control Panel which (as detailed in Stage 3 part) triggers execution of Stage 4 for the first time.

On the first execution, Stage 4 sets up persistence for the chain, so it subsequently starts from Stage 1.

Table 6 // Components used in InvisiMole’s Control Panel misuse chain

SHA-1 File path Comment

N/A %STARTUP%\Control Panel.lnk Stage 1—LNK file

2402765EA67E04F151D32BF2B749B150BBD3993E %APPDATA%\Control\Control.js Stage 2—JavaScript

9F64FEC50D4447175459AAB33BC9126F9A3370D8
%APPDATA%\Microsoft\AddIns\
infocardadd.cpl Stage 4—InvisiMole blob loader

A3AFF8CE55907DAA1F3360DED01BCF3F6F9D0CF2

N/A (unique per victim)
%APPDATA%\Microsoft\AddIns\
imageapplet.dat

Stage 5—InvisiMole’s TCP
downloader

6.1.2 Stage 1—Control Panel.lnk
The first stage is an LNK file dropped in the Startup folder, pointing to the file %APPDATA%\Control\
Control.js.

6.1.3 Stage 2—Control.js
Stage 2 is a malicious JavaScript file with this script:

WScript.CreateObject(“WScript.Shell”).Run(“::{20d04fe0-3aea-1069-

a2d8-08002b30309d}\\::{21EC2020-3AEA-1069-A2DD-08002B30309D}”, 0)

Although it is not clear at first glance, this script opens the Control Panel in a new hidden window, as the
CLSIDs used in the script refer to the This PC8 folder and the Control Panel, respectively.

8 Alternatively, this folder is known as My Computer or Computer on older Windows versions

InvisiMole: The hidden part of the story26
TLP: WHITE

6.1.4 Stage 3—Control Panel
In Stage 3, the legitimate, preinstalled Control Panel is misused to automatically load Stage 4, which is
masked as a CPL file.

CPL files are a special type of Windows executable file—a DLL file with .cpl extension, exporting a function
named CPlApplet that matches a specific prototype. Unlike standard DLL files, CPL files can be executed
directly. When a CPL file is executed, Windows automatically executes the Control Panel (control.exe)
with this file as an argument, and Control Panel loads the CPL and calls its CPlApplet function.

This feature made CPL files popular among malware authors in the past—as a way to disguise DLL files and
to bypass simple email filters. For example, massively distributed banking trojans in a campaign targeting Brazil
have been delivered as CPL files with deceptive names (e.g. Invoice.cpl), attached to malicious emails, in
an attempt to trick potential victims into executing them.

Another method attackers have used to leverage CPL files is to register a malicious CPL file as a control
panel item, under the HKCU\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs
registry key. Whenever the Control Panel is executed, it automatically loads all such CPL files and calls their
CPlApplet functions. This technique is described in the MITRE ATT&CK knowledge base and is also used by
InvisiMole—but with a surprising twist.

InvisiMole takes advantage of an anomaly in how Windows handles files with .cpl extensions that don’t
comply with the CPL specification. Stage 4 is registered as a control panel item, but it is not a genuine
CPL file—instead, it is a standard DLL with its extension changed to .cpl. If the user executes the InvisiMole
.cpl file directly, it won’t be loaded because of the missing CPlApplet function, and an error may be
triggered, as seen in Figure 21.

Figure 21 // As InvisiMole’s .cpl file does not support the CPL interface, on Windows 7, it triggers an error when double-clicked

However, when the Control Panel is executed, the same file is loaded successfully, and thus InvisiMole is able
to execute any DLL file under the context of the Control Panel. This trick has been briefly documented in the
Vault 7 leak of CIA capabilities.

Overall, the benefit of this persistence technique for the attackers is that there is no obvious connection
between the LNK file dropped in the Startup folder and the malicious file that is ultimately loaded—
seemingly, only the Control Panel is executed on system startup.

https://www.welivesecurity.com/wp-content/uploads/2015/05/CPL-Malware-in-Brasil-zx02m.pdf
https://attack.mitre.org/techniques/T1196/
https://wikileaks.org/ciav7p1/cms/page_13763468.html

InvisiMole: The hidden part of the story27
TLP: WHITE

6.1.5 Stage 4—infocardadd.cpl
Stage 4 is a malicious control panel item dropped under the name infocardadd.cpl, which mimics the
name of its legitimate infocard.cpl counterpart.

On its first execution, this component drops Stages 1 and 2 to set up persistence for the chain.

Subsequently, it is used to load the final stage of the chain, which is InvisiMole’s TCP downloader9. It obtains
the downloader from the imageapplet.dat file, decrypts it using CryptUnprotectData and loads it in a
new thread.

6.2 SMInit exploit chain
In the SMInit exploit execution chain, the attackers bring a legitimate, but vulnerable piece of software to the
compromised system and then exploit its vulnerability to load InvisiMole’s TCP downloader.

This technique can help avoid application whitelisting or detection, as the malware is running under the
context of a legitimate process.

For the exploitation, the attackers use the quite outdated Total Video Player10 software by EffectMatrix Inc. This
software was released back in 2007 and has a stack overflow vulnerability. The attackers deploy it under the
name SMInit.exe; thus the name of this execution chain, illustrated in Figure 22.

Figure 22 // InvisiMole’s SMinit exploit chain

Note that this execution method does not require administrative privileges, so the attackers can use it on
compromised computers where they didn’t manage to obtain those rights.

6.2.1 Installation
This chain is set up by a dropper, which is a patched RAR SFX archive with an added InvisiMole blob. As a
decoy, it uses a software installer previously stolen from the compromised organization. This decoy software
installer is unrelated to the Total Video Player software.

The dropper delivers a set of files related to the vulnerable software, as listed in Table 7, and drops them in
the %USERPROFILE%\AppData\Roaming\Microsoft\Sessions folder.

Apart from that, it uses CryptProtectData to encrypt Stage 2 and 3, and stores the encrypted blobs in the
registry, as listed in Table 8.

Table 7 // Files related to Total Video Player software misused by InvisiMole

SHA-1 Filename Comment

2161A471B598EA002FC2A1CC4B65DBB8DA14A88E SMInit.exe

Legitimate Total Video Player software355F026D6F8C43956B8D326026038BF809F7350D hskin.dll

9091BE6630AD170D15CA6A6722CE53619AC61229 TVPSkin.dll

E85D7F0564771C9396FDCDB9877DB0FF61C1D515 Settings.ini File with exploit

9 SHA-1 of decrypted InvisiMole blob: DBD21EF03CCC3A985D808B0C5EC7AC54DED5D1C9
10 The full name of the software is E.M. Total Video Player

InvisiMole: The hidden part of the story28
TLP: WHITE

Table 8 // Registry entries with stages of SMInit exploit chain

Registry key Comment

HKCU\Software\Microsoft\Feeds\SyncData Stage 2—task scheduler

HKCU\Software\Microsoft\Feeds\SyncImage Stage 3—InvisiMole’s TCP downloader

On the first execution, the chain starts from Stage 1 and sets up persistence, so that it is triggered on each
system start by a scheduled task.

6.2.2 Stage 0—scheduled task
This chain is installed as a task named MSST. This task executes the first stage—SMInit.exe—using this
uncommon command line:

rundll32.exe shell32.dll,ShellExec_RundDLL “C:\Users\Admin\AppData\

Roaming\Microsoft\Sessions\SMInit”

This combination of rundll32.exe and shell32.dll tricks Sysinternals Autoruns tool into hiding this task from the
list of programs configured to run during system bootup when the Hide Windows Entries option is enabled
in the tool. This option is part of the default settings.

6.2.3 Stage 1—SMinit.exe
Stage 1 is the legitimate Total Video Player software, deployed under the SMInit.exe11 filename (see Figure 23).

Figure 23 // SMInit.exe file properties show E.M. Total Video Player as the original name

11 SHA-1: 2161A471B598EA002FC2A1CC4B65DBB8DA14A88E

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://twitter.com/hasherezade/status/849756054145699840

InvisiMole: The hidden part of the story29
TLP: WHITE

Once the software is started, it attempts to parse the Settings.ini file, shown in Figure 24. The parsing
function allocates a 256-byte buffer on the stack and reads a value from the file. InvisiMole uses a specifically
crafted Settings.ini file, where the length of this value exceeds the length of the allocated buffer. This
is how the stack overflow vulnerability is exploited and how the shellcode placed in the crafted settings file
gets executed.

Figure 24 // Settings.ini file with the stack overflow exploit

By triggering this vulnerability, InvisiMole is able to force the application to execute InvisiMole shellcode
under its context. The shellcode reads the registry value HKCU\Software\Microsoft\Feeds\SyncData,
decrypts it and passes execution flow to the decrypted code.

6.2.4 Stage 2—SyncData entry
The Stage 2 shellcode is used to decrypt and load the final stage of this chain from HKCU\Software\
Microsoft\Feeds\SyncImage, which is InvisiMole’s TCP downloader12.

To decrypt Stage 3, and also to decrypt one part of itself, it uses the CryptUnprotectData API.

During the first execution, this stage also schedules the Stage 0 task for the current user, to ensure
persistence for the whole chain. To make the task scheduling functionality stealthier, it doesn’t utilize
API calls; instead, it is implemented using the COM interface of the task scheduler (ITaskService,
ITaskDefinition, ITaskSettings COM interfaces).

12 SHA-1 of decrypted InvisiMole blob: 2E7F737CAEB56716ACE36FADEB74EE610705283F

InvisiMole: The hidden part of the story30
TLP: WHITE

6.3 Speedfan exploit chain
In the Speedfan exploit execution chain, InvisiMole uses the Bring Your Own Vulnerable Driver technique
to load the speedfan.sys driver on the compromised system, and then exploit local privilege escalation
vulnerability (CVE-2007-5633) to gain code execution in kernel mode.

To get this exploit up and running, InvisiMole misuses two legitimate tools: srvany-ng and winapiexec.

Once running in the context of the kernel, InvisiMole injects its code into a legitimate process and covertly
loads the final stages. We have seen InvisiMole’s RC2CL backdoor and DNS downloader being loaded this way.

