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Trusted Operations of a Military Ground Robot in
the Face of Man-in-the-Middle Cyber-Attacks Using

Deep Learning Convolutional Neural Networks:
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Abstract—Safe and secure operations of robotic systems are of
paramount importance. Aiming for achieving the trusted opera-
tion of a military robotic vehicle under contested environments,
we introduce a new cyber-physical system based on the concepts
of deep learning convolutional neural networks (CNNs). The
proposed algorithm is specifically designed to reduce the cyber
vulnerability of the Robot Operating System (ROS), a well-
known middleware platform widely used in both civilian and
military robots. To demonstrate the efficacy of the proposed
algorithm, we conduct penetration testing (real-time man-in-the-
middle cyber attack) on the GVR-BOT ground vehicle, a military
ground robot, developed by the United States Army Combat
Capabilities Development Command (CCDC), Ground Vehicle
Systems Center. The cyber attack also exploits the vulnerability
of the Robot Operating System (ROS) employed in its onboard
computer. We collect experimental data and train our CNN based
on two different operating conditions, namely, legitimate and
malicious conditions. We normalize and convert the network
traffic data in the form of RGB or grayscale images. We
introduce two different types of windowing techniques, namely,
the independent and overlapping sliding epochs to efficiently
feed the network traffic data to our CNN system. Our research
indicates the efficacy of the proposed algorithm as our proposed
cyber intrusion detection system can achieve reasonably high
accuracy of ≥ 99 % and substantially small false-positive rates
≤ 2 % supported with minimum detection time. In addition,
we also compare and demonstrate the relative merits of our
proposed algorithm with respect to the performance of some
well-known techniques, namely, ‘bag-of-features’ and Support
Vector Machine (SVM) algorithms.

Index Terms—Cyber-Security, Robot Operating Systems
(ROS), Convolutional Neural-Networks (CNNs), Unmanned
Ground Vehicles (UGVs), and Man-in-the-Middle Cyber-Attacks.

I. INTRODUCTION

TRUST indicates a social relationship (bond) between two
agents when the truster (e.g. a human) delegates a certain

task to the trustee (e.g. a ground robot) in the face of the risk
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and uncertainties [1]. There is no guarantee that the trustee is
dependable despite its role to perform a certain critical task and
in spite of its best effort and promise to become dependable.

Thus, trusted operations of robotic systems indicate the
dependence (reliance) on the safe operation or trustworthy
interaction between human and robotic systems [1]. Consid-
ering the autonomous nature of robotic systems, namely, the
freedom to make a decision (subject to multiple constraints),
trusted autonomy refers to the interaction of multiple indepen-
dent robotic agents and humans, where one party is vulnerable
to other parties in their interaction while autonomously per-
forming a certain demanding task [1].

Fig. 1: The GVR-BOT is a replicate of a military unmanned
ground vehicle (UGV) employed in our experimental cyber attack.
This unmanned ground vehicle is developed by the U.S. Army
Tank-Automotive Research, Development, and Engineering Center
(TARDEC) and is implemented as a research platform.

Robotic cyber-attacks can breach the trust delegated to the
trustee. For instance, the cyber vulnerability of computational
resources, communications links, operating systems, software
libraries, applications, or sensor information is a serious issue
as they can be used to manipulate and compromise the
performance of the system so that the operation of a robot
may deviate from its original purpose.

Cyber-attacks are indeed serious threats to robotics as
people are continuously faced with numerous types of attacks
[2], [3] (e.g. malware, denial-of-service, GPS-spoofing, man-
in-the-middle, SQL (structured query language) injection, etc);
not only in terms of the occurrence but also most impor-
tantly, in terms of the quality or the sophistication of attacks.
Moreover, the advent of industry 4.0 (the fourth revolution
of industry), marked by the evolution in robotics, automation,
and the Internet of Things (IoT) [4], [5] has demanded robots
to collaboratively worked in highly networked and distributed
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working environments, where multiple agents (e.g. sensors,
actuators, and controllers) need to communicate and exchange
information with one another via cloud services. As such, the
systems are vulnerable to numerous security issues, such as
data breaches, and electronic hijacking.

Likewise, military robots, ranging from remotely piloted
vehicles (e.g. ground robots (see Fig 1), combat vehicles, and
robotic soldiers, are also highly vulnerable to cyber-attacks,
as today, cyber-threats have also rapidly flourished in the
military domain in parallel with the advancement of other
robotics technology (e.g. control, guidance, and navigation
systems). For this reason, the research challenges in the area
of cyber-physical systems are multidisciplinary as they cover
a wide spectrum of scientific disciplines, such as bridging
control, communications, networking, as well as cybernetics,
and mechatronics.

