
REPORT

B a b u k :

M o v i n g t o

V M a n d * n i x

S y s t e m s B e f o r e

S t e p p i n g A w a y

https://www.mcafee.com/enterprise/en-us/home.html

Babuk: Moving to VM and *nix Systems Before Stepping Away2

REPORT

Table of Contents

5	 The Babuk Threat Actor

6	  Phases of a Ransomware Attack
6	  Ransomware-as-a-Service Supply Chain

7	 A Typical Attack by a Babuk Threat Actor

7	  IN
7	  THROUGH
8	  OUT

9	 Recent Developments Surrounding the Babuk Threat Actor

9	 From Ransomware Developers to Data Leak Managers?

10	 Technical Analysis

13	  Memory Alloc:
15	  Encryption

17	 Key Findings

17	 Conclusion

18	 YARA Rule

18	 IOCs: Babuk NAS Locker

19	 About McAfee

19	 McAfee ATR

Connect With Us

Authors

This report was researched

and written by:

	■ Thibault Seret

	■ Noël Keijzer, Northwave

Subscribe to receive threat
information.

Introduction
For a long time, ransomware gangs were mostly focused on Microsoft Windows operating
systems. Yes, we observed the occasional dedicated Unix or Linux based ransomware, but
cross-platform ransomware was not happening yet. However, cybercriminals never sleep and
in recent months we noticed that several ransomware gangs were experimenting with writing
their binaries in the cross-platform language Golang (Go).

Our worst fears were confirmed when Babuk announced on an underground forum that it
was developing a cross-platform binary aimed at Linux/UNIX and ESXi or VMware systems.
Many core backend systems in companies are running on these *nix operating systems or, in
the case of virtualization, think about the ESXi hosting several servers or the virtual desktop
environment.

We touched upon this briefly in our previous blog, together with the many coding mistakes the
Babuk team is making.

Even though Babuk is relatively new to the scene, its affiliates have been aggressively infecting
high-profile victims despite numerous problems with the binary.

In our first Babuk blog McAfee Advanced Threat Research (ATR), and our industry peers,
discussed some of the Windows binary issues. It seems that Babuk has adopted live beta
testing on its victims when it comes to its Golang binary and decryptor development. We have
seen several victims’ machines encrypted beyond repair due to either a faulty binary or a faulty
decryptor.

Babuk: Moving to VM and *nix Systems Before Stepping Away3

REPORT

https://www.mcafee.com/blogs/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee
https://northwave-security.com/
https://www.mcafee.com/enterprise/en-us/forms/threat-information-subscription.html?eid=X7AOM1OW
https://www.mcafee.com/enterprise/en-us/forms/threat-information-subscription.html?eid=X7AOM1OW
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/babuk-ransomware/

Connect With Us

Even if a victim gave in to the demands and was forced to pay the ransom, they still could not
get their files back. We strongly hope that the bad coding also affects Babuk’s relationship
with its affiliates. The affiliates are the ones performing the actual compromise and are now
faced with a victim that cannot get their data back even if they pay. This essentially changes
the crime dynamic from extortion to destruction which, from a criminal’s point of view, is much
less profitable.

Figure 1. Post from Babuk about the Linux version of the ransomware

Babuk: Moving to VM and *nix Systems Before Stepping Away4

REPORT

https://www.mcafee.com/blogs/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee

Connect With Us

Authors

This report was researched
and written by:

	■ Thibault Seret

	■ Noël Keijzer, Northwave

Subscribe to receive threat
information.

Babuk: Moving to VM and *nix
Systems Before Stepping Away

The Babuk Threat Actor

Before giving an overview of the methodology used by the
Babuk threat actor, some general background knowledge
of how ransomware attacks occur and what groups are
behind the attacks is necessary.

Following, we will first describe the typical phases of
a ransomware attack, as well as the Ransomware-as-
a-Service model that is used by Babuk ransomware.
Subsequently we will show what a typical Babuk
ransomware attack looks like, and what specific Threats,
Tactics, and Procedures are used by the Babuk threat
actor. Finally, a technical analysis of the ransomware
employed by the threat actor will show that there are
many flaws found within the code that result in the
destruction of victim’s data.