This execution method, illustrated in Figure 25, is used on older 32-bit Windows systems, for the cases when
the attackers were able to get admin privileges.

Figure 25 // Execution chain exploiting vulnerability in the speedfan.sys driver

6.3.1 Installation
We don’t know exactly how this chain is set up, whether by using an InvisiMole dropper, or possibly by a
human operator using Gamaredon’s toolset in the early stages of the attack—either way, administrative
privileges are required for this execution method.

Based on our post-attack analysis, we know the (unknown) installer must register the Windows service
starting up Stage 1 and drop legitimate utilities misused in Stages 1 and 2.

Finally, it must encrypt the rest of the components in the chain using CryptProtectData, to make sure
they can only be decrypted on the victim’s computer.

Some of the filenames used in the Speedfan exploit chain are listed in Table 9; others are discussed later in
the section.

Table 9 // Files used in InvisiMole’s Speedfan exploit chain

SHA-1 File path Comment

9987c0b97cb6a0239d3af6e5a70b552e1c38810f C:\Windows\system32\mscorscvs.exe Stage 1

4a6dc6a32a777dc5dd47221bf79604bc0258a987
C:\Windows\system32\drivers\NGEN
Framework\NGEN.exe Stage 2

N/A (unique per victim)
C:\Windows\system32\drivers\NGEN
Framework\NGEN.cab Stages 3-6

https://github.com/birkett/srvany-ng
https://rammichael.com/winapiexec

InvisiMole: The hidden part of the story31
TLP: WHITE

6.3.2 Stage 1—mscorscvs.exe
This execution chain starts with a legitimate utility srvany-ng13, installed in C:\Windows\system32\
mscorscvs.exe and registered as a Windows service under the name clr_optimization_v2.0.51527_
X86, as shown in Figure 26. This name is used to mimic Microsoft.NET Framework NGEN (Native Image
Generator service).

Figure 26 // Properties of clr_optimization_v2.0.51527_X86 service starting up InvisiMole’s Speedfan exploit chain

This utility is designed to run any Windows application as a service—for that, the parameters of the
application must be specified under the service parameters. InvisiMole configures this tool so that it loads
C:\Windows\system32\drivers\NGEN Framework\NGEN.exe with the parameters specified under the
AppParameters registry value, as shown in Figure 27.

Figure 27 // srvany-ng is configured to execute the winapiexec tool with InvisiMole’s shellcode

6.3.3 Stage 2—NGEN.exe
The NGEN.exe name of Stage 2 is used to mimic a legitimate Windows Native Image Generator tool. The file
itself is a copy of a legitimate tool winapiexec14—the same tool that is misused to upgrade Gamaredon’s
targets to InvisiMole (see the Delivery method section).

For this execution chain, winapiexec is executed with the following command line:

C:\Windows\system32\drivers\NGEN Framework\NGEN.exe VirtualAlloc 0

0x20000 0x3000 0x40 , CreateFileW ‘Ngen.cab’ 0x80000000 0 0 3 0 0 ,

SetFilePointer $$:7 64 0 0 , ReadFile $$:7 $$:1 0x20000 $b:4 0 ,

CloseHandle $$:7 , EnumUILanguagesA $$:1 4 $$:1”

13 SHA-1: 9987C0B97CB6A0239D3AF6E5A70B552E1C38810F
14 SHA-1: 4A6DC6A32A777DC5DD47221BF79604BC0258A987

https://github.com/birkett/srvany-ng
https://github.com/birkett/srvany-ng
https://rammichael.com/winapiexec

InvisiMole: The hidden part of the story32
TLP: WHITE

With these parameters, winapiexec reads shellcode from the C:\Windows\system32\drivers\NGEN
Framework\Ngen.cab file, starting at offset 0x40, and calls the EnumUILanguagesA API with the shellcode
as a parameter. EnumUILanguagesA enumerates the user interface languages that are available on the
operating system and calls the specified callback function with every language in the list—this is how the
shellcode gets executed.

6.3.4 Stage 3—Ngen.cab
Stage 3 is a multilayer shellcode, serving as a container for Stages 4-6.

It decrypts the first layer using a XOR cipher with this DWORD key:

key = 0x1D709CA2 + (i << 4) + (i << 0x12) // i starts at 0x80 and

increments for each subsequent dword

Then, it uses CryptUnprotectData to decrypt the second layer with two embedded InvisiMole blobs, and
passes execution to one of them—Stage 4.

6.3.5 Stage 4—speedfan.sys exploit
Stage 4 is a 32-bit shellcode15 running in the context of the winapiexec tool.

This component exploits a local privilege escalation vulnerability in the speedfan.sys driver to get code
execution in kernel space, and uses this access to execute Stage 5 in the kernel context.

A design flaw in speedfan.sys allows local users to issue privileged IOCTLs to read or write arbitrary MSRs
via the IOCTL_RDMSR (0x9C402438) and IOCTL_WRMSR (0x9C40243C). InvisiMole uses this vulnerability
to replace the value of the IA32_SYSENTER_EIP MSR register, which holds the address of the
SYSENTER handler.

Then, it issues a system call to ensure the SYSENTER instruction is called from the user space, and thus the
patched SYSENTER handler is triggered. Figure 28 illustrates the steps the patched handler takes.

Figure 28 // Patched SYSENTER handler

15 SHA-1 of decrypted shellcode: 10C548992567A04DA199D09E3CA4B0C47B7A136C

InvisiMole: The hidden part of the story33
TLP: WHITE

1. It uses the wrmsr instruction to restore the value of the IA32_SYSENTER_EIP MSR register (not to
disturb the normal operation of the kernel), which restores the original address of the SYSENTER handler.

2. It clears the write protection bit to allow writing to read-only memory pages (when the WP bit is set, the
CPU can’t write to read-only pages when privilege level is 0).

3. It patches the code section in speedfan.sys; more specifically it patches the handler for IOCTL_GET_
DRIVER_VER (0x9C402434), as shown in Figure 29.

Figure 29 // Original and patched handler for IOCTL_GET_DRIVER_VER in speedfan.sys

The esi register in this case holds Irp->AssociatedIrp.SystemBuffer; that is, when
IOCTL 0x9C402434h is called on \\.\speedfan with code as an argument, this code is
executed in kernel mode.

4. It restores the original value of CR0 (reenabling read-only protection, if applicable).

5. It passes control to the original SYSENTER handler, to properly process the original SYSENTER request.

This patched SYSENTER handler is thus only executed once, to patch a code section in speedfan.sys; after
that the original handler is restored.

InvisiMole then leverages the created backdoor in the speedfan.sys driver by issuing IOCTL
0x9C402434h with Stage 5 as a parameter, as illustrated in Figure 30. As a result, Stage 5 is executed
under the kernel context.

InvisiMole: The hidden part of the story34
TLP: WHITE

Figure 30 // InvisiMole issues the hijacked IOCTL with Stage 5 as an argument

This exploit works on x86 systems where it is possible to execute user-mode addresses from kernel mode—
it would be more difficult on x64 systems with SMEP mitigation in place. SMEP was launched in 2011 and
enabled by default since Windows 8, so the exploit should work on Windows 7 or older.

Note that the IA32_SYSENTER_EIP MSR register is separate per core, or per logical processor, so in order for
this exploit to work on processors with multiple logical units, the part of the exploit that triggers the patched
SYSENTER handler must be executed on the same unit as the part patching the handler. To ensure this,
InvisiMole takes further steps ensuring the full exploit is executed without interruption, on a single unit:

• Before running the exploit, InvisiMole temporarily adjusts scheduling priority of the current thread
to the highest possible priority by setting the priority class of the current process to REALTIME_
PRIORITY_CLASS (SetPriorityClass API) and priority level of the thread to THREAD_PRIORITY_
TIME_CRITICAL (SetThreadPriority API), to prevent the scheduler from interrupting it with
some other task.

• Then it adjusts the processor affinity mask of the current process so that it can be executed on all
logical processors, by retrieving the affinity mask for the system with the GetProcessAffinityMask
API, and then setting this mask to the current process with the SetProcessAffinityMask API.

• Finally, if there are multiple logical processors, InvisiMole starts a number of new threads and spreads
them over the other logical processors using the SetThreadAffinityMask API. By this, InvisiMole
makes sure the shellcode is executed on one execution unit, while the other threads keep the other
units busy by looping until triggered by the main thread that the exploit has been completed

6.3.6 Stage 5—kernel-mode inject
Stage 5 is shellcode executed in the context of the kernel, after the driver exploit has been completed.
This component creates a new thread (in kernel space), attaches this thread to a svchost.exe process,
and inserts Stage 6 into the thread APC queue of this process using the KeInsertQueueApc API.

As a result, Stage 6 is executed asynchronously the next time the thread is scheduled.

This technique is used in an attempt to avoid detection, as it is stealthier to do process injection from
kernel mode.

6.3.7 Stage 6—loader
Stage 6 is a loader16 of the final stages of this execution chain—InvisiMole’s payloads. It searches for
encrypted InvisiMole blobs, decrypts them using a combination of the CryptUnprotectData API and the
two-key triple DES algorithm, and loads these payloads.

16 SHA-1 of decrypted InvisiMole blob: B988F107E5F20CDC424EC9F470D157435FC03966

https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://software.intel.com/sites/default/files/managed/22/0d/335592-sdm-vol-4.pdf

InvisiMole: The hidden part of the story35
TLP: WHITE

The tricky part is that the loader doesn’t contain the full path to the encrypted files with these components;
instead it searches for files or registry values by a list of hardcoded SHA-1 hashes of filenames and
registry value names.

The SHA-1 values are calculated using Microsoft CryptoAPI from lowercase versions of the names and—to
make detection even more difficult—stored as binary data, rather than strings, as illustrated in Figure 31.

Figure 31 // InvisiMole’s loader uses a hardcoded list of binary SHA-1 values instead of filenames

More specifically, InvisiMole stores its final stages in registry values under specific subkeys of the HKLM
registry key, and in files in the %TEMP% or %SYSTEM% folder, the root folder of a system drive, or any
programdata subfolder under this drive.