Given the importance of state-of-the-art autonomous sys-
tems in modern society [6], protecting cyber-physical systems
from any potential malicious attacks is of critical importance
to research tasks to guarantee their trusted and continuous
operations. From the attackers’ standpoint, multiple security
gaps can be explored, such as the vulnerability of the op-
erating (O/S) systems (e.g. Windows and Ubuntu (Linux)),
the robotic middle-ware platform [7] (i.e. Robot Operating
Systems (ROS), which is an open-source software library,
gluing the O/S and its applications) as well as the networking
and data distribution systems. In fact, ROS has been widely
implemented beyond its original purpose of development for
academic research, such as in both civilian and military
domains.

The system plays an integral role as the core of software for
managing all the computation processes, in addition to mem-
ory, data transfer as well as communications and networking of
the systems. The system contains a communications platform
and repository of libraries for use in robotics [8]. Originally, it
was not intentionally designed with a secure platform in mind
[8]. For instance, the system employs open topics with limited
integrity checking, in addition to its unencrypted network
traffic data and anonymous graph structure, making it very
susceptible to potential malicious attacks.

The good news is, however, given the current advancement
in the speed of computing, which according to Moore’s Law,
doubles every couple of years; it is now possible to develop
and implement some sophisticated artificial intelligence (AI)
algorithms, such as deep learning convolutional neural network
algorithms, which were deemed to be computationally inten-
sive, but simple, to guard the systems against any digital at-
tacks. As such, we are keen to address this research challenge,
and accordingly, we have collaborated with the US Army
TARDEC (the US Army Tank-Automotive Command) which
provides us with an experimental ground vehicle, the GVR-
BOT ground robot as highlighted in Fig. 1, which employs
an open-source middleware platform ROS run under Ubuntu
Linux as its operating system. Before discussing our potential
technical contributions, however, we will discuss current state-
of-the-art research papers in the area of cyber-physical systems
in the literature as follows.

A. Related Work

There are multiple research papers in the literature address-
ing the vulnerability of robotic systems. For instance, Lima et
al in [9], introduced a defense strategy to prevent man-in-the-
middle attacks by means of a security supervisor (NA-Secure
System) to address the drawbacks of using firewalls due to its
introduced delay.

Santoso in [10] introduced a distributed motion coordination
to maximize intrusion detection coverage in wireless sensor
networks. The same author in [11], [12], and [13] developed
a cyber-physical system to prevent cyber-attacks in vehicular
and robotic systems. Renganathan et al. in [14] proposed a
class of resilient consensus strategies, namely, weighted mean-
subsequence-reduced (W-MSR) consensus by incorporating a
physical layer authentication strategy. Despite their promising
results, their algorithms are not suitable to monitor large-scale
ROS network traffic data.

Joo et al. in [15] developed an attack resilient control for a
cyber-physical system (CPS) to address the security against
stealthy system integrity attacks. Meanwhile, Ma et al. in
[16] studied the problem of the dissipativity-based resilient
sliding-mode control design for denial-of-service (DoS) at-
tacks. Also, Wu in [17] developed an active defense-based
resilient sliding mode control, specifically designed to counter
malicious sensor denial-of-service (DoS) attacks, causing loss
of information regarding system state. Cheon et al. in [18]
introduced an encryption technique, known as, the linearly
homomorphic authenticated encryption (LinHAE) scheme, for
the ground control center of a multi-rotor drone to facilitate
safe autonomous flight.

Despite current progress, nonetheless, to the best of our
knowledge, there has been no research paper that advocates
the trusted operations of robotic systems while simultaneously
addressing the cyber vulnerability of ROS network traffic data,
especially for preventing man-in-the-middle cyber attacks.

Compared to model-based systems discussed earlier, deep
learning systems can offer numerous advantages due to their
learning capability, flexibility, and scalability, making them
suitable candidates to deal with uncertainties in systems,
measurements, and unstructured data distributions. In many
cases, it is not even possible or impractical to obtain accurate
mathematical models describing the dynamics of the systems.

B. Contribution of our Research

Addressing current research gaps in the literature, our
technical contributions are to introduce a new application of
deep learning convolutional neural networks to address the
cyber vulnerability of ROS within the context of a military
ground robot.

To be more specific, the framework of our research can be
described as follows:
• Specifically designed to prevent man-in-the-middle cyber-

attacks, we propose a cyber-intrusion detection frame-
work leveraging the benefits of deep learning convolu-
tional neural networks.

• To transform the data, we develop an interface between
the ROS network traffic data (which is of a time series
nature and the image input data of the CNN) in the form
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of two windowing schemes, namely, the independent and
overlapping windowing techniques.

• Exploiting the cyber vulnerability of ROS, we perform
a real-time man-in-the-middle cyber-attack (penetration
testing) on the replicate of the US military ground robot,
the GVR-BOT system, as seen in Fig. 1.

• We collect the real-time ROS network traffic data of the
GVR-BOT ground robot under both legitimate operation
and malicious attack conditions and transform them into
either grayscale or RGB images before using those im-
ages to train our intrusion detection system to learn the
signature of attack, that is, to be able to detect potential
cyber-attack in the minimum time.