Babuk: Moving to VM and *nix Systems Before Stepping Away5

REPORT

https://www.mcafee.com/blogs/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee
https://northwave-security.com/
https://www.mcafee.com/enterprise/en-us/forms/threat-information-subscription.html?eid=X7AOM1OW
https://www.mcafee.com/enterprise/en-us/forms/threat-information-subscription.html?eid=X7AOM1OW

Phases of a Ransomware Attack
During a cyberattack the different steps an attacker performs can be
categorised in three main categories, which we will use to describe a
typical attack of a Babuk threat actor:

	■ Initial access (IN)

	■ Network propagation (THROUGH)

	■ Action on objectives (OUT)

Exploiting a vulnerability from an
internet-connected server.
Various tools are often available
for known vulnerabilities.

Lateral movement.
Reconnaissance of the network
(through vulnerable systems or
insufficient access control).
In this stage, the attacker hops
from computer to computer.

Encrypt files and demand
ransom.
The attacker applies a
cryptographic function on the
files - the attacker demands the
purchase of this key which is
needed to revert the encryption.

Phishing email.
An email with a rogue attachment
or link. These emails can be
tailor-made and are hard to
distinguish from legitimate emails.

Remote access software -
vulnerable password.
Attackers can try to guess the
password if they can log in from
the Internet.

Privilege escalation.
Becoming an admin through
password guessing, unsafe user
rights, or vulnerabilities.
The attacker tries to get more
rights on a computer and thus
more possibilities. An attacker
uses lateral movement and
privilege escalation often
alternately.

Downloading sensitive data -
threatening to publish.
Stealing business-sensitive data
or personal data from the server.
The victim must pay to avoid
publication which integrates
seamlessly with encryption.

Destroying or corrupting
backups.

IN THROUGH OUT

Figure 2. Ransomware attack phases

Ransomware-as-a-Service Supply Chain
Lately, there is an increasing trend observed in the cybercriminal industry
called “Ransomware-as-a-Service (RaaS).” RaaS is a business model
that is increasing in popularity among ransomware authors.1 RaaS is a
service, offered by ransomware developers that allows cybercriminals to
rent ransomware. RaaS aims to simplify ransomware attacks for criminals
that lack the technical skills to build their own ransomware in exchange
for a part of the ransom acquired by the criminals. This business model
allows many ransomware developers to collaborate with other seasoned
cybercriminals that can distribute ransomware in large networks to which
they already have access. Babuk ransomware made use of such a model
before shutting down its ransomware operations at the end of April 2021.

RaaS is transforming the way a ransomware attacks works, involving
several distinct actors. Generally, we can divide the supply chain for such
attacks in to four stages, as shown below.

• Obtain initial access to
organizations

• Perform reconnaissance,
escalate privileges, or
install further tooling

• Monetize networks by
selling them to any actor

• € 500–20.000

• Pivotting and Lateral
Movement

• Exfiltration of data

• Monetize networks by
locking them, threaten to
publish stolen data, and
demanding ransom

• € 10.000–20.000.000

• Supply the ransomware
infrastructure and
software

• Negotiate with victim
organizations

• € 10.000–20.000.000

• Manage stolen data

• Prepare data samples

• Publish data if not paid

INITIAL ACCESS
BROKER

RANSOMWARE
AFFILIATES

2 days – 3 months

RANSOMWARE
OPERATORS/DEVELOPERS

DATA MANAGERS

Figure 3. Supply Chain schema

Babuk: Moving to VM and *nix Systems Before Stepping Away6

REPORT

Technique Tactic Observable

Exploit public-facing
application (T1190)

Initial access Exploitation of Exchange server using
CVE-2021-27065

Valid accounts (T1078) Persistence Group makes use of legitimate domain
administrator credentials for most of
their activity

Create account (T1136) Persistence Creates domain account named Petr

Exploitation for privilege
escalation (T1068)

Privilege escalation Zerologon exploit to obtain domain
admin account,
Mimikatz to obtain additional account
credentials

Impair Defenses (T1562) Defense Evasion Usage of GMER rootkit remover to
disable anti-virus solutions