Thanks to the cooperation of the affected organizations, we were able to recover some of the obfuscated
locations, and obtain and decrypt the corresponding InvisiMole components—InvisiMole’s RC2CL backdoor17
and DNS downloader18. The recovered names of registry subkeys and values are listed in Table 10 and
Table 11, with one of the components yet to be uncovered.

Neither have we recovered the names of files concealed behind the SHA-1 values, as listed in Table 12.
However, from the artifacts in the InvisiMole loader, we assume these files would contain the same three
components as are loaded from the registry keys—the RC2CL backdoor, DNS downloader and the third,
unknown, component.

It remains a mystery whether the third loaded component is one of the known InvisiMole payloads (RC2FM
backdoor or TCP downloader, Portscan or BlueKeep component), or some unknown component, or whether
it is reserved for some yet-to-be-implemented payload.

Table 10 // Registry keys used to store InvisiMole components. SHA-1 values were calculated from lowercase, ASCII
versions of the registry key names

SHA-1 of registry key name Recovered registry key name

40D02DDB8BE27726135C4A0E20E2BBABDA84D0FF software\microsoft\drm

5D69782FFF60365FE81C58D5887C151D326CF731 software\microsoft\windows\currentversion

7AE0CA52F4690CA09558A94D4CE5B521B3A3E3FF software\microsoft\windows\currentversion\ext

B7FEE003B413AF3297DB60D0FC845A054FE080D2 software\microsoft\function discovery\registrystore\publication\explorer

17 SHA-1 of decrypted InvisiMole blob: 094DAEA5B97C510A8E9CFE3585B39B78522A2C61
18 SHA-1 of decrypted InvisiMole blob: F67300541D769C5AA071C766198F0B7E25476B23

InvisiMole: The hidden part of the story36
TLP: WHITE

Table 11 // Properties of registry values used to store InvisiMole components. The SHA-1 values were calculated from
lowercase, Unicode versions of registry value names.

SHA-1 of registry value name Recovered value name Component type

C0E73E522D09344A278D45A524A50CF4FCC87817 1Extylc8fC5X1PL

UnknownD0A769119F628FF0D5110A1E17864036FCB8BE6B 1Extylc8fC5X1HK

065DEB443AAE29700D09CB395C928C919C3A7352 1Extylc8fC5X1RK

6AA50BAE4D9529A60FE566115068E6BDF418786D 1Extylc8fC5X2PL

DNS downloader5126A83A9D9B29598B36540647FFBA2834C82AE3 1Extylc8fC5X2HK

371971130EE56AB5B7FEA61A80054F5E81E4027D 1Extylc8fC5X2RK

3E49B3DD812AAE4997C4C9FF2843EAAC32F55A94 1Extylc8fC5X3PL

RC2CL backdoor12EBD779D5BB416D05550D9ECBADF5A9EF89436C 1Extylc8fC5X3HK

80D48821135D904CAF2DF0FE2883A6F104BE1639 1Extylc8fC5X3RK

Table 12 // Properties of names of the files storing InvisiMole components

SHA-1 of filename Filename Component type

F4A60039D7C9FC337AE2F59D09F6F6F3D1FF7DE3 Unknown

Unknown2F13F5DD481FB251991E0CC05DB9C06A4C1D6ED8 Unknown

798AF02CA0C8F92B1623A1F1CF25DA4916C04A74 Unknown

6ECF2532A8E3AB1888088A503D4A7CA57A7BAA82 Unknown

Unknown0197D794FA28B189B3B938FB384CC94E5F1D1733 Unknown

60197B570D2ACF93A6F92B548D08A3CAF80A1579 Unknown

F4F06C73A4D8091CE0C7229555921F58E735849D Unknown

UnknownA203A7EEF726473911031578ADBF17CB83FE214B Unknown

C5DE2BF0E13E741508A7EB4C67DED301ABA391CE Unknown

6.3.8 Previous versions
Note that we detected a number of InvisiMole’s loaders similar to the Stage 6 loader. While the latter loader
is an InvisiMole blob loaded by a chain of other components, the former are standalone DLLs.

We identified three versions of these loaders, all sharing the same functionality as the Stage 6 loader, even
using the same list of SHA-1 hashes of final stage locations. These versions, however, vary in the level of
obfuscation, showing a continuous development.

We assume these loaders are the predecessors of the elaborate Speedfan exploit execution chain. The attackers
were probably first experimenting with using execution guardrails and obfuscating the payload location,
before they developed the full chain.

Interestingly, most of these files have language in resources set to LANG_RUSSIAN, SUBLANG_RUSSIAN_
RUSSIA—we don’t have this type of metadata for the rest of the InvisiMole’s toolset, developed after the
transition to elaborate execution chains using InvisiMole blob shellcodes.

The filenames and SHA-1 hashes of the older loaders are provided in the IoCs section.

InvisiMole: The hidden part of the story37
TLP: WHITE

6.4 Wdigest exploit chain
Finally, in the most elaborate Wdigest exploit execution chain, InvisiMole uses another variation of
the BYOVS technique. The attackers bring wdigest.dll, a vulnerable Windows component from
Windows XP, and misuse its input validation vulnerability to run shellcode, crafted to use code
gadgets from the library.

Running under the context of a Windows component helps the attackers avoid application whitelisting
and adds legitimacy to the malicious code. Despite being vulnerable, the library can’t be cleaned by security
products, as it could break the OS in previous Windows versions.

Later in the chain, InvisiMole uses an improved version of ListPlanting, an interesting injection technique,
to run the DNS downloader and the RC2CL backdoor within a trusted process.

This is InvisiMole’s most recent and most elaborate execution method, used on computers with the newest
versions of the OS, where the attackers were able to obtain administrative privileges previously. An overview
of the chain is illustrated in Figure 32.

Figure 32 // Execution chain exploiting wdigest.dll

6.4.1 Installation
We analyzed multiple instances of the installer component that sets up this chain. The installer is a 64-bit
InvisiMole blob, probably delivered and executed by one of InvisiMole’s downloaders.

The installer decrypts an embedded zlib blob, reusing the decryption routine previously used by InvisiMole.
After decryption, the installer decompresses eight embedded blobs with stages of this execution chain and
installs them. Finally, it schedules and executes Stage 0 using Windows Task Scheduler.

As you can see from Table 13 and Table 14, the only files used in this execution chain are legitimate
Windows utilities, with all the malicious components stored in the registry. Even the small shellcode stored
under the FlashConfigEnrollee registry value is designed to live off the code gadgets from the legitimate
wdigest.dll library. Thus, all the malicious components are encrypted and stored in the registry
(a technique some categorize as fileless), which adds to the stealthiness of this execution chain.

Table 13 // Legitimate Windows utilities used in InvisiMole’s Wdigest exploit chain

SHA-1 File path

B61A277719359582071DB4CD448D3E9D0A460B1D %WINDIR%\SysWOW64\drivers\Rundll32.exe

7752BD1C02E5DC7B0975FC6A1C73145A2A83D079 %WINDIR%\SysWOW64\drivers\wdigest.dll

EE7D06FC93D3C608B48823D1444148327330015A %WINDIR%\SysWOW64\wbem\setupSNK.exe

https://github.com/eset/malware-research/blob/master/invisimole/invisimole_decrypt.py
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/fileless-threats#type-iii-files-required-to-operate

InvisiMole: The hidden part of the story38
TLP: WHITE

Table 14 // Registry entries used in InvisiMole’s Wdigest exploit chain. Registry keys are given for both 32-bit and 64-bit OS
versions.

Registry key Value name Component Encryption method

HKLM\SOFTWARE\Microsoft\

FlashConfig or

HKLM\SOFTWARE\WOW6432Node\

Microsoft\FlashConfig

FlashConfigEnrollee Exploit used in Stage 2 -

HKLM\SOFTWARE\ODBC or

HKLM\SOFTWARE\WOW6432Node\ODBC

M Stage 3 XOR 0x7E8B103C

A Stage 4 CryptProtectData

B Stage 5 CryptProtectData

C Stage 6 / RC2CL backdoor CryptProtectData

D Stage 6 / DNS downloader CryptProtectData

UAC Bypass
Note that the installer for this chain expects to be executed with System or Administrator privileges.
Optionally, if it is executed as a non-elevated Administrator, it can use fileless UAC bypass to obtain elevated
Administrator privileges.

In that case, the installer creates a shared memory object named XVD21x9DC with a copy of itself and uses
the legitimate winapiexec tool to read from the shared memory and execute the installer in a new thread.

It first drops a copy of the winapiexec tool in %APPDATA%\Microsoft\Installer\kb043921.exe.

To execute it as an elevated process, the installer uses a registry hijacking trick for UAC bypass:

1. It sets this registry key to register a new file type association with a malicious command line:

HKCU\SOFTWARE\Classes\.zeros\shell\open\command = “%APPDATA%\Microsoft\

Installer\kb043921.exe” OpenFileMappingW 0xF003F 0 “XVD21x9DC” ,

MapViewOfFile $$:1 0xF003F 0 0 %installer_size% , CreateThread 0 0 $$:6

$$:6 0 0 , WaitForSingleObject $$:13 -1

It sets this registry key:

HKCU\SOFTWARE\Classes\ms-settings\Curver = “.zeros”

2. It executes %SYSTEMDIR%\fodhelper.exe, which is an auto-elevated application. Once executed,
fodhelper.exe reads file type association set in HKCU\SOFTWARE\Classes\ms-settings\Curver key
and executes the associated command line.

As a result, the dropped winapiexec is executed as elevated process, then it reads the installer blob from
shared memory and starts it in a new elevated thread.

This technique works on Windows 10. For Windows 7, the installer uses a similar trick, except it uses
%SYSTEMDIR%\CompMgmtLauncher.exe as the auto-elevated application and HKCU\SOFTWARE\Classes\
lnkfile\Curver as the hijacked registry key.

https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/

InvisiMole: The hidden part of the story39
TLP: WHITE

6.4.2 Stage 0—scheduled task
For this execution chain, InvisiMole achieves persistence using a standard scheduled task, scheduled on each
system start and registered under the name \Microsoft\Windows\Autochk\Scheduled.