• We perform rigorous statistical studies showing the effi-
cacy of the proposed cyber-intrusion detection algorithm
in the form of confusion matrices.

• We perform a comparative study to highlight the relative
benefits of the independent windowing technique with
respect to its overlapping counterparts.

• Last but not least, we also compare the relative merits
of our proposed system with respect to the performance
of other recognition techniques, namely, bag-of-features
(BoFs) and support vector machine (SVM).

We proceed with our discussion as follows. We discuss the
cyber vulnerability of ROS in Section II. In Section III, we
present the dynamics of our ground robot (the GVR-BOT)
system while in Section III we discuss the framework of our
cyber intrusion detection algorithm. In Section V, we present
the ROS network traffic data for both legitimate and malicious
operations in the form of time-domain data and RGB images.
In Section VI, we highlight the efficacy of our deep learning
cyber-intrusion detection algorithm before finally we conclude
our discussion in Section VII.

II. CYBER VULNERABILITY OF ROBOT OPERATING
SYSTEMS (ROS) 1.0

Originally developed by Willow Garage in 2007, Robot
Operating Systems (ROS) has become a set of widely im-
plemented software libraries that can assist engineers to build
multiple robot applications. The system facilitates the devel-
opment of cutting-edge algorithms, that are easy to implement
in real-time.

The initial development plan of ROS was intended for a
smart humanoid 7-DoF personal robot (PR2) in mind, whose
some salient characteristics include: being a single robot with
no real-time requirements and for academic-research-related
applications [19]. Ever since the use of ROS has gained
significant overshot in popularity, and as such the system has
been widely adopted in both military and civilian domains
(e.g. autonomous farming [20], shopping robot [21], GVR-
BOT [22], [23]) due to their numerous benefits as an open,
modular, and flexible platform.

While these achievements are indeed good news, they are
often two sides of the same coin as the ROS system was not
designed to embrace potential cyber-security issues due to the
following reason [19]:

1) There was no standard methodology for networking pro-
cedure (e.g. for multi-robot systems), despite its ability

to deal with multi-robot networks. The current approach
is merely based on a single-master ROS structure.

2) The system was not specifically designed to accommo-
date inter-process and inter-machine communication.

3) The system assumed an ideal WiFi connection and is
not capable of dealing with various quality WiFi signals,
such as poor quality WiFi causing loss or delay.

4) Most importantly, ROS 1.0 largely ignores security
issues in its basic coding scheme.

Consequently, there are multiple examples of the vulnera-
bility of ROS 1.0 as follows:

1) The network traffic data of a legitimate user is not
encrypted, making it easy for an attacker to eavesdrop,
record, or manipulate the data, e.g. performing man-in-
the-middle attacks or false data injections.

2) the system also employs an anonymous graph-type struc-
ture, making it easier for an attacker to hack the system.

3) Each node within the graph has limited integrity-
checking capability. As such, it is not possible to de-
tect activities from potentially malicious users, which
can also lead to the possibility of an attacker reverse-
engineering the system without the host’s knowledge.

4) The system also employs an open subscription system,
meaning each node can act as a publisher or subscriber
(see Fig. 2). As such, the system is vulnerable to
packet sniffers and man-in-the-middle attacks, risking
the integrity of the system.

Considering the openness and anonymous nature of ROS,
we will discuss the typical ROS handshake process to establish
a connection between a publisher and subscriber as given in
Fig. 2. It describes the concept of information sharing among

Fig. 2: The concept of ROS handshake (call set-up) in ROS 1.0 API
environment for registering publisher and subscriber between two
nodes [8]: (1) Registration process of the subscriber, (2) Parameter
to be set by the publisher, (3) Registration of the publisher, (4) Update
process, (5) Data transport to be requested, (6) Data to be transferred.
The XMLRPC protocol is indicated by the blue line and the ROSTCP
is highlighted by the red line.

various ROS 1.0 client libraries, implemented via XML-RPC.
XMLRPC protocol is a remote call procedure (RPC) protocol
with XML to encode its call and HTTP as the transport
mechanism. ROSCTP is the transport layer for ROS messages
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and services, employing standard TCP/IP sockets for sending
the message data.

To begin with, the ROS Master with a known IP address
needs to be executed in the system to keep track of the
information. Next, the publishers inform the master of the
topics they are publishing (e.g. \cmd vel) on certain localhost.
The subscribers need to inform the ROS master that they want
to subscribe to \cmd vel, and since the master has knowledge
about active publishers on that topic, they can directly pass the
information to the subscriber to indicate that: ‘I know node X
is publishing this topic, and it is located at the localhost: 1111’.
The subscriber (e.g. node Y) can now establish a peer-to-peer
ROS connection to the publisher.