Account discovery (T1087) Discovery Usage of ADFind to list all accounts in the
domain

Remote System Discovery
(T1018)

Discovery Usage of ADFind to list all systems in the
domain

Remote System Discovery
(T1018)

Discovery Usage of NetScan to identify systems on
the network

File and Directory Discovery
(T1083)

Discovery Usage of LAN Search Pro to find files
located on network shares

Remote Services (T1021) Lateral Movement Usage of RDP and SSH to move between
systems

Lateral Tool Transfer
(T1570)

Lateral movement Usage of WinSCP to transfer files to linux
systems

Multi-Stage Channels
(T1104)

Command and
Control

Usage of Cobalt strike to obtain
persistence within the environment

Archive Collected Data
(T1560)

Collection Usage of WinRAR to archive data prior to
exfiltration

Exfiltration Over Web
Service, Transfer Data to
Cloud Storage (T1567.002)

Exfiltration Data exfiltration to MEGA using the
MegaSync application as well as data
exfiltration to Google Drive using Google
Chrome

Data Encrypted for Impact
(T1486)

Impact Encrypt systems using ransomware

Figure 4. Mitre Matrix

A Typical Attack by a Babuk Threat Actor

IN
During a Babuk attack that Northwave investigated, the threat actor gained
access to the victim’s network by exploiting a vulnerability on an internet-
facing server, in this case CVE-2021-27065. This vulnerability was one
that was actively being exploited by the HAFNIUM threat actor before
being patched by Microsoft. After a patch was issued, the vulnerability
was picked up by several threat groups and Northwave has seen this
vulnerability being abused by different ransomware threat actors in several
investigations.

Upon gaining entry to the victim’s network, the attacker remained dormant
for over a week. We suspect this was because the party that gained access
to the network was an initial access broker, selling access to ransomware
affiliates.

THROUGH
As mentioned above, the attacker did not start reconnaissance and
lateral movement on the victim’s systems until a week after the initial
compromise. In the paragraphs below we will describe the methodology
that the threat actor used to gain complete control of the environment.

After gaining access, the threat actor placed a Cobalt Strike backdoor on
the system. Cobalt Strike is frequently employed by attackers to obtain
persistence on their victim’s networks. Northwave found that the threat
actor placed Cobalt Strike backdoors on several key systems within the
network. Furthermore, Northwave found that the attacker made use of
GMER, which is a rootkit removal tool. This tool was likely used to remove
or disable anti-virus solutions on the victim’s system. The threat actor was
also found to have downloaded Metasploit, though they did not actually use
it during the attack on this victim.

Babuk: Moving to VM and *nix Systems Before Stepping Away7

REPORT

https://northwave-security.com/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065

The threat actor used a custom version of zer0dump2 to obtain domain
administrator credentials. This tool uses the Zerologon3 exploit to elevate
privileges by compromising the domain controller. The threat actor did
not create a new domain account, neither did they change the credentials
of any existing accounts. Instead, the threat actor opted to use already
existing domain admin accounts, with their original credentials. The threat
actor used Mimikatz to obtain access to credentials of other domains
present on the victim’s network. During later stages of the attack, the
threat actor opted to create a new local administrator account on some of
the systems as a means of additional persistence.

Lateral movement between Windows systems was achieved using RDP. For
connections to Linux systems, the attacker made use of SSH (using Putty).
Moving files to Linux systems was done using WinSCP from Windows
systems, while tools used on Windows systems were downloaded from the
internet. The threat actor made use of the “temp.sh” and “wdfiles.ru” file
hosting websites to host most of his tools. Other tools were downloaded
directly from GitHub or the websites of their respective developers.
The attacker downloaded a tool to scan for systems vulnerable to the
EternalBlue exploit, however, the attacker did not seem to use it during the
attack.

Reconnaissance of the environment was done using ADFind, NetScan, and
LAN Search Pro. ADFind is a tool we frequently see in investigations that
enables the threat actor to dump a list of all systems and users in a domain.
NetScan is an administrative tool that can perform a scan to map out a
network, including logged-on users, installed software, and various other
information about remote machines. LAN Search Pro is a utility that allows
a user to search for files on network shares of the local network.