Figure 33 // Part of XML specification of the scheduled task starting up InvisiMole’s Wdigest exploit chain

As shown in Figure 33, this task creates a hidden system directory C:\SMRTNTKY\MessageB.txt (not a file)
and executes setupSNK.exe19.

The directory is created to force a specific execution path within the setupSNK.exe tool.

6.4.3 Stage 1—setupSNK.exe
Stage 1 is a copy of a legitimate Windows component—Wireless Network Setup Wizard—designed to share
wireless connection settings on USB Flash drives.

When launched, setupSNK.exe restores these settings by executing the default Flash Config Enrollee DLL
(wzcdlg.dll). However, it has an undocumented feature that allows execution of a custom Flash Config
Enrollee DLL instead of the default one. This undocumented feature is abused by InvisiMole.

When executed, setupSNK.exe checks for the presence of the C:\SMRTNTKY\MessageB.txt directory.
If it exists, it attempts to load the FlashConfigEnrollee value from HKLM\SOFTWARE\Microsoft\
FlashConfig on 32-bit systems, or from HKLM\SOFTWARE\WOW6432Node\Microsoft\FlashConfig on 64-
bit systems, and uses that value to build a command line in this format:

rundll32.exe %s %s\SMRTNTKY\WSETTING.WFC

Note that WSETTING.WFC refers to a file stored in the SMRTNTKY folder in the root of a USB drive, which is
used to store the wireless connection settings.

As Figure 34 depicts, this command line is then executed via the CreateProcessA API that, in a legitimate
run of setupSNK.exe, opens a benign Wizard Dialog DLL.

19 SHA-1: EE7D06FC93D3C608B48823D1444148327330015A

InvisiMole: The hidden part of the story40
TLP: WHITE

Figure 34 // Decompiled function of setupSNK.exe tool

However, InvisiMole hijacks this function to execute its own code. On InvisiMole-compromised computers,
the FlashConfigEnrollee value in the registry is changed to the following value, including a 119-byte-
short shellcode:

shell32 ShellExec_RunDLL “C:\Windows\SysWOW64\drivers\Rundll32.exe”

“C:\Windows\SysWOW64\drivers\wdigest.dll”,SpInitialize %SHELLCODE_BYTES%

As a result, setupSNK.exe builds and executes this command line:

rundll32.exe shell32 ShellExec_RunDLL “C:\Windows\SysWOW64\drivers\

Rundll32.exe” “C:\Windows\SysWOW64\drivers\wdigest.dll”,SpInitialize

%SHELLCODE_BYTES%\SMRTNTKY\WSETTING.WFC

The rundll32.exe20 and wdigest.dll21, whose properties are shown in Figure 35, are both legitimate files
from Windows XP. InvisiMole brings these versions to the compromised computer, so this execution chain
works even on Windows 10.

Figure 35 // Properties of wdigest.dll and setupSNK.exe files—two Windows components misused by InvisiMole in
this chain

20 SHA-1: B61A277719359582071DB4CD448D3E9D0A460B1D
21 SHA-1: 7752BD1C02E5DC7B0975FC6A1C73145A2A83D079

InvisiMole: The hidden part of the story41
TLP: WHITE

6.4.4 Stage 2—wdigest.dll
The wdigest.dll library is a legitimate Windows component that contains an implementation of a digest
authentication protocol. When some third-party application needs to use this protocol, this library is loaded
into the process.

However, the attackers discovered the possibility of running wdigest.dll from the command line
using rundll32.exe with shellcode as a parameter.

When executed by Stage 1 with the given parameters, InvisiMole’s shellcode is copied to the g_LsaFunctions
global variable in the SpInitialize function, shown in Figure 36.

Figure 36 // Decompiled SpInitialize function of wdigest.dll library

The shellcode is constructed in a way so that it uses different parts of wdigest.dll’s code (gadgets) to
hijack its control flow, in order to load the next stage of this InvisiMole execution chain.

As shown in Figure 37, the following code is executed later after the SpInitialize function:

1. wdigest.dll calls [eax+14], with eax pointing to g_LsaFunctions, which passes control to the
shellcode.

2. [eax+14] points to the 0x7E8BC063 value within the shellcode, which is an address within wdigest.dll.

3. This address points to a jmp eax instruction, which passes control back to the start of the shellcode.

4. The shellcode then uses other gadgets of wdigest.dll, such as the resolved address of the
RegQueryValueExW API (always 0x7e8B1040), to read the next stage from value M under either the
HKLM\SOFTWARE\ODBC or HKLM\SOFTWARE\WOW6432Node\ODBC registry key and to pass control to it.

InvisiMole: The hidden part of the story42
TLP: WHITE

Figure 37 // InvisiMole’s shellcode is crafted to use gadgets of wdigest.dll

The shellcode can reference hardcoded addresses within wdigest.dll, because it is a Windows XP
binary, so it doesn’t use ASLR and is always loaded in the same address space.

6.4.5 Stage 3—M loader
Stage 3 is 32-bit shellcode22 loaded from the M registry key. Just like Stage 2, it uses imports from wdigest.dll,
using hardcoded addresses.

This component reads the A value from the registry, decrypts it using the CryptUnprotectData API and
passes execution flow to the blob.

6.4.6 Stage 4—A loader
Stage 4 is a 32-bit InvisiMole blob23 that uses an interesting technique to inject the shellcode from the B
registry value to a trusted process.

It also creates a shared memory with content of C and D registry values and injects names of the shared
objects to the trusted process, so that B shellcode can access and load C and D payloads. The B, C and D
values are all encrypted with DPAPI, so Stage 4 first decrypts them using CryptUnprotectData before they
are injected/loaded.

22 SHA-1: B894F320569286B56F4272D0CBBA4DB10C645AE0
23 SHA-1 of decrypted InvisiMole blob: AA5E8E21C79B0B4A02726233B9F5EB4994C87AD3

https://en.wikipedia.org/wiki/Address_space_layout_randomization

InvisiMole: The hidden part of the story43
TLP: WHITE

Table 15 // Shared objects created by Stage 4

Name format Object type Name for C payload Name for D payload

ExMp00%.2X shared memory ExMp0043 ExMp0044

ExMpOK%.2X event name for success ExMpOK43 ExMpOK44

ExMpER%.2X event name for error ExMpER43 ExMpER44

For process injection, this component uses a technique called ListPlanting24. This technique has been
already documented online, but InvisiMole improves it to add even more stealthiness.

ListPlanting is based on the possibility of providing a callback to customize the sorting algorithm in a
ListView structure. To display a ListView structure, InvisiMole misuses a legitimate Windows library
FXSCOMPOSE.dll, which displays contacts stored in the %USERPROFILE%\Contacts folder in such
a structure.

It first drops three XML files into this folder—only to create data for the list. Then it executes the
FXSCOMPOSE.dll library with the HrSelectEmailRecipient function.

• If running without admin privileges, it executes this library directly using rundll32.exe.

• Otherwise it creates a service named CsPower, with the registry content shown in Figure 38, that
executes the same library.

Figure 38 // Properties of CsPower service in the registry

When FXSCOMPOSE.dll starts, it creates a window filled with information from %USERPROFILE%\
Contacts files, as shown in Figure 39. This window is displayed for so short a period of time that it may well
go unnoticed by the user.

24 See https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/#listplanting, http://www.hexacorn.com/blog/2019/04/25/
listplanting-yet-another-code-injection-trick/

https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/#listplanting,%20http://www.hexacorn.com/blog/2019/04/25/listplanting-yet-another-code-injection-trick/
https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/#listplanting,%20http://www.hexacorn.com/blog/2019/04/25/listplanting-yet-another-code-injection-trick/

InvisiMole: The hidden part of the story44
TLP: WHITE

Figure 39 // Window with a contact list created when FXSCOMPOSE.dll starts

InvisiMole enumerates windows and child windows to get the handle of the SysListView32 child
of this window (the handle to the ListView). Then it allocates memory inside the new process using
VirtualAllocEx, copies malicious code to the target process and triggers the shellcode by sending a
LVM_SORTITEMS message to the ListView. Using this technique, InvisiMole is able to inject shellcode into a
trusted process.

It is important to add that unlike in the standard ListPlanting technique, InvisiMole does not use the
WriteProcessMemory API to write malicious code to the target process, as this API could be monitored by
security solutions. InvisiMole takes this technique one step further to make the code injection stealthier.

Instead of calling WriteProcessMemory, it achieves the same result by using a pair of LVM_SETITEMPOSITION
and LVM_GETITEMPOSITION messages sent to SysListView32, as shown in Figure 40.

• It first sends an LVM_SETITEMPOSITION message to SysListView32, which moves an item to a
specified position in a ListView. InvisiMole provides XXYY as the new position, where XX and YY are
bytes of shellcode.

• Then it sends an LVM_GETITEMPOSITION message to retrieve the position of the same item

The trick is that the return buffer (POINT structure) points to an offset in a newly allocated memory, and so
InvisiMole is able to copy two bytes at a time to the allocated memory within the legitimate FXSCOMPOSE.dll.

InvisiMole: The hidden part of the story45
TLP: WHITE

Figure 40 // Improved part of ListPlanting technique used by InvisiMole

After Stage 4 has successfully injected Stage 5 in a trusted process, it clears traces by removing the XML files
from the %USERPROFILE%\Contacts folder, and deleting the C:\SMRTNTKY\MessageB.txt directory.
Moreover, Stage 5 later deletes the CsPower service from the registry, if it was executed that way.

6.4.7 Stage 5—B loader
Stage 5 is a small InvisiMole blob25 that is injected into a trusted process. It opens already existing shared
memory objects with shellcodes from C and D registry values, copies them to a newly allocated memory and
executes using the CreateThread API.

Note that the C and D shellcodes could be injected directly into the trusted process, instead of the small
Stage 5 loader. However, the modified ListPlanting technique requires a lot of operations—a pair of
LVM_SETITEMPOSITION and LVM_GETITEMPOSITION messages sent for each pair of copied bytes.
For larger payloads, such as the RC2CL backdoor, it is possible the window shown in Figure 39 would be
visible for a short time. This extra stage is used to make sure the user won’t spot the window.

