
 
RansomEXX, Fixing 
Corrupted Ransom 

 
Brenton	Morris 
Follow 
Sep	30 · 13 min read 

Since the sudden disappearance of the REvil ransomware 
operation, there has been a rise in other “ransomware as a 
service” (RaaS) operators attempting to claim their piece of the 
RaaS market share left behind. Among the most prominent of 
these groups is RansomEXX / RansomX. They have become 
infamous not only for their high-profile attacks, but also for the 
leak site they use to name and shame their victims who don’t 
adhere to their ransom demands, and for their deployment of 
ransomware payloads for both Windows and Linux devices. 

Based on the high number of recent attacks by this group, the 
Profero IR team has encountered multiple ransomware cases 
involving the Linux variant of this malware. During some of 
these incidents, we analyzed the ransomware and a version of its 
decryption tool and discovered a bug in the encryption process 
that left some files corrupted and unable to be decrypted by the 
tool. 



In the following report, we describe how this ransomware and 
the decryption tool work — and how some corrupted files can 
potentially be rescued. We also introduce a new tool that can be 
used to extract the decryption key information from the Linux 
version of the decryption tool provided by the attackers and then 
use that configuration to decrypt affected files. We hope that this 
tool will remove the need to reverse engineer the attacker’s 
decryption tool during an incident and make for a speedier 
recovery. 

The source code of the tool is publicly available here. 

Ransomware Analysis 

Summary 

RansomEXX has the ability to recursively encrypt files in a list of 
provided directories using symmetric encryption (AES-CBC). 
Each file is appended with a header containing information 
encrypted with an RSA public key — such as the AES key and IV 
values — so that they can be decrypted. Additionally, this header 
is regenerated roughly every 0.18 seconds along with a new AES 
key and IV to prevent decrypting all files with a key and IV 
recovered by analyzing memory dumps taken from an infected 
machine. If two files are encrypted within the same 0.18 second 
period, they will be encrypted with the same key. 

The malware appears to be specifically compiled for each attack, 
with the target organization’s name included in the embedded 



ransom note, making it harder to share samples publicly. There 
is also an unused config value containing file extensions which 
indicate this malware can also be compiled to run on Windows. 
The use of the mbedTLS library also supports this conclusion, as 
it can be compiled for various target platforms. 

There is no persistence method enabled in this ransomware and 
it runs as a standalone command line tool which can be executed 
on the victim machines as part of a multi-staged attack. 

Overview 

The analyzed samples were not packed or stripped, making our 
analysis easier as we can see the original function names used by 
the author. The malware uses the mbedtls library for encryption 
capabilities: 
 

 

Execution Flow 
When initiated, the malware first loads the ransomware config 
with the ConfigLoadFromBuffer function and then calls 
the GeneratePreData function: 
 



 

The GeneratePreData function (pictured below) carries out the 
tasks of setting up the mbedtls context, including generating a 
random seed using the current time as personalization data to 
add extra entropy and generating the “ransom header” which 
contains RSA encrypted initialization information for the 
encryption such as IV and key used. This “header” is appended to 
each encrypted file so that it can be decrypted: 
 



 



Next, the malware starts a thread to re-run the above function 
every 0.18 seconds (180,000 microseconds). Note that inside the 
GeneratePreData function a mutex is acquired to prevent the 
context from changing while in use. This means there is no 
guarantee that it will regenerate any of these values on time. 
This is likely used to ensure that any key recovered from a 
memory dump would only be able to decrypt a small number of 
the most recently encrypted files. 
 

 

Once this thread is running the main work begins: the malware 
loops through a list of directories passed to it by a command line 
and calls the EnumFiles function on each. 

From here, the malware initializes the same number of worker 
threads as the system has processors, and it is these worker 
threads that handle the actual encryption of each file. 
The encrypt_dir function is then called. 
 



 

The encrypt_dir function loops through the directory 
recursively, creating the ransom note inside each directory and 
assigning each file discovered to a worker thread, which then 
perform the encryption. This function skips calling itself on the 
current directory or the parent directory, and does not encrypt 
any ransom notes. Interestingly, this function does not make use 
of the list of file extensions in the config item with index 11, 
which appears to be a list of file types to skip when encrypting. 
Instead, it encrypts every file it locates that is not a ransom note. 
 



 

A high-level view of the function calls made when the malware 
starts can be seen below: 
 



 

Configuration 

The malware configuration is stored in a list of dynamically sized 
items. Each item contains the following elements: 
 

 

This data structure is parsed by the malware in 
the ConfigLoadFromBuffer function and stored in an easily 
accessible global config structure to be used during runtime: 
 



 

By storing the config values in this way, the malware author has 
applied some very basic obfuscation and hidden the code that 
references these values from the disassembler, lengthening the 
time required to analyze this sample. 