Considering ROS-based commercial products in medical,
industrial, and military robots, it is unfortunate that these
vulnerabilities can pose serious cyber threats. Data from an
open topic can be easily manipulated while sensitive infor-
mation from any nodes can be reverse-engineered without the
knowledge of the hosts. Meanwhile, nodes are also vulnerable
to Denial-of-Service (DoS) attacks, where an attacker can
also introduce processing delays, leading to the failure of the
system to act in real-time. It is also not possible to verify
the authenticity of the payload information in transit between
nodes in ROS 1.0 [8].

Although ROS 2.0 has been developed to overcome the
drawbacks of ROS 1.0, the message from the developer is clear
[19] that ROS 2.0 will independently coexist with ROS 1.0 and
is not meant to replace it. Therefore, it is important to develop
a robust cyber intrusion detection algorithm to safeguard its
operation.

III. THE DYNAMICS OF THE GVR-BOT GROUND VEHICLE

Before conducting a real-time cyber-attack (penetration test-
ing) on the ‘GVR-BOT’, a typical differential drive ground
vehicle developed by the US Army as shown in Fig. 1, we will
first study the normal operation of the system. This includes
the dynamics of the robot as well as hardware and control
loop configurations.

The system is programmable and it employs ROS 1.0, an
open-source robotic middleware platform in its main pro-
cessor. To control the system in the real-time domain, we
also employ an operator control unit (OCU) software, that
interfaced with the handheld transmitter. The system employs
a user interface in the form of XML configuration files. It
processes information such as the location, types of maps,
video streaming, etc. Meanwhile, the input devices include
the mapping of the joystick, keyboard, and mouse in the
system. The system can serve two different operations, namely,
monitoring and control. In what follows, we will discuss the
dynamics of the robot.

A. System Dynamics
The dynamics of a ground vehicle can be represented by

the following state space equation;{
ẋ(t) = f(x(t), u(t)), ∀t ≥ 0,

x(0) = x0,
(1)

where x0 ∈ Rn denotes the initial condition of the states of
x(.) ∈ Rn, u(.) ∈ Rp indicates the control signals sent to the

h!
Fig. 3: The coordinate axis system of our GVR-BOT ground
robot: (x, y, z) and the attitudes of the system are given by
(θx, θy, θz).

motor. Meanwhile, the evolution of the state is given by the
curve: x : [0 ∞)→ Rn.

The GVR-BOT vehicle belongs to differential drive systems.
The thrust produced by the left and right electric motors
accelerates the system along the x and y directions. For
instance, to produce thrust that is aligned with the forward
axis, both left and right motors need to have the same angular
velocities. To create a turning moment, however, one motor
needs to rotate faster than the other, projecting some thrust
components along the y-axis. For instance, if the left motor
moves faster than the right one (in the same direction), the
robot will turn to the right and the other way round.

The dynamics of the system in terms of the linear and
angular velocities can be represented as follows: [24], [25]:

ẋ
ẏ

θ̇

φ̇R
φ̇L

 =


R
2 cosθz

R
2 cosθz

R
2 sinθz

R
2 sinθz

R
2l −R

2l
1 0
0 1


[
φ̇R
φ̇L

]
,

where R is the radius of the wheels, l is the distance between
the center of gravity of the right and left wheels, ωR = φ̇R
and ωL = φ̇L are the right and left angular velocities of the
left and right wheels.

Considering Lagrange dynamics [24], the dynamics of the
robot in (1)) can be represented using the following differential
equation:

M(q)q̈+V (q, q̇)q̇+F (q̇)+G(q)+τd+ ε = B(q)τ −αT (q)λ,
(2)

where M(q) ∈ R(n×n) indicates a symmetric positive defi-
nite inertia matrix, V (.) presents the centripetal and Coriolis
matrix, F (q) is the friction matrix, G(q) is the gravitational
forces, τd is the disturbance torque, ε is the unstructured
dynamics B is the input matrix, and τ is the input actuation
torque while q describes the states of the vehicles in terms of
the generalized coordinates, i.e. q := [xr yr θz ωR ωL]

T , in
which (xr, yr) are the coordinates of the robot while ωR and
ωL are the velocities of the wheels, α(.) denotes the constraint
matrix and λ indicates the vector of the Lagrange multipliers
associated with the constraints.

After some simplification, we finally arrive at [25]:[
I1 I2
I2 I1

] [
φ̈R
φ̈L

]
=

[
τR
τL

]
− c

[
φ̇R
φ̇L

]
, (3)
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where I1 and I2 present the inertial matrices of the robot, τR, L
are the right and left actuation torques while c is a constant.

B. Hardware Configuration
The GVR BOT 1.2 employs the Intel Atom E680, 16 GHz

processor, supported by 1GB Double Data Rate Random-
Access Memory (DDR) 2 RAM, and non-volatile 2.6 GB
NAND flash memory. As the main source of power, the
system employs up to four BB-2590 Li-Ion rechargeable
batteries. The robot employs a WiFi-enabled communication
system at 2.4 GHz with a maximum range of 250 m. The
system is supported by an Internal Attitude Heading Reference
System (AHRS), giving acceleration, heading, and orientation
information. It is also possible to include an internal GPS
transceiver with an external antenna port. The net weight
(without battery and flippers) of the robot is about 11.8 kg
with a maximum speed of 2.0 m/s.