As a result of this execution chain, InvisiMole’s RC2CL backdoor26 and DNS downloader27 are covertly
executed under the context of a trusted process.

7 CONCLUSION
When we first reported about InvisiMole in 2018, we highlighted its covert workings and complex range of
capabilities. However, a large part of the picture was missing.

After discovering new activity in late 2019, we gained the opportunity to take a proper look under the hood
of InvisiMole’s operations and piece together the hidden parts of the story.

Analyzing the group’s updated toolset, we observed continuous development and substantial improvements,
with special focus on staying under the radar.

25 SHA-1 of decrypted InvisiMole blob: D8B101B588DA6DA3CBE3E161C91986E64D6DD290
26 SHA-1 of decrypted InvisiMole blob: 0AAB85DDD4E25ADD24E9ECD83C8DD635B3A7C2F3
27 SHA-1 of decrypted InvisiMole blob: E9AF42C4CF0299EEA7B405F9E3E925BCAFAB9F2B

InvisiMole: The hidden part of the story46
TLP: WHITE

Notably, we identified four different execution chains misusing legitimate tools for persistence, and user-
and kernel-mode exploits for covert execution. We described how the malware uses per-victim encryption
to prevent defenders from obtaining its payloads; and detailed the workings of a new component used for
DNS tunneling.

Our investigation also revealed a previously unknown cooperation between InvisiMole and the Gamaredon
group, with Gamaredon’s malware used to infiltrate the target network and deliver the sophisticated
InvisiMole malware to targets of special interest.

Having provided a detailed report on InvisiMole’s TTPs, we will continue to track the group’s malicious activities.

Indicators of Compromise can also be found on our GitHub respository. For any inquiries, or to make sample submissions
related to the subject, contact us at threatintel@eset com.

8 ACKNOWLEDGEMENTS
Acknowledgements to Matthieu Faou, Ladislav Janko and Michal Poslušný for their work on this investigation.

9 INDICATORS OF COMPROMISE (IOCS)

9.1 ESET detection names
Win32/InvisiMole
Win64/InvisiMole

9.2 SHA-1

SHA-1 Note
File / registry key /
decrypted blob28

125FCA6EBD82682E51364CF93C9FFA8EB4F6CA5F

Trojanized software

File

3B923FA1E5DCB4F65DAA138BECEB123D7C431D1B File

3BB2C05DEA077835A79499A0BB81410D27EEBFAF File

4C13AD9AD9C134DE15F3AE5E2F0D2EC1E290DEE8 File

728386C6D6EAF43148FE25F86E6AF248019D9842 File

793F4DD2B765ECD962A053246646ED0D6144D249 File

8147E85E13B3624FA290F1F218647A0D1FD70204 File

8C5F463FA79601DE38D0A77808226B1A8E67459A File

9B1E0A22DEB124FF36FCF7ED2EA82E799B49B070 File

9B48090704C3F62D6B768780845E2D04862F5219 File

CD3419B4B3958BE5BE1CAEA60A4EE98E4D427A6D File

D5D3A01A5944D55E5DDF1F915E88043691BE6F58 File

D8EB2429253E82729F34373068EC350D1B2DA8AB File

DDB871AD5823BE31F5176F2B0CE149D4B6E44F24 File

E936E857A812690178ED049FD4A1766E281B9F1D File

28 Decrypted blobs are recovered using the CryptUnprotectData API. We present SHA-1 hashes of these versions, as the encrypted versions are different per victim�

https://github.com/eset/malware-ioc/tree/master/invisimole

InvisiMole: The hidden part of the story47
TLP: WHITE

09821EB9F2B79501B3928FBA2F313C723FEBB1B3

Loaders

File

16E9B0ADBD53849E7F3A04FA8A5BF78E73A86841 File

21F320DEBDD4D97FA5420AF31A55FBC77B923819 File

240C8157E5E053B70C4D301D852C609C212F85F3 File

32A9FF262649623CBFF4C6B29BD8ED7F803E75E3 File

3EF0D0278DB40F6116645B0B915D56374EB77004 File

42086128F7213931D438BF127CC61D3F9483014A File

4BBED6E307D214CAB9AE395E1F49104446B54D5A File

55F6185AD64997756ADF03BC2D4CC4ABF5C64E4E File

652991303B319F5DE440C18A0F14DF65B82265FB File

66F9EA8017CD899AB146DED2E341201B51A9CE9F File

6A6D956A8108E0D5339751927D5576369C0E2C34 File

6C49BF35116A147C7F3C5CE15ABA041F272E60B5 File

6DECBFCA132364CBD66DD07118959BCE95F83168 File

6DEF96407F52B3C82D665B2C6A9B230B3D080CD1 File

7901AD25A3673AC9CB1B6AE1FC9DC57A4B53383E File

7BA31B83B2ADF7A9B43C56F4882D217512F333AF File

82D653D71DC024C19894C2B2207D6C3414CA1B01 File

96D5E7C32AC299770E11DF521F867538361D9A8B File

A27BB3E5F1CF56C89E5F9816CF8C5796D2FBB09E File

A419F091723A5632DA85B0930F3B260599672C00 File

A527B41D60028BE24BE8CAC69DE9445401F280CD File

A695FA12F97971A065FED927A30278C94C78C722 File

B1B3E88494F7C27354E68D83E16EB65BBEFC7FB3 File

B7712BBE5DE4386BAB11F61F1731C358648DECE6 File

BFEF295D375A60A2EEFE416709DE73F14AC1416C File

CC595AAE9573BEEF92DE12C3DE9C85F7E9E1CD6D File

DBEA8DAF48CC54C7CFB0DCC689D4C9549D3DD23F File

DE6D8B66BE01934D672C04E92EA2EDC0210BF00E File

E0B9C24DD5620FF70CB80002A4A772E16EB331F2 File

E489C4D6CA1DAFA034F7FADBF27DEEB202189833 File

F7EF9A3501EEBCFFA4615CC3BD473F65A203A1D6 File

FB4401DEA8911BEAB788E87A576EF5568DA82ED5 File

27FC1DCB1B3DCA3E496F799A2944E4FB070AF39C

RC2FM backdoor

File

E1599FB73DDE78531BBF65063F10F239AEF29D70 File

E3BF27F1303BFDB877D1699D5B480342A9A2FE58 File

7FE30CA69E6631CB9333C37F72E3CABBE8CE366C RC2FM helper DLL File

InvisiMole: The hidden part of the story48
TLP: WHITE

00EA86AAB3D616A24A5E13D592FABC26416DFDBD

RC2CL backdoor

File

094DAEA5B97C510A8E9CFE3585B39B78522A2C61 Decrypted

0AAB85DDD4E25ADD24E9ECD83C8DD635B3A7C2F3 Decrypted

0B57CD2393E29084D545300D1749AA50EB23A8AB Decrypted

11EBA9E198C458A8D86D70BD64B3FDB0163A38C4 Decrypted

20FF1A290A53B39C4E54A670E8C27852BE8BCFF4 Decrypted

554AA9A39CC241AAD5FBDC5FD39CECCB1EB9E7D0 Decrypted

7114B2E031D8853434028D39873338C33CE67C16 Decrypted

A1FFFB96415CF4146B056C9A847DC6EECD882DBB Decrypted

AF67F640F33D1A46719056B66F45B91B2D56910A Decrypted

FFB74AF734453973FED6663C16FB001D563FAF1C Decrypted

02F4242F7CA7289C8EDFA7B4F465C62C7A6815E2

TCP downloader

File

303A63CE12AD42900DA257428E2FD4DE4F9829DC File

DBD21EF03CCC3A985D808B0C5EC7AC54DED5D1C9 Decrypted

2E7F737CAEB56716ACE36FADEB74EE610705283F Decrypted

4B8E11E0734D3109627FF8871EF7DB14C0DE9C41 A variation of the TCP downloader File

31FAE273942A1E432DE91400F5D625F88101B966

DNS downloader

Decrypted

5F09DF19232E0A77495EEDB1B715D9EF0B909634 File

E9AF42C4CF0299EEA7B405F9E3E925BCAFAB9F2B Decrypted

F67300541D769C5AA071C766198F0B7E25476B23 Decrypted

F8CAA729C28EF6B0EC8AA74399CE4EE7A59B895C Decrypted

6F98B12C98DA1FCFF078256970E9B8EF12139640
Batch scripts (Delivery chain)

File

76FC2E29524C6AD58B0AF05251C419BB942CCED0 File

2402765EA67E04F151D32BF2B749B150BBD3993E Stage 2 (Control Panel misuse chain) File

9F64FEC50D4447175459AAB33BC9126F9A3370D8
Stage 4 (Control Panel misuse chain)

File

A3AFF8CE55907DAA1F3360DED01BCF3F6F9D0CF2 File

E85D7F0564771C9396FDCDB9877DB0FF61C1D515

Total Video Player exploit File

10C548992567A04DA199D09E3CA4B0C47B7A136C

Stage 4 (Speedfan exploit chain) Decrypted

B988F107E5F20CDC424EC9F470D157435FC03966 Stage 6 (Speedfan exploit chain) Decrypted

B894F320569286B56F4272D0CBBA4DB10C645AE0 Stage 3 (Wdigest exploit chain) Registry value

66B7DB6E755EC648AEE210F163655A5662562DEE

Stage 4 (Wdigest exploit chain)

Decrypted

7E8B99968C59FDE046DF3ECECED6049E4DFA7225 Decrypted

81BD3140F222FAC2DC6610E0CE79EDF34B599D47 Decrypted

9A3E870B61C4F37514F6E3E3FAB4D4506D3B50DB Decrypted

AA5E8E21C79B0B4A02726233B9F5EB4994C87AD3 Decrypted

A42FA8FB11DA669124AC7968838427BF8E998872
Stage 5 (Wdigest exploit chain)