The malware config contains the following values encoded in 
this way, as seen below. Blank values are currently unknown or 
unused 
 



 

Some of these config values are not used in this binary. This 
suggests the malware is written using a modular design, which 
allows the attackers to turn features on or off at compile time. 
Along with the fact that the malware contains references to the 
victim organization in the ransom note, this indicates that the 
malware is compiled for each individual attack. 

Encryption Process 



When a worker thread receives a file path to encrypt, it calls 
the CryptOneFile function. This function oversees the target 
file’s encryption in AES CBC mode using a key size of 256 bits. 
Each file is appended with the “ransom header” generated in 
the GeneratePreData function. 
 

 

The ransomware encrypts files using a rolling window which 
moves through the file in a manner which depends on 
which CryptLogic values the malware is using for that particular 
file. 

A CryptLogic is a set of values which determine how a file 
should be encrypted or decrypted in blocks. The decrypt logic to 
use for a given file is determined by its size in bytes. 
Each CryptLogic is a struct with the following C definition: 

struct CryptLogic { 
uint64_t lowerLimit; 
uint64_t upperLimit; 
uint64_t chunkSize; 
uint64_t blockSize; 
}; 

The lowerLimit value is the lower limit of files to be 
encrypted/decrypted with the 
contained chunkSize and blockSize values while 
the upperLimit is the upper limit for the file size. 



The chunkSize is the number of bytes which are read, 
encrypted/decrypted and then written back to one affected file at 
a time, while the blockSize is the number of bytes in the file 
after each chunk is encrypted/decrypted. In the sample analyzed, 
the blockSize is larger than the corrosponding chunkSize, so the 
malware will only partially encrypt affected files but it is still 
enough to render the files unusable. 

A description of each value in the CryptLogic is below: 
 

 

After the CryptOneFile function has appended the encrypted 
header to a file it calls 
the ProcessFileHandleWithLogic function — which will get the 
correct crypt logic values to use — it then works its way through 
the file using the method described above: 
 



 

If successful, the ransomware will then rename the encrypted file 
to indicate it has been encrypted: 
 



 

A high-level overview of the function calls made by 
the encrypt_worker thread can be seen below: 
 

 

Decryption Tool Analysis 

Summary 

The decryption tool is able to recursively decrypt files in a list of 
provided directories using AES in CBC mode. Each encrypted file 
contains a header with information required to decrypt, such as 
the AES key and IV values used to encrypt the file. This header is 
read and the key and IV are decrypted, and then removed from 
the file. Subsequently, the file is decrypted, and returns to its 
original state. 



Due to failure to acquire a lock on the file, it is possible that 
while the file is being encrypted it is in use by the system and 
being written to in parallel. This would lead to a file corruption, 
with encrypted data mixed in with unencrypted data or with 
extra data being appended to the file after the encrypted header 
— causing the decryption tool to fail to obtain the correct keys to 
decrypt the file. We encountered several log files that were 
partially corrupted due to this flaw. This presence of this flaw 
could mean that even after paying a ransom to the attackers, 
victim organizations would not be able to recover some files. 

Overview 

This file is not packed or stripped and uses the mbedTLS library 
for AES decryption: 
 

 

Execution Flow 



This file looks very similar to the ransomware component 
analyzed in this post. 

When comparing the two files we can see that there are only a 
small number of different functions between these samples. 

It starts off with the main function similar to the ransomware 
component without the call to GeneratePreData or the creation 
of the regenerate_pre_data worker thread. It loads the 
ransomware config from a buffer using the exact same method 
documented in the ransomware analysis above, and then 
calls EnumFiles on each directory passed in via the command 
line args: 
 

 

EnumFiles is identical to the ransomware 
component’s EnumFiles function. It creates a pool of worker 
threads equal to the number of the victim machine’s CPUs using 



the init_workers function, and then calls encrypt_dir, passing 
the target directory path as the only parameter: 
 

 

The encrypt_dir function is almost identical to the function in 
the ransomware component with the same name, it loops 
through all subdirectories recursively and assigns each file found 
to a worker thread. The only difference here is that this function 
removes the ransom note instead of dropping one, this can be 
seen in the picture below: 
 



 
Ransomware encrypt_dir function compared to the decryption tool. 

Configuration 

The configuration provided with the decryption tool contains 
everything it needs to decrypt affected files. 

The decryption tool uses the exact same encoding mechanism for 
its config values as the ransomware component itself, but this 
time using a lot more config values: 
 



 

The configuration contains the following encoded values: 



 

 

Decryption Process 

The decryption tool worker threads are almost identical to the 
workers in the ransomware, except that they 
call DeCryptOneFile when they receive a path to decrypt, while 
the ransomware calls CryptOneFile: 
 



 

The DeCryptOneFile function calls 
the DeCryptOneFileEx function and then removes the file 
extension that was added to the file during encryption: 
 



 

The DeCryptOneFileEx function reads the encryption 
information stored in the “ransomware header” at the end of the 
file and ensures that it parses correctly. Then it truncates the file 
to remove the added header: 
 



 



It then calls the ProcessFileHandleWithLogic function, 
instructing it to use the DeCryptOneBlock function to decrypt 
the file block by block. This function decrypts files in the same 
way the ransomware encrypted them, calculating which crypt 
logic configuration to use based on the original file size. 
 