The robot is also equipped with four payload ports to
add sensors, processors, radios, or other devices. However,
the availability of power and communication is the main
consideration for adding an extra payload. The system runs
under ROS architecture, meaning the system needs to execute
the roscore command on its internal processor to interact with
it.

IV. THE FRAMEWORK OF OUR CYBER-INTRUSION
DETECTION SYSTEMS

Robotic systems can be compromised at multiple different
levels, namely, at the system, sub-system, component, or sub-
component levels. For instance, an attack at the signal pro-
cessing level is highly appropriate when it comes to a sensory
system such as LIDAR (Light Detection and Ranging) or a
vision system to compromise the distance measurements [26].
Preventing these attacks is by no means trivial, especially for
sophisticated, complex, and modern robots, which can work
even under a fault-tolerant mode, blurring the line between
normal operations and fault conditions.

We will investigate the network traffic data of the robot to
study its operations, and whether or not the system has been
compromised or not. There are some possibilities for such
an approach such as using a node-based method, application-
based technique, or flow-statistic-based system.

Node-based methods employ information obtained from
other nodes while application-based techniques investigate the
patterns inside the information packets. On the other hand,
flow-statistic methods rely on the metadata of the packet
header (e.g. bit transmitted, packet inter-arrival times, window
size, etc). Overall, application-based systems turn out to be
more reliable despite being more complex due to their re-
liance on an up-to-date database of the patterns that must be
constantly maintained, especially for encrypted data as in the
S-ROS traffic flow.

The purpose of developing a fault detection filter is to detect
any potential malicious activities attempting to compromise
the integrity of the system and its data. If there is something
unexpected with the robot (a potential fault or cyber-attack),
one must first identify the problem, before safely leaving the
robot. As such, we would like our system to have the capability
of detecting each possible source of faults and dealing with
them accordingly.

A. Mathematical Problem Statement

Our ground robot employs two feedback control loops to
regulate its forward velocity and heading. Fig. 4 describes a
general high-level block diagram of the interaction between
humans and guidance and control systems in an autonomous
system. A potential intruder may want to compromise the
sensory data or guidance signal in an attempt to electronically
hijack the autopilot system e.g. to deviate the robot from its
intended trajectory.

Fig. 4: Block diagram of potential robotic cyber-attack at the system
level. Malicious users may compromise the integrity of the system
or signals at any nodes.

The nonlinear dynamics of any cyber-physical system can
be represented using the following non-linear state space
equation:{
ẋi,j(t) = fi,j(xi,j(t)) + gi(xi,j(t))ui(t) + δi,j + di,j(t), ∀t ≥ 0,

yi(t) = xi,j(t) + δo(t), i = 1, 2, ...N, j = 1, 2, ...,M − 1,

(4)

where xi,j ∈ Rj is the bounded state vectors of the system
within its maximum and minimum range, namely, xi,j ≤
xi,j ≤ xi,j . xi,j may be compromised by δi,j , a vector of
malicious attacks on a particular system state, (ui, yi) ∈ R are
the bounded control inputs and the system outputs within an
interval of ui(k) ≤ ui(k) ≤ ui(k) while y(k) ≤ y(k) ≤ y(k)
denotes the vector of bounded system output, which may also
be corrupted by δo(k), a vector of malicious attack attempting
to spoof the output of the system. Meanwhile, fi,j(.) and
gi,j(.) are the unknown functions describing the non-linear
dynamics of the systems and di,j is the external disturbance.
Please note that i and j denote the input and output indices,
where N and M are the maximum values of i and j.

Considering the universal approximation theorem [27], there
exists an ideal deep learning neural network estimator, rep-
resented by f∗, such that the estimation error of system
dynamics in (4), as indicated by ε(t) = ||wTG(.)−w∗TG(.)||2
is minimized, that is, limt→∞ ε(t) = 0, which can only
be achieved if and only if limt→∞ ||w(t)T − w(t)∗

T ||2 =
0. It should be noted that f̂ = wTG(.), where w =
[w1, w2, ..., wn]

T is a set of the weighting vectors and G(.) is
the activation function of the neural networks as a subset of
our CNN filters.
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B. Deep Learning CNN and Voting Filter

Deep learning convolutional neural networks (CNNs) em-
ployed in our research contain several layers that can be
described in more detail as follows:
• Interface and input layers: We introduce an interface

layer to bridge between the input of the CNN filter in
the form of images and the output of the ROS system,
which produces large-scale time series data, describing
the dynamics of the ground robot. In doing so, firstly, the
ROS network traffic data containing 33 features will be
normalized at each sampling time with respect to ± 1
using the min-max normalization method, so that the
overall values fall within [−1,+1] using equation (5):

xn = a+

(
x−min(x)(b− a)
max(x)−min(x)

)
, (5)

where a, b are the min-max values (a = −1, b = 1).
Accordingly, we will have a large normalized time-series
data set obtained from the ROS system.
To read the data epochs, we propose two ways of sliding
windowing techniques in the form of independent and
overlapping techniques. Please refer to Fig. 5 for visual
representations. While in the independent technique, all
information is new at every window, in overlapping
windows, there are some overlapping data. Having nor-
malized and partitioned the data, we convert them into
the form of RGB or grayscale images as input for the
CNN system. The CNN needs information about the size
of the image, namely, heights, widths, and the number of
channels (one for RGB and three for RGB images).