OUT
Before starting to roll out ransomware on the victim’s network, the threat
actor exfiltrated data. The threat actor used WinRAR to compress data and
staged the exfiltrated data on the fileserver that the data originated from.
The threat actor then exfiltrated this data to both Mega and Google Drive.
Data exfiltration to Mega was done using the MegaSync application whilst
exfiltration to Google Drive was done through the Chrome browser.

After obtaining full control of the environment and exfiltrating data from the
victim, the threat actor proceeded to destroy the victim’s backups by first
deleting any backup related files and then deploying ransomware on their
backup systems.

Finally, after the threat actor had ensured that there was no way for the
victim to recover from the attack using backups, they moved to the
victim’s ESXi hosts and deployed a precompiled ransomware binary.
The ransomware binary would proceed to encrypt all the victim’s virtual
machines. Unfortunately, this ransomware binary turned out to be very
poorly implemented and contained several different design flaws that
resulted in the irreversible corruption of data. This binary is analysed in the
sections below.

Babuk: Moving to VM and *nix Systems Before Stepping Away8

REPORT

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/are-virtual-machines-the-new-gold-for-cyber-criminals/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/are-virtual-machines-the-new-gold-for-cyber-criminals/

Recent Developments Surrounding the Babuk Threat Actor

At the end of April, Babuk announced that it would cease operations and
switch to a different business model. The group would no longer encrypt
systems but would instead focus exclusively on data exfiltration.4,5,6
Furthermore, the group stated that it would publish the code to its
ransomware as an open-source project. The threat actor indicated that it
would focus on publishing data from victims that were unresponsive to its
ransom demands. Furthermore, the threat actor indicated that it would
host and publish data for other groups. As such, the Babuk threat actor
seems to be moving towards a data management position.

Figure 5. Post on Babuk’s site

Given the poor design of its ransomware, a fair number of victims should
be saved from completely losing their data when being attacked by Babuk.
As mentioned in the previous sections, Northwave has seen threat actors
slowly move from a scheme extorting victims by encrypting their data
towards a double-extortion scheme where the threat actors both encrypt
the victim’s data and exfiltrate it as well. It is interesting to see threat actors
now moving towards a scheme where their sole source of pressure to extort
victims is the exfiltration of sensitive data.

From Ransomware Developers to Data Leak Managers?

As mentioned previously on its website, the Babuk team has moved from
the ransomware environment to becoming a data leak discloser:

Figure 6. Babuk’s new website -> Payload.bin

Firstly, it released the source code for highly anticipated game Cyberpunk
2077 at the end of May 2021. The team behind the game, CD ProjektRed, is
a polish video game developer, publisher, and distributer. The leak contains
the source code for Cyberpunk 2077 on various video game platforms
including PS5, PC, etc:

Figure 7. All leaked CyberPunk 2077 source code

Since this first leak, we have not seen any new activity from the actor.

Babuk: Moving to VM and *nix Systems Before Stepping Away9

REPORT

Technical Analysis

The malware is written in the open-source programming language Golang,
most likely because it allows developers to have a single codebase to
be compiled into all major operating systems. This means that, thanks
to static linking, code written in Golang on a Linux system can run on a
Windows or Mac system. This presents a large advantage to ransomware
gangs looking to encrypt a whole infrastructure comprised of different
systems architecture.

Babuk sample:

Filename Babuk_nas.bin

File Type ELF 32-bit LSB executable

File Size 2MB

SHA256 e43462670c467d4899ce61e2d202d93049499b10fcaaf05d98d53616567a4276

Sections 23

Figure 8. Babuk sample summary

As we know, for Windows, Babuk replaced Chacha encryption with the HC-
128 algorithm in mid-January, but for the Linux version it still uses Chacha
and Curve25519 algorithms:

Figure 9. Main Go files used by Babuk

Before starting the encryption process, the sample will check if the
processor is allowing MMX instructions because Go requires MMX support
for it to compile properly:

Figure 10. Babuk checks for MMX instructions support

Babuk: Moving to VM and *nix Systems Before Stepping Away10

REPORT

MMX instructions allow a single instruction to execute against multiple
items of data concurrently, providing the program can be expressed in that
form.