 

The DeCryptOneBlock function is a simple function which 
decrypts one 16-byte chunk of a file: 
 



 

Files Failing to Decrypt 

When running this decryption tool on a directory of files, you 
may find that some files do not decrypt but no visible error is 
shown. This is due to the bug in the encryption process — files 
that are being written to at the time of the encryption may be 
corrupted, especially if the ransomware has already added the 
“header.” This happens because the ransomware does not lock 
the files to prevent other applications from writing to them 
during encryption. 

This can be seen in the following screenshot. Above the line 
highlighted in red is encrypted data, below is the legitimate log 
data. 
 



 

When the decryption tool attempts to decrypt a file, it reads the 
RSA encrypted AES key and IV from the end of the file, parsing 
the unencrypted log data that was appended as a blob of RSA 
encrypted data. This causes the call 
to mbedtls_rsa_pkcs1_decrypt to fail. This is demonstrated 
below — note the return value in rax is non-zero right after the 
call to mbedtls_rsa_pkcs1_decrypt: 
 



 

The decryption tool does not report this error to the user and 
instead will silently fail and move on to the next file. 

Recovering the Corrupted Files 

Due to the above bug in the encryption process, some files 
encrypted by this malware could have been written to by a 
legitimate application during the encryption process, corrupting 
the file. If the nature of this corruption is simple, such as ASCII 
log file data being appended after the encrypted portion of the 
file, a file can be easily recovered. 

During encryption, the malware will append each file with RSA 
encrypted key information required to decrypt a file once a 



ransom is paid. When a file is being decrypted this information is 
read from the end of the file, decrypted with the RSA private 
key, and then used to decrypt the file. For decryption to work in 
the case that legitimate data has been appended after the key 
information we need to truncate the file to remove this data, 
decrypt the file, and then append the data previously truncated. 

In the example below the file would need to be truncated 
to 0x000013b8 bytes in size. The decryption tool will then run 
correctly. 



 

If the nature of the corruption is more complex than the above 
example it may still be possible to recover the file by untangling 
the encrypted and unencrypted data and then splicing it back 
together in the correct order but if the legitimate file data was 
high entropy data (such as an encrypted file) this would likely be 
impossible. 



Config Extractor and Decryption Tool 
Because the attackers provide paying victims with a decryption 
tool they must run to decrypt their files there is a risk that the 
decryption tool may be malicious. This requires affected victims 
to reverse engineer the provided decryption tool to ensure there 
is no hidden payload or malicious features, a time investment 
that can be problematic for some organizations during a 
ransomware incident. Due to this we decided to write our own 
implementation of the Linux decryption tool which can be used 
to carry out the following tasks: 

• Extract the config required to decrypt files from a Linux 
decryption tool provided by the attackers 

• Use this config to decrypt files encrypted by the Linux 
version of RansomEXX 

Today we are releasing this tool as an open-source command-
line application written in Go. Its usage is as follows: 

Usage of ./ransomexx-tools: 
-config string 
Path of the extracted config file to use for decryption 
-debug 
Log debug output 
-decrypt 
Decrypt a list of directories 
-decryption-tool string 
Path to the decryption tool to extract the config from. Required 



when using -exconfig 
-dirs string 
A list of directories to recursively decrypt, separated by a comma 
-exconfig 
Extract the config from a decryption tool provided by the 
RansomEXX group 
-num-workers int 
Number of workers to use for decryption (default 4) 
-out string 
The file to save the extracted config to. 

This tool can be found on our GitHub 
here: proferosec/RansomEXX-Tools (github.com) 

Extracting the Config 

To extract the config containing all decryption key information 
from a decryption tool provided by the attackers simply run the 
tool with the following parameters: 

./ransomexx-tools -exconfig -decryption-tool 
/path/to/attcker/provided/decryption-tool -out config.json 

You will then have a file in the current directory named 
config.json with the extracted configuration values. 

Decrypting Files 



Once the config has been extracted you can use this tool to 
decrypt your files instead of the attacker-provided decryption 
tool. Run the tool with the following parameters: 

./ransomexx-tools -decrypt -config config.json -dirs 
/path/to/decrypt,/second/path/to/decrypt 

The -decrypt mode takes the path to the config file in -config and 
a comma-separated list of directories to recursively search for 
files to decrypt in the -dirs parameter. 
 