Decrypted

D8B101B588DA6DA3CBE3E161C91986E64D6DD290 Decrypted

InvisiMole: The hidden part of the story49
TLP: WHITE

9.3 Filenames and paths

9.3.1 Delivery chain
api64.cmd
intel_log64.cmd
intel_log64.exe

9.3.2 EternalBlue exploit chain
stg0D0CE03.dll
stg0D33E0A.dll

9.3.3 Control Panel misuse chain
%APPDATA%\Control\Control.js
%APPDATA%\Microsoft\AddIns\imageapplet.dat
%APPDATA%\Microsoft\AddIns\infocardadd.cpl
%STARTUP%\Control Panel.lnk

9.3.4 SMInit exploit chain
%USERPROFILE%\AppData\Roaming\Microsoft\Sessions\hskin.dll
%USERPROFILE%\AppData\Roaming\Microsoft\Sessions\Settings.ini
%USERPROFILE%\AppData\Roaming\Microsoft\Sessions\SMInit.exe
%USERPROFILE%\AppData\Roaming\Microsoft\Sessions\TVPSkin.dll

9.3.5 Speedfan exploit chain
C:\Windows\system32\drivers\NGEN Framework\NGEN.cab
C:\Windows\system32\drivers\NGEN Framework\NGEN.exe
C:\Windows\system32\mscorscvs.exe

9.3.6 Wdigest exploit chain
%APPDATA%\Microsoft\Installer\kb043921.exe
%WINDIR%\SysWOW64\drivers\Rundll32.exe
%WINDIR%\SysWOW64\drivers\wdigest.dll
%WINDIR%\SysWOW64\wbem\setupSNK.exe

9.3.7 InvisiMole loaders
NlsModels0019.dll
NLSModels0022.dll
osppc.dll
osppcext.dll
WptsExtensions.dll

SHA-1 PE Timestamp C&C server URI Campaign Name

D98D258C234F5CEAD43FD897613B2EA2669AA7C0 2019-01-28 chart.healthcare-internet[.]com - -

CE94EC2CFB23D8C662F558C69B64104C78B9D098 2019-04-25 inicializacion[.]com - cion

InvisiMole: The hidden part of the story50
TLP: WHITE

9.3.8 RC2FM backdoor
%APPDATA%\Microsoft\Internet Explorer\Cache\0IOQ61KI
%APPDATA%\Microsoft\Internet Explorer\Cache\4AINFWUJ
%APPDATA%\Microsoft\Internet Explorer\Cache\6FFT03MB
%APPDATA%\Microsoft\Internet Explorer\Cache\74BWF9JV
%APPDATA%\Microsoft\Internet Explorer\Cache\7KWRPZWK
%APPDATA%\Microsoft\Internet Explorer\Cache\AMB6HER8
%APPDATA%\Microsoft\Internet Explorer\Cache\CZPOL9V4
%APPDATA%\Microsoft\Internet Explorer\Cache\KQP70AQV
%APPDATA%\Microsoft\Internet Explorer\Cache\MX0ROSB1
%APPDATA%\Microsoft\Internet Explorer\Cache\NI8NKODB
%APPDATA%\Microsoft\Internet Explorer\Cache\OUB1N96O
%APPDATA%\Microsoft\Internet Explorer\Cache\V2JMDODG
%APPDATA%\Microsoft\Internet Explorer\Cache\W9U2CJ6T
%APPDATA%\Microsoft\Internet Explorer\Cache\Y68JG1TH
%APPDATA%\Microsoft\Windows\Iconcache.db
%APPDATA%Realtek\Drivers\Drv7\DP_Sound_Realtek_wnt\A6305_WDM\alcrmv.exe
%TEMP%\~log
%TEMP%\vsfilter_%random%.dll

9.4 Registry keys / values / data

9.4.1 Control Panel misuse chain
HKCU\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs

“infocard” = %APPDATA%\Microsoft\AddIns\infocardadd.cpl

9.4.2 Speedfan exploit chain
HKLM\SYSTEM\ControlSet001\services\clr_optimization_v2.0.51527_X86

“Type”=dword:00000010

“Start”=dword:00000002

“ErrorControl”=dword:00000000

“ImagePath”= “C:\Windows\system32\mscorscvs.exe”

“DisplayName”=”Microsoft .NET Framework NGEN v2.0.51527_X86”

“ObjectName”=”LocalSystem”

“Description”=”Microsoft .NET Framework NGEN v.2”

HKLM\SYSTEM\ControlSet001\services\clr_optimization_v2.0.51527_X86\Parameters

“Application”=”C:\Windows\system32\drivers\NGEN Framework\NGEN.exe”

“AppDirectory”=”C:\Windows\system32\drivers\NGEN Framework”

“AppParameters”=”VirtualAlloc 0 0x20000 0x3000 0x40 , CreateFileW “Ngen.
cab” 0x80000000 0 0 3 0 0 , SetFilePointer $$:7 64 0 0 , ReadFile $$:7 $$:1

0x20000 $b:4 0 , CloseHandle $$:7 , EnumUILanguagesA $$:1 4 $$:1”

HKLM\software\microsoft\drm or HKLM\software\microsoft\windows\currentversion or

HKLM\software\microsoft\windows\currentversion\ext or HKLM\software\microsoft\

function discovery\registrystore\publication\explorer

“1Extylc8fC5X1PL”

“1Extylc8fC5X1HK”

“1Extylc8fC5X1RK”

InvisiMole: The hidden part of the story51
TLP: WHITE

“1Extylc8fC5X1PL”

“1Extylc8fC5X1HK”

“1Extylc8fC5X1RK”

“1Extylc8fC5X1PL”

“1Extylc8fC5X1HK”

“1Extylc8fC5X1RK”

9.4.3 Wdigest exploit chain
HKCU\SOFTWARE\Classes\lnkfile

“Curver” = “.zeros”

HKCU\SOFTWARE\Classes\ms-settings

“Curver” = “.zeros”

HKCU\SOFTWARE\Classes\.zeros\shell\open

“command” = “”%APPDATA%\Microsoft\Installer\kb043921.exe” OpenFileMappingW

0xF003F 0 “XVD21x9DC” , MapViewOfFile $$:1 0xF003F 0 0 %installer_size% ,

CreateThread 0 0 $$:6 $$:6 0 0 , WaitForSingleObject $$:13 -1”

HKLM\SOFTWARE\Microsoft\FlashConfig or HKLM\SOFTWARE\WOW6432Node\Microsoft\FlashConfig

“FlashConfigEnrollee” = “shell32 ShellExec_RunDLL “C:\Windows\SysWOW64\
drivers\Rundll32.exe” “C:\Windows\SysWOW64\drivers\wdigest.dll”,SpInitialize

%SHELLCODE_BYTES%”

HKLM\SOFTWARE\ODBC or HKLM\SOFTWARE\WOW6432Node\ODBC

“A”

“B”

“C”

“D”

“M”

HKLM\SYSTEM\CurrentControlSet\Services\CsPower

“Type”=dword:00000020

“Start”=dword:00000004

“ErrorControl”=dword:00000000

“ImagePath”= “%SystemRoot%\System32\svchost.exe -k DComLaunch” (translated
from hex)

“DisplayName”=”System Group”

“Group”=”Plugplay”

“ObjectName”=”LocalSystem”

“RequiredPrivileges”=SeTcbPrivilege

SeSecurityPrivilege

SeAssignPrimaryTokenPrivilege

SeTakeOwnershipPrivilege

SeLoadDriverPrivilege

SeBackupPrivilege

SeRestorePrivilege

SeImpersonatePrivilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeUndockPrivilege

InvisiMole: The hidden part of the story52
TLP: WHITE

SeDebugPrivilege

SeSystemEnvironmentPrivilege (translated from hex)

“DeleteFlag”=dword:00000001

HKLM\SYSTEM\CurrentControlSet\Services\CsPower\Parameters

“ServiceDll”= “%SystemRoot%\System32\FXSCOMPOSE.dll” (translated from hex)

“ServiceMain”=”HrSelectEmailRecipient”

9.4.4 DNS downloader
HKCU\Software\Microsoft\EventSystem

“AutoExA”

“AutoExB”

“AutoExC”

HKCU\Software\Microsoft\EventSystem

“KeyA”

“KeyB”

“KeyC”

9.4.5 RC2FM backdoor
HKCU\Software\Microsoft\IE\Cache

“Index”

HKCU\Software\Microsoft\IE

“SecureProtocols”

HKCU\Software\Microsoft\IE\Thumbnails

9.4.6 RC2CL backdoor
HKCU\Software\Microsoft\Direct3D or HKLM\Software\Microsoft\Windows NT\

CurrentVersion\Console

“BSKS”

“Common”

“Current”

“DisableFM”

“Edit”

“ENC”

”ENCEx”

“ENCEx2”

“FFLT”

“Flag1”

“FlagLF”

“FlagLF2”

“IfData”

“INFO”

“InstallA”

InvisiMole: The hidden part of the story53
TLP: WHITE

“InstallB”

“LastFD”

“LegacyImpersonationNumber”

“LM”

“MachineAccessStateData”

“MachineAT”

“MachineDataUM”

“MachineNW”

“MachineState 0”

“MFLT”

“OverMin”

“RPT”

“SettingsFM”

“SettingsMC”

“SettingsSR1”

“SettingsSR2”

“SP2”

“SP3”

“UseDFlag”

(Unknown registry key)

“Value_Bck”

“Value_Cmnm”

“Value_CMS”

“Value_DFl”

“Value_DFM”

“Value_FAT”

“Value_FGL”

“Value_FPP_ZC”

“Value_LastL”

“Value_LgsD”

“Value_LM”

“Value_LNM”

“Value_LsFl1”

“Value_LsFl2”

“Value_M1”

“Value_MD”

“Value_MF”

“Value_MFV”

“Value_MIN”

“Value_MMc”

“Value_MNL”

“Value_MRP”

“Value_MSS”

“Value_onFPL”

“Value_OvMin”

“Value_PEIP_ZC”

InvisiMole: The hidden part of the story54
TLP: WHITE

“Value_PtS”

“Value_SlF”

“Value_SR1”

“Value_SR2”

“Value_SRC”

“Value_uLA”

“Value_uLB”

“Value_Ulcf”

“Value_UM”