It also continues to map the CPU by looking for virtual processors by using
“getproccount” and “sched_getaffinity” system calls, to avoid multiple
calls and touching the filesystem:

Figure 11. CPU Checking Flow and Mapping

After the processor recognition, the sample will set the environment to run
correctly (set GCC (GNU Compiler Collection), increase the default stack
size of goroutine, implement synchronization algorithms with atomics, etc).

Babuk manipulates the buffers a lot from the victim computer, notably with
the garbage collector (GC) process to free memory while other goroutines
modify it. For example, if GC is freeing memory, goroutines report all
their memory writes to it. The goal is to prevent concurrent memory
modifications being missed by the current freeing phase. To do it, Golang
uses a “write barrier” which performs the write and informs GC.

Babuk: Moving to VM and *nix Systems Before Stepping Away11

REPORT

In this sample, before writing to memory, the code checks some variables:

	■ If the “write barrier” is activated and calls “runtime.gcWriteBarrier”:

Figure 12. Write Barrier checks

	■ If that pointer writes, follow the CGO (a tool used by Go) rules, used to
import a pseudo-package “C.” The Go code can then refer to types
such as C.size_t, variables such as C.stdout, etc. If the import of “C”
is immediately preceded by a comment, that comment (called the
preamble), is used as a header when compiling the C parts of the
package:

Figure 13. Pseudo C package import

Babuk: Moving to VM and *nix Systems Before Stepping Away12

REPORT

All the checks for CGO are made using atomic.

The sample implements a “write barrier” slow path. The write barrier
has what we call a fast path that enqueues to a per-P write barrier buffer,
which is written in assembly and does not clobber any general-purpose
registers, so it does not have the usual overheads of a Go call. The slow
path is used when the buffer fills up; the write barrier invokes the slow path
“wbBufFlush” to flush the buffer to the GC work queues: this path spills all
registers and disallows any GC safe points that could observe the stack
frame.

One point of note is that the samples check for the HugePages size, a
mechanism that enables memory pages that are greater than their default
size, to optimize operations. To do it, it checks the path “/sys/kernel/
mm/transparent_hugepage/hpage_pmd_size” by using the variable
“sysTHPSizePath”, declared as:

var sysTHPSizePath =[]byte(“/sys/kernel/mm/transparent _ hugepage/

hpage _ pmd _ size\x00”)

Memory Alloc:
Next, the sample starts to initiate the memory allocation process by using
several Golang functions. First, it uses “runtime.mallocinit” and checks the
physical page size by using “physPageSize” a couple of times for mapping
and unmapping operations:

Figure 14. Memory Allocation + “physPageSize” check

Babuk: Moving to VM and *nix Systems Before Stepping Away13

REPORT

Here is a code example:

// Check physPageSize.

	 if physPageSize == 0 {

		 // The OS init code failed to fetch the physical page

size.

		 throw(“failed to get system page size”)

	 }

	 if physPageSize > maxPhysPageSize {

		 print(“system page size (“, physPageSize, “) is larger

than maximum page size (“, maxPhysPageSize, “)\n”)

		 throw(“bad system page size”)

	 }

	 if physPageSize < minPhysPageSize {

		 print(“system page size (“, physPageSize, “) is small-

er than minimum page size (“, minPhysPageSize, “)\n”)

		 throw(“bad system page size”)

	 }

	 if physPageSize&(physPageSize-1) != 0 {

		 print(“system page size (“, physPageSize, “) must be a

power of 2\n”)

		 throw(“bad system page size”)

	 }

	 if physHugePageSize&(physHugePageSize-1) != 0 {

		 print(“system huge page size (“, physHugePageSize, “)

must be a power of 2\n”)

		 throw(“bad system huge page size”)

Then “mallocinit” is used to reserve virtual memory for future allocations
and initializes the “mheap” global variable used as central storage for all
memory-related objects.