Fig. 5: Fixed-length sliding windowing techniques, containing two
major schemes, namely, (a) Left Figure: independent (no data over-
lapping) windowing technique and (b) Right Figure: overlapping
windowing technique with the distance of one epoch epochs with
the neighboring segments and overlapping data of (λ − 1). In this
example, we use λ = 3. While the vertical axis indicates the system
states, the horizontal axis presents the concept of sampling time.

• 2D-Convolutional Layers This layer serves as the main
processing layer in CNN as the system applies sliding
convolutional filters to 2-D input. The filter is moved

along the input both vertically and horizontally to com-
pute the dot product and the weights and the input while
adding a bias term.

• Batch Normalization Layer is to allow every piece of
the networks to perform independent learning. This way,
the learning process can be stabilized while the speed can
be improved by adding extra layers to the system.

• Rectified Linear Unit (ReLU) Layer: is to set the
threshold of operation to each input element by giving
any negative values to become zero, that is,

f(x) =

{
x, x ≥ 0

0, x < 0.
(6)

• Cross Channel (Local Response) Normalization: is
to perform a channel-wise local response stabilization
following the ReLu activation function.

• Max and Average Pooling Layer is to downsample the
data by defining a rectangular area and computing the
maximum value of the region. Max pooling leads to the
most prominent feature in the map while average pooling
gives the mean of features present.

• Fully Connected Layer is a typical neural network layer
connecting each input neuron to every output neuron.
This layer employs weights W that multiply the input
signals while scaling them by a bias b. As such, the main
pattern of the information obtained from the previous
layer across the image can be identified.

• Output Layer is suitable for classification problems
where the CNN system needs to have recognition or
detection capabilities.

C. Voting Filter

To minimize the glitches (instantaneous errors) in the de-
tection outcome of our CNN filter, we employ a voting filter.
The idea is to vote using the voice of the majority before
making a final decision on whether or not the traffic data are
legitimate or malicious. Mathematically, the decision is valid
if it is supported by at least κ consecutive outcomes of the
CNN filter, where κ > 1. The lengthy size of the voting filter
is undesirable as it will affect the overall detection time. In
our experiment, we achieve a delicate balance between time
and accuracy by setting κ = 3.

V. REAL-TIME MAN-IN-THE-MIDDLE CYBER ATTACKS

Man-in-the-middle-attack is a class of cyber-attack, where
the traffic or data communication between two parties (e.g.
the legitimate host and the victim) is intercepted for a certain
purpose, such as to inject false data (modify the traffic data),
to simply passively listen (eavesdrop) the traffic, to completely
terminate the communication, or to set up a malicious connec-
tion to a different destination. In this research, however, we
focus on overwriting the information of certain ROS traffic
data using the unintended traffic data from different nodes.

In more detail, we aim to overwrite the guidance in-
formation received from the handheld transmitter by the
/jaus mobility node as broadcast in the form /cmd vel ROS
topic to the /gvrbot mobility node, which is responsible for
controlling the motion of the robot. This can be done by
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Fig. 6: ROS communications: (a) Top figure: Legitimate condition,
where the information from /jaus mobility node into the form of
/cmd vel ROS topic goes directly to the /gvrbot mobility node,
(b) Bottom figure: man-in-the-middle cyber attack scenario on the
GVR-BOT: the /cmd vel topic from /jaus mobility node sent to
/gvrbot mobility is overwritten by the unintended traffic data from
the /rosout topic sent by the /gvrbot imu filter node.

taking the information from the /gvrbot imu filter to over-
write the information by the /jaus mobility node so that the
/gvrbot mobility receives false data during the course of a
cyber attack (See Fig. 6).

We attacked an important node ((\cmd vel) ROS topic)
using RosPenTo [8]. The node is responsible for command
and control in the GVR-BOT vehicle. As such, the overall
mobility of the system was disabled. Please note that there
are two control loops in the GVR-BOT vehicle, namely the
forward velocity and the heading control loops. \cmd vel
topic contains information for both loops. Considering some
relevant work on ROS penetration testing, interested readers
are suggested to refer to [8], [28], and [29].