“Value_WDSP_ZC”

“Value_WPDF_ZC”

“Value_WSFX_ZC”

9.5 Synchronization objects

9.5.1 Mutex names
MSO~2
MSO~4
Mutex_sync
wkssvmtx

Semaphore names

Global\BrLK
Global\GtLK
Global\M6Br
Global\M6Gt
Global\M6Nx
Global\M6St
Global\MBrT
Global\MMGt
Global\MMNx
Global\MMSt
Global\NxLK
Global\StLK
Global\TsLK
Global\TsM5
Global\TsM6

9.5.2 Shared memory names
ExMp0043
ExMp0044
XVD21x9DC

InvisiMole: The hidden part of the story55
TLP: WHITE

9.5.3 Event names
EvMExM2ER
EvMExM2OK
ExMpER43
ExMpER44
ExMpOK43
ExMpOK44

9.6 C&C servers

9.6.1 IP addresses
46.165.220[.]228
80.255.3[.]66
85.17.26[.]174
185.193.38[.]55
194.187.249[.]157
195.154.255[.]211

9.6.2 Domain names
153[.]re
adstat[.]red
adtrax[.]net
akamai.sytes[.]net
amz-eu401[.]com
blabla234342.sytes[.]net
mx1[.]be
statad[.]de
time.servehttp[.]com
upd[.]re
update[.]xn--6frz82g (update[.]移动)
updatecloud.sytes[.]net
updchecking.sytes[.]net
wlsts[.]net

10 MITRE ATT&CK TECHNIQUES
Note: For better readability, we have separated the RC2FM and RC2CL backdoors into their respective ATT&CK
mapping tables, because of their rich capabilities. The first mapping pertains to InvisiMole’s supporting components
used for delivery, lateral movement, execution chains, and for downloading additional payloads.

InvisiMole: The hidden part of the story56
TLP: WHITE

10.1 InvisiMole
Tactic ID Name Description

Execution

T1196 Control Panel Items
InvisiMole’s loader is masked as a CPL file, misusing control panel
items for execution.

T1106 Execution through API
InvisiMole has used ShellExecuteW and CreateProcessW APIs
to execute files.

T1129
Execution through Module
Load

InvisiMole implements a custom loader for its components
(InvisiMole blobs).

T1203
Exploitation for Client
Execution

InvisiMole has delivered vulnerable Total Video Player
software and wdigest.dll library and exploited their stack
overflow and input validation vulnerabilities, respectively, to gain
covert code execution.

T1085 Rundll32 InvisiMole has used rundll32.exe as part of its execution chain.

T1053 Scheduled Task
InvisiMole has used Windows task scheduler as part of its
execution chains.

T1064 Scripting
InvisiMole has used a JavaScript file named Control.js as part of
its execution chain.

T1035 Service Execution
InvisiMole has registered a Windows service as one of the ways to
execute its malicious payload.

T1204 User Execution
InvisiMole has been delivered as trojanized versions of software
and documents, using deceiving names and icons and relying on
user execution.

Persistence

T1050 New Service
InvisiMole has registered a Windows service named
clr_optimization_v2.0.51527_X86 to achieve persistence.

T1060
Registry Run Keys / Startup
Folder

InvisiMole has placed a LNK file in Startup Folder to achieve
persistence.

T1053 Scheduled Task
InvisiMole has scheduled tasks under names MSST and
\Microsoft\Windows\Autochk\Scheduled to achieve
persistence.

T1023 Shortcut Modification
InvisiMole has placed a LNK file in Startup Folder to achieve
persistence.

Privilege
Escalation

T1088 Bypass User Account Control InvisiMole can bypass UAC to obtain elevated privileges.

T1068
Exploitation for Privilege
Escalation

InvisiMole has exploited CVE-2007-5633 vulnerability in
speedfan.sys driver to obtain kernel mode privileges.

https://attack.mitre.org/techniques/T1196/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org/techniques/T1085/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1064/
https://attack.mitre.org/techniques/T1035/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1050/
https://attack.mitre.org/techniques/T1060/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1023/
https://attack.mitre.org/techniques/T1088/
https://attack.mitre.org/techniques/T1068/

InvisiMole: The hidden part of the story57
TLP: WHITE

Defense
Evasion

T1140
Deobfuscate/Decode Files or
Information

InvisiMole decrypts strings using variations of XOR
cipher. InvisiMole decrypts its components using the
CryptUnprotectData API and two-key triple DES.

T1480 Execution Guardrails

InvisiMole has used Data Protection API to encrypt its
components on the victim’s computer, to evade detection and
make sure the payload can only be decrypted (and then loaded)
on one specific compromised computer.

T1143 Hidden Window
InvisiMole has executed legitimate tools in hidden windows and
used them to execute malicious InvisiMole components.

T1066 Indicator Removal from Tools
InvisiMole has undergone technical improvements in attempt to
evade detection.

T1202 Indirect Command Execution
InvisiMole has used winapiexec tool for indirect execution of
Windows API functions.

T1027
Obfuscated Files or
Information

InvisiMole has obfuscated strings and code to make analysis more
difficult, and encrypted its components to thwart detection.

T1055 Process Injection
InvisiMole has injected its code into trusted processes using an
improved ListPlanting technique and via APC queue.

T1108 Redundant Access
InvisiMole has deployed multiple backdoors on a single
compromised computer.

T1085 Rundll32 InvisiMole has used rundll32.exe as part of its execution chain.

T1064 Scripting
InvisiMole’s loader uses a JavaScript script as a part of setting up
persistence.

T1063 Security Software Discovery
InvisiMole’s DNS plugin avoids connecting to the C&C server if
selected network sniffers are detected running.

T1099 Timestomp
InvisiMole has modified timestamps of files that it creates or
modifies.

T1036 Masquerading
InvisiMole has attempted to disguise its droppers as legitimate
software or documents, and to conceal itself by registering under
a seemingly legitimate service name.

Discovery

T1046 Network Service Scanning

InvisiMole has performed network scanning within the
compromised network using its Portscan and BlueKeep
components, in order to search for open ports and for hosts
vulnerable to the BlueKeep vulnerability.

T1518 Software Discovery
InvisiMole’s DNS downloader attempts to detect selected network
sniffer tools, and pauses its network traffic if any are detected
running.

T1082 System Information Discovery
InvisiMole’s DNS downloader collects computer name and system
volume serial number.

T1124 System Time Discovery InvisiMole can collect the timestamp from the victim’s machine.

Lateral
Movement

T1210
Exploitation of Remote
Services

InvisiMole has exploited EternalBlue and BlueKeep vulnerabilities
for lateral movement.

T1080 Taint Shared Content
InvisiMole has replaced legitimate software or documents in
the compromised network with their trojanized versions, in an
attempt to propagate itself within the network.

https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1480/
https://attack.mitre.org/techniques/T1143/
https://attack.mitre.org/techniques/T1066/
https://attack.mitre.org/techniques/T1202/
https://rammichael.com/winapiexec
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1108/
https://attack.mitre.org/techniques/T1085/
https://attack.mitre.org/techniques/T1064/
https://attack.mitre.org/techniques/T1063/
https://attack.mitre.org/techniques/T1099/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1518/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1124/
https://attack.mitre.org/techniques/T1210/
https://attack.mitre.org/techniques/T1080/

InvisiMole: The hidden part of the story58
TLP: WHITE

Command and
Control

T1043 Commonly Used Port
InvisiMole’s downloader uses port 443 for C&C communication.
InvisiMole’s DNS plugin uses port 53 for C&C communication.

T1090 Connection Proxy
InvisiMole’s TCP downloader is able to utilize user-configured
proxy servers for C&C communication.

T1024
Custom Cryptographic
Protocol

InvisiMole’s TCP and DNS downloaders use a custom
cryptographic protocol for encrypting network communication.

T1132 Data Encoding
InvisiMole’s DNS downloader uses a variation of base32 encoding
to encode data into the subdomain in its requests.

T1008 Fallback Channels
InvisiMole’s TCP and DNS downloaders are configured with
several C&C servers.

T1105 Remote File Copy
InvisiMole’s TCP and DNS downloaders can download additional
files to be executed on the compromised system.

T1071
Standard Application Layer
Protocol

InvisiMole’s DNS downloader uses DNS protocol for C&C
communication.

T1095
Standard Non-Application
Layer Protocol

InvisiMole’s TCP downloader uses TCP protocol for C&C
communication.

T1065 Uncommonly Used Port
InvisiMole’s TCP downloader uses port 1922 for C&C
communication.

10.2 RC2CL backdoor
Tactic ID Name Description

Execution

T1059 Command-Line Interface RC2CL backdoor can create a remote shell to execute commands.

T1106 Execution through API
RC2CL backdoor uses CreateProcess and CreateProcessAsUser
APIs to execute files.

Privilege
Escalation

T1134 Access Token Manipulation
RC2CL backdoor can use CreateProcessAsUser API to start a new
process under context of another user or process.

T1088 Bypass User Account Control
RC2CL backdoor can disable and bypass UAC to obtain elevated
privileges.

Defense
Evasion

T1090 Connection Proxy
RC2CL backdoor can be configured as a proxy relaying
communication between other compromised computers and C&C
server.

T1140
Deobfuscate/Decode Files or
Information

RC2CL backdoor decrypts strings using variations of XOR cipher.

T1089 Disabling Security Tools RC2CL backdoor is able to disable Windows firewall.

T1107 File Deletion

RC2CL backdoor can delete dropped artifacts, and various files on-
demand following a delete command.

RC2CL backdoor can safely delete files to thwart forensic analysis.

T1112 Modify Registry RC2CL backdoor hides its configuration within registry keys.

T1027
Obfuscated Files or
Information

RC2CL backdoor obfuscates/encrypts strings and code to make
analysis more difficult.

T1099 Timestomp
RC2CL backdoor modifies timestamps of files that it creates/
modifies.