As expected, the heap is used to allocate memory by initializing an
allocator and calls the “fixAlloc_Alloc” function each time the sample
wants to allocate new mcache, mspan, etc. It allocates memory but,
instead of allocating the actual size of the structure (f.size bytes), it sets
“_FixAllocChunk” bytes. The rest of the available space is stored in the
allocator.

Finally, the cache is initialized as:

_ g _ := getg()

_ g _ .m.mcache = allocmcache()

The “allocmcache” function calls “fixAlloc_Alloc” to initialize a new
mcache struct. The mcache field is initialized only for those threads that
are currently executed and it is relocated to another thread whenever a
process switch occurs.

A lot of settings are made by the sample to prepare the system before
encryption; we are not going deeper on this here as it is not the most
interesting part for this sample.

Babuk: Moving to VM and *nix Systems Before Stepping Away14

REPORT

Encryption
Directories and files are listed by using the package “filepath.”
Strangely, the sample reads only the first 250 bytes of each file using the
“ReadAtLeast” function, which is unusual and not documented by the
Babuk team.

Initially, “io.ReadAtLeast()” will read as many bytes as byteSlice can hold.
Here is an example:

byteSlice := make([]byte, 512)

 minBytes := 8

 numBytesRead, err := io.ReadAtLeast(file, byteSlice, minBytes)

 if err != nil {

 log.Fatal(err)

So, theoretically, an implementation issue is present in this sample.

Then, Babuk instantiates Curve25519 for the key generation and exchange
algorithm to protect the key and encrypt files.

Figure 15. Curve25519 instantiated

Babuk: Moving to VM and *nix Systems Before Stepping Away15

REPORT

Then it uses the Chacha algorithm for the encryption part, by using the
keys generated from the Curve25519 algorithm and SHA256 hash:

Figure 16. SHA256 used with the key generated

Figure 17. Babuk encryption example

Babuk: Moving to VM and *nix Systems Before Stepping Away16

REPORT

Key Findings

The encrypted files that we received do not belong to this sample as this
one encrypts more than 512 bytes (0x200 in hex; other versions seem to
encrypt only 0x250 bytes, and this sample does not add the text “chu...” to
the end of the files, we received).

The decryptor seems to belong to the same sample but, as we saw earlier,
we have a limit in the maximum number of bytes that will decrypt, which is
strange.

Overall, the decryptor is poor as it only checks for the extension “.babyk”
which will miss any files the victim may have renamed in an attempt to
recover them. Also, the decryptor checks if the file is more than 32 bytes in
length, as the last 32 bytes are combined later with other hardcoded values
to get the final key. This is bad design as those 32 bytes could be trash,
instead of the key, as the customer could make things, etc. It does not
operate efficiently by checking the paths that are checked in the malware,
instead it analyzes everything. Another error we noticed was that the
decryptor tries to remove a ransom note name that IS NOT the same that
the malware creates in each folder. This does not make any sense unless,
perhaps, the Babuk developers/operators are delivering a decryptor that
works for a different version and/or sample.

Another important thing is this sample is designed to be launched manually
or with some script with an argument as the path to encrypt; with this path
the malware calls to the OS function of “/path/filepath.Walk” that needs
one argument that is a callback function executed per file/folder found as
a new g thread (a Golang mechanism to speed the process). In the case
that there is no argument, the malware finishes reporting the usage in the
terminal. This callback function checks that the file/folder does not exist in
some paths of the operating system, the name of the ransom note, creates
the ransom note if it is needed, and launches a new g thread to encrypt the
file. This procedure of using g threads makes the ransomware very quick to
encrypt. They control the synchronization with a mutex mechanism (lock
and unlock) and additionally, for some critical parts, they use the Go library
“wait” command to control all g threads. Each encrypted file will display
information in the terminal.

Conclusion

The Babuk threat actor, albeit having been active for only a short time,
caused a lot of damage by operating with faulty ransomware. This blog
has shown the modus operandi of the threat actor and analyzed the
ransomware used by it. Several flaws were identified that showed how
the decryption process fails in certain instances, causing irrecoverable
damage. We suspect that this poor design of the ransomware was the
reason that the threat actor decided to move towards a data management
position.