VI. ROS NETWORK TRAFFIC DATA AND THE
PERFORMANCE OF OUR INTRUSION DETECTION SYSTEM

Our ground robots were wirelessly connected to two sep-
arate computers via a local WiFi network. While the first
computer acted as a ground control station for the GVR-Bot,
executing the Multi-Operator Control Unit (MOCU) software
to send the control signal from the hand-held transmitter, the
second computer, run under the Ubuntu Linux O/S, recorded
the network traffic data by subscribing to all relevant ROS
topics broadcast by the GVR-BOT’s onboard computer. We
recorded the experimental network data in the form of a multi-
variate time domain.

A. Time Domain Representation

We recorded our experimental ROS network traffic data
within 10 minutes (600 s) with a sampling time T of 0.1s,
making up a total duration of 6000 epochs. The man-in-the-
middle cyber-attack approximately occurs at t=300s, splitting
the data into two main parts, namely, the legitimate and
malicious operations. The typical time domain representation
of the system state of our GVR-BOT system is given by Figs.
7, 8, 9.
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Fig. 7: ROS Network traffic data for outdoor operation of the GVR-
BOT under man-in-the-middle attacks. The cyber attack occurs at
t = 300s. System states of the GVR-BOT describe: (a) the forward
velocity and its reference signal (first row), (b) angular velocity and
its reference signal (second row), and (c) the direction of the vehicle
along the (x, y, z) axes (third row), (d) acceleration (fourth row), (e)
battery voltage (fifth row), (f) the percentage of power (sixth row).

As seen from Fig. 7, as soon as a cyber-attack occurs at
t=300 s, the ground robot became irresponsive to the command
control. Despite still being able to perceive the guidance
signal transmitted from the handheld transmitter, the robot
was unable to follow it. This is because the guidance signal
that should be transmitted to /gvrbot mobility ROS node was
overwritten by the unintended traffic data from /ros node.

As such, from the systems and control point of view, the
robot was made blind with respect to the legitimate reference
signal. This way, the attacker can also inject false data regard-
ing the command signal to compromise the intended trajectory
of the system.

We used the first half of each data to train our CNN while
the rest is to validate the performance of our system. We
should also highlight that to mimic the real-time scenario, we
operate our ground robot in both indoor and outdoor envi-
ronments, representing at least 9 different motions, namely,
moving forward and backward, turning left (forward left),
turning right (forward left), spin left, spin right as well
as backward left, backward right, and no motions (remains
stationary).
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Fig. 8: ROS Network traffic data for outdoor operation of the GVR-
BOT under man-in-the-middle attacks. The cyber attack occurs at
t = 300s. System states of the GVR-BOT describe the state of the
right motors, namely, (a) temperature, (b) speed, (c) encoder, (d)
direction, and (e) track velocity.
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Fig. 9: ROS Network traffic data for outdoor operation of the GVR-
BOT under man-in-the-middle attacks. The cyber-attack occurs at
t = 300s. System states of the GVR-BOT describe the state of the left
motors, namely, (a) temperature, (b) speed, (c) encoder, (d) direction,
and (e) track velocity.

B. RGB Images

After normalizing the time domain signals (see Figs. 7, 8, 9),
we can convert them in the form of RGB images or grayscale
suitable as the input of our cyber intrusion detection filter as
given by Fig. 10.

Moreover, the network traffic data can be split into smaller
chunks following the input sliding window as depicted in Fig.
10. It is apparent that there are certain color configurations
(patterns) that differentiate legitimate operations from their
malicious counterparts.

Fig. 10: Windowed network traffic data (λ = 5), representing a
chunk of block data of the RGB images for training and detection of
deep learning convolutional neural network (CNN): (a) Top figure
describes the normalized windowed network traffic data of ROS
under legitimate (normal) operation, (b) Bottom figure presents the
normalized windowed network traffic data of ROS under malicious
(cyber-attack) operation.

Each vertical row in Fig. 10 depicts the mechanical and
electrical states of the robots as described in Table. I. Overall
there are 33 states observed by the systems that can be split
into three major parts, namely, the overall states of the vehicle,
the states of the right tracks, and the states of the left tracks.

C. Statistical Performance

The statistical performance of our cyber intrusion detection
system is highlighted in Tables II, III, IV, and V, which are
also represented in Figs. 11-17.

As can be seen, the performance of the system with the
independent windowing (IW) technique outperforms the per-
formance of the overlapping windowing technique (OW) (see
Figs. 14-17). Intuitively, the independent windowing technique
can provide more information in each sampling time since
it contains no repetitive information with the neighboring
windows (segments). This way, prediction accuracy can be
increased compared to the overlapping segments.