T1497 Virtualization/Sandbox Evasion RC2CL backdoor is able to detect virtualized environments.

https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1024/
https://attack.mitre.org/techniques/T1132/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1065/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1134/
https://attack.mitre.org/techniques/T1088/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1089/
https://attack.mitre.org/techniques/T1107/
https://attack.mitre.org/techniques/T1112/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1099/
https://attack.mitre.org/techniques/T1497/

InvisiMole: The hidden part of the story59
TLP: WHITE

Discovery

T1087 Account Discovery
RC2CL backdoor can list account information and session
information.

T1010 Application Window Discovery RC2CL backdoor can list information about active windows.

T1083 File and Directory Discovery
RC2CL backdoor can list files, and specifically recently opened files,
and list information about mapped/unmapped drives.

T1046 Network Service Scanning
RC2CL backdoor is able to scan the compromised network for hosts
vulnerable to EternalBlue vulnerability.

T1057 Process Discovery RC2CL backdoor can list running processes.

T1012 Query Registry
RC2CL backdoor can query registry to obtain information about
installed software, applications accessed by users, applications
executed on user login/system start, recently opened files,

T1063 Security Software Discovery
RC2CL backdoor modifies its behavior if Bitdefender firewall is
enabled, or if selected AV processes are detected running.

T1518 Software Discovery
RC2CL backdoor can list installed software, recently accessed
software by users, software executed on each user login and/or
each system start.

T1082 System Information Discovery
RC2CL backdoor can list information about loaded drivers, computer
name, OS version, memory status, local time, system and process
DEP policy, …

T1016
System Network Configuration
Discovery

RC2CL backdoor can list IP table; configured proxy information;
information about enabled wireless networks for geolocation of the
victims.

T1007 System Service Discovery RC2CL backdoor can list system service information.

Collection

T1123 Audio Capture
RC2CL backdoor can record the sounds from microphones on a
computer. RC2FM misuses a legitimate lame.dll for MP3 encoding of
the recordings.

T1005 Data from Local System
RC2CL backdoor can collect data from the system, and can monitor
changes in specified directories.

T1074 Data Staged
RC2CL backdoor can store collected data in a central location for a
later exfiltration.

T1113 Screen Capture
RC2CL backdoor can capture screenshots of the victim’s screen.
RC2CL backdoor can also capture screenshots of separate windows.

T1125 Video Capture
RC2CL backdoor can access victim’s webcam and capture photos/
record videos.

Command and
Control

T1008 Fallback Channels
RC2CL backdoor is configured with several C&C servers. Via a
backdoor command, it is possible to extend the list and change
which C&C server is used.

T1105 Remote File Copy
InvisiMole can download additional files to be executed on the
compromised system.

T1065 Uncommonly Used Port RC2CL backdoor uses port 1922 for C&C communication.

Exfiltration

T1002 Data Compressed
RC2CL backdoor can create zlib and SFX archives. It misuses a copy
of the legitimate WinRAR tool for compression and decompression.

T1022 Data Encrypted RC2CL backdoor uses variations of XOR cipher to encrypt data.

T1041
Exfiltration Over Command
and Control Channel

RC2CL backdoor exfiltrates collected information over its C&C
channel.

https://attack.mitre.org/techniques/T1087/
https://attack.mitre.org/techniques/T1010/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1063/
https://attack.mitre.org/techniques/T1518/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1007/
https://attack.mitre.org/techniques/T1123/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1074/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1125/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1065/
https://attack.mitre.org/techniques/T1002/
https://attack.mitre.org/techniques/T1022/
https://attack.mitre.org/techniques/T1041/

InvisiMole: The hidden part of the story60
TLP: WHITE

10.3 RC2FM backdoor
Tactic ID Name Description

Execution

T1059 Command-Line Interface RC2FM backdoor can create a remote shell to execute commands.

T1106 Execution through API
RC2FM backdoor supports a command that uses ShellExecute and
CreateProcess APIs to execute files.

Privilege
Escalation

T1088 Bypass User Account Control RC2FM backdoor can bypass UAC to obtain elevated privileges.

Defense
Evasion

T1140
Deobfuscate/Decode Files or
Information

RC2FM backdoor decrypts strings using variations of XOR cipher.

T1107 File Deletion
RC2FM backdoor can delete dropped artifacts, and various files on-
demand following a delete command.

T1143 Hidden Window
RC2FM backdoor uses CREATE_NO_WINDOW creation flag to execute
malware in hidden window.

T1112 Modify Registry RC2FM backdoor hides its configuration within registry keys.

T1027
Obfuscated Files or
Information

RC2FM backdoor obfuscates/encrypts strings and code to make analysis
more difficult.

T1055 Process Injection
RC2FM backdoor can inject itself into ctfmon.exe, dwm.exe, sihost.exe
and taskhost.exe processes.

T1085 Rundll32
RC2FM backdoor uses rundll32.exe to load a stub DLL to which it then
injects itself.

T1099 Timestamp RC2FM backdoor modifies timestamps of files that it creates/modifies.

T1497 Virtualization/Sandbox Evasion RC2FM backdoor is able to detect virtualized environments.

Discovery

T1083 File and Directory Discovery
RC2FM backdoor collects information about mapped drives. It can list
files in a specific folder.

T1135 Network Share Discovery RC2FM backdoor can list connected network shares.

T1057 Process Discovery RC2FM backdoor can list running processes.

T1082 System Information Discovery
RC2FM backdoor collects computer name and system volume serial
number.

T1016
System Network Configuration
Discovery

RC2FM backdoor lists information about configured proxy servers.

Collection

T1123 Audio Capture
RC2FM backdoor can record the sounds from microphones on a
computer. It misuses a legitimate lame.dll for MP3 encoding of the
recordings.

T1025 Data from Removable Media RC2FM backdoor can collect jpeg files from connected MTP devices.

T1056 Input Capture RC2FM backdoor can collect keystrokes.

T1113 Screen Capture RC2FM backdoor can capture screenshots of the victim’s screen.

Command and
Control

T1043 Commonly Used Port RC2FM backdoor uses port 80 for C&C communication.

T1090 Connection Proxy
RC2FM backdoor can use proxies configured on the local system, for
various installed and portable browsers, if direct connection to the C&C
server fails.

T1008 Fallback Channels
RC2FM backdoor is configured with several C&C servers. It is possible to
update the C&C server by a backdoor command.

T1105 Remote File Copy
InvisiMole can download additional files to be executed on the
compromised system.

T1071
Standard Application Layer
Protocol

RC2FM backdoor uses HTTP for C&C communication.

https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1088/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1107/
https://attack.mitre.org/techniques/T1143/
https://attack.mitre.org/techniques/T1112/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1085/
https://attack.mitre.org/techniques/T1099/
https://attack.mitre.org/techniques/T1497/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1123/
https://attack.mitre.org/techniques/T1025/
https://attack.mitre.org/techniques/T1056/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1071/

InvisiMole: The hidden part of the story61
TLP: WHITE

Exfiltration

T1022 Data Encrypted RC2FM backdoor uses variations of XOR cipher to encrypt data.

T1041
Exfiltration Over Command
and Control Channel

RC2FM backdoor exfiltrates collected information over its C&C channel.

https://attack.mitre.org/techniques/T1022/
https://attack.mitre.org/techniques/T1041/

ABOUT ESET
For 30 years, ESET® has been developing industry-leading IT security software and services for

businesses and consumers worldwide. With solutions ranging from endpoint and mobile security,

to encryption and two-factor authentication, ESET’s high-performing, easy-to-use products give

consumers and businesses the peace of mind to enjoy the full potential of their technology. ESET

unobtrusively protects and monitors 24/7, updating defenses in real time to keep users safe and

businesses running without interruption. Evolving threats require an evolving IT security company.

Backed by R&D centers worldwide, ESET becomes the first IT security company to earn 100 Virus

Bulletin VB100 awards, identifying every single “in-the-wild” malware without interruption since 2003.

For more information, visit www.eset.com or follow us on LinkedIn, Facebook and Twitter.

http://www.eset.com/int/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://cz.linkedin.com/company/eset
https://www.facebook.com/eset?ref=br_tf
https://twitter.com/ESET

	1	Executive summary
	2	Attacks and investigation
	2.1	InvisiMole’s toolset
	2.2	Cooperation between InvisiMole and Gamaredon

	3	Building blocks
	3.1	Structure
	3.1.1	InvisiMole blobs
	3.1.2	Execution guardrails with DPAPI

	3.2	Payload
	3.2.1	TCP downloader
	3.2.2	DNS downloader
	3.2.3	RC2CL backdoor
	3.2.4	RC2FM backdoor

	4	Delivery method
	5	Lateral movement
	5.1	Network vulnerabilities
	5.1.1	EternalBlue exploit chain
	5.1.2	BlueKeep exploit chain

	5.2	Trojanized software and documents

	6	Execution chains
	6.1	Control Panel misuse chain
	6.1.1	Installation
	6.1.2	Stage 1—Control Panel.lnk
	6.1.3	Stage 2—Control.js
	6.1.4	Stage 3—Control Panel
	6.1.5	Stage 4—infocardadd.cpl

	6.2	SMInit exploit chain
	6.2.1	Installation
	6.2.2	Stage 0—scheduled task
	6.2.3	Stage 1—SMinit.exe
	6.2.4	Stage 2—SyncData entry

	6.3	Speedfan exploit chain
	6.3.1	Installation
	6.3.2	Stage 1—mscorscvs.exe
	6.3.3	Stage 2—NGEN.exe
	6.3.4	Stage 3—Ngen.cab
	6.3.5	Stage 4—speedfan.sys exploit
	6.3.6	Stage 5—kernel-mode inject
	6.3.7	Stage 6—loader
	6.3.8	Previous versions

	6.4	Wdigest exploit chain
	6.4.1	Installation
	6.4.2	Stage 0—scheduled task
	6.4.3	Stage 1—setupSNK.exe
	6.4.4	Stage 2—wdigest.dll
	6.4.5	Stage 3—M loader
	6.4.6	Stage 4—A loader
	6.4.7	Stage 5—B loader

	7	Conclusion
	8	Acknowledgements
	9	Indicators of Compromise (IoCs)
	10	MITRE ATT&CK techniques
	10.1	InvisiMole
	10.2	RC2CL backdoor
	10.3	RC2FM backdoor