Babuk: Moving to VM and *nix Systems Before Stepping Away17

REPORT

YARA Rule

rule RANSOM _ BabukLocker _ NAS _ Apr2021 {

meta:

description = “Rule to detect BabuLocker Linux edition”

author = “TS @ McAfee ATR”

date = “04-27-2021”

hash = “a564da1ed886756e375de5f56241699e”

malware _ type = “Ransom”

strings:

$s1 = “BABUK _ LOCK _ curve25519” wide ascii

$s2 = “crypto/chacha20” wide ascii

$s3 = “filepath.Walk” wide ascii

$s4 = “/sys/kernel/mm/transparent _ hugepage/hpage _ pmd _ size” wide

ascii

condition:

filesize >= 1MB and filesize <= 3MB and

4 of ($s*)

}

IOCs: Babuk NAS Locker

8c6f768c90103857c59f031fb043d314db6a7371908a1f45bc2e86cf2ad68268

8daf429bb21285cfcf24dcc4797501ee3d4daf73364055ee5b002492ad55a3e1

e505b24de50b14aed35cf40725dc0185cab06fed90269d445ec7a4b36de124b6

e8cee8eab4020e1aadd4631ed626ab54d8733f8b14d683ca943cd4e124eeef55

Endnotes
1	� http://essay.utwente.nl/81595/1/Keijzer_MA_EEMCS.pdf
2	� https://github.com/bb00/zer0dump
3	� https://www.secura.com/blog/zero-logon
4	� https://www.databreaches.net/babuk-closes-one-shop-switches-to-raas/
5	� https://heimdalsecurity.com/blog/babuk-ransomware-leaks-personal-data-of-metropolitan-

police-officers/
6	� https://www.bleepingcomputer.com/news/security/babuk-ransomware-readies-shut-down-post-

plans-to-open-source-malware/

Babuk: Moving to VM and *nix Systems Before Stepping Away18

REPORT

About McAfee

McAfee is the device-to-cloud cybersecurity
company. Inspired by the power of working
together, McAfee creates business and
consumer solutions that make our world a safer
place. By building solutions that work with other
companies’ products, McAfee helps businesses
orchestrate cyber environments that are truly
integrated, where protection, detection, and
correction of threats happen simultaneously
and collaboratively. By protecting consumers
across all their devices, McAfee secures their
digital lifestyle at home and away. By working
with other security players, McAfee is leading
the effort to unite against cybercriminals for the
benefit of all.

www.mcafee.com

McAfee ATR

The McAfee® Advanced Threat Research
Operational Intelligence team operates globally
around the clock, keeping watch of the latest
cyber campaigns and actively tracking the
most impactful cyber threats. Several McAfee
products and reports, such as MVISION Insights
and APG ATLAS, are fueled with the team’s
intelligence work. In addition to providing the
latest Threat Intelligence to our customers, the
team also performs unique quality checks and
enriches the incoming data from all of McAfee’s
sensors in a way that allows customers to hit the
ground running and focus on the threats that
matter.

Subscribe to receive our Threat Information.

McAfee and the McAfee logo are trademarks or registered trademarks of McAfee, LLC or its subsidiaries in the US and other countries.
Other marks and brands may be claimed as the property of others. Copyright © 2021 McAfee, LLC. 4779_0721
JULY 2021

6220 America Center Drive
San Jose, CA 95002
888.847.8766
www.mcafee.com

Babuk: Moving to VM and *nix Systems Before Stepping Away19

REPORT

http://www.mcafee.com
https://www.mcafee.com/enterprise/en-us/forms/threat-information-subscription.html?eid=X7AOM1OW
https://www.mcafee.com/enterprise/en-us/home.html
http://www.mcafee.com

	The Babuk Threat Actor
	Phases of a Ransomware Attack
	Ransomware-as-a-Service Supply Chain

	A Typical Attack by a Babuk Threat Actor
	IN
	THROUGH
	OUT

	Recent Developments Surrounding the Babuk Threat Actor
	From Ransomware Developers to Data Leak Managers?
	Technical Analysis
	Memory Alloc:
	Encryption

	Key Findings
	Conclusion
	YARA Rule
	IOCs: Babuk NAS Locker
	About McAfee
	McAfee ATR