Also, it turns out that the presence of a voting filter greatly
improves the performance of each technique. As the amount
of information fed to the system increases (given by the size
of epochs), it is also natural to expect an increase in accuracy,
precision, TNR, and F1 score in general.
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TABLE I: Nomenclature of each row vectors (features) as presented
in the RGB image in Fig. 10

.
Rows # Variables

1. Battery voltage (volts)
2. Input current (Amps)
3. Percentage battery power (%)
4. Left motor current (Amps)
5. Left motor direction (±1)
6. Left motor encoder count
7. Left motor speed (RPM)
8. Left motor temperature (◦C)
9. Left track velocity (m/s)
10. Right motor current (Amps)
11. Right motor direction (±1)
12. Right motor encoder count
13. Right motor speed (RPM)
14. Right motor temperature (◦C)
15. Right track velocity (m/s)
16. Velocity across the x-axis vx (m/s)
17. Velocity across the y-axis vy (m/s)
18. Velocity across the z-axis vz (m/s)
19. Reference of the linear velocity across the x-axis ṽx (m/s)
20. Reference of the linear velocity across the y-axis ṽy (m/s)
21. Reference of the linear velocity across the z-axis ṽz (m/s)
22. Acceleration across the x-axis (m/s2)
23. Acceleration across the y-axis (m/s2)
24. Acceleration across the z-axis (m/s2)
25. Vehicle orientation across the x-axis θx (rad)
26. Vehicle orientation across the y-axis θy (rad)
27. Vehicle orientation across the z-axis θz (rad)
28. Angular velocity across the x-axis ωx (rad/s)
29. Angular velocity across the y-axis ωy (rad/s)
30. Angular velocity across the z-axis ωz (rad/s)
31. Reference of the angular velocity across the x-axis ω̃x (rad/s)
32. Reference of the angular velocity across the y-axis ω̃y (rad/s)
33. Reference of the angular velocity across the z-axis ω̃z (rad/s)

On the other hand, FPR constantly decreases as the amount
of information (epochs) increases. It is interesting to note that
regardless of the number of data samples (epochs), our system
can constantly achieve perfect TPR and FNR as both values
constantly hover at 1.000. This way, we can claim that our
system is highly secure since our intrusion detection system
can detect all malicious attacks.

TABLE II: The performance of our proposed cyber intrusion detec-
tion system using independent epochs (windows) without a voting
filter

Epochs Acc TPR FNR FPR TNR Prec F1
1 0.982 1.000 0.000 0.036 0.964 0.966 0.983
2 0.988 1.000 0.000 0.022 0.978 0.978 0.989
3 0.990 1.000 0.000 0.020 0.980 0.980 0.990
5 0.978 1.000 0.000 0.004 0.996 0.996 0.998
10 0.997 1.000 0.000 0.007 0.993 0.993 0.997

TABLE III: The performance of our proposed cyber intrusion
detection system using independent epochs (windows) with the
length of the voting filter κ = 3 consecutive decisions.

Epochs Acc TPR FNR FPR TNR Prec F1
1 0.992 1.000 0.000 0.016 0.984 0.985 0.992
2 0.996 1.000 0.000 0.009 0.991 0.991 0.996
3 0.996 1.000 0.000 0.009 0.991 0.991 0.996
5 1.000 1.000 0.000 0.000 1.000 1.000 1.000
10 1.000 1.000 0.000 0.000 1.000 1.000 1.000

To help the readers visualize the trend, we will convert
numerical data from Tables 7, 8, 9 into statistical performance
graphs describing accuracy (Fig 11), precision (Fig. 12), true

TABLE IV: The performance of our proposed cyber intrusion
detection system using overlapping epochs (windows) without a
voting filter.

Epochs Acc TPR FNR FPR TNR Prec F1
2 0.972 1.000 0.000 0.056 0.944 0.947 0.973
3 0.986 1.000 0.000 0.029 0.971 0.972 0.986
5 0.982 1.000 0.000 0.036 0.964 0.966 0.983

10 0.987 1.000 0.000 0.024 0.976 0.976 0.988

TABLE V: The performance of our proposed cyber intrusion detec-
tion system using overlapping epochs (windows) with the length of
the voting filter κ = 5 consecutive decisions.

Epochs Acc TPR FNR FPR TNR Prec F1
2 0.987 1.000 0.000 0.027 0.973 0.974 0.987
3 0.988 1.000 0.000 0.024 0.976 0.976 0.988
5 0.990 1.000 0.000 0.020 0.980 0.980 0.990

10 0.990 1.000 0.000 0.020 0.980 0.980 0.990

TABLE VI: The performance of the ‘bag-of-features’ detection
algorithm as a comparison.

Epochs Acc TPR FNR FPR TNR Prec F1
1 0.945 0.940 0.060 0.050 0.950 0.950 0.940
2 0.950 0.930 0.070 0.020 0.980 0.980 0.950
3 0.960 0.940 0.060 0.020 0.980 0.980 0.960
5 0.970 0.990 0.010 0.050 0.950 0.950 0.970

10 0.970 0.990 0.010 0.060 0.904 0.940 0.970

positive rate (Fig. 13), true negative rate (Fig. 14), F1 score
(Fig. 15), false negative rate (Fig. 16), and false-positive rate
(Fig. 17). This way enables direct comparison regarding the
performance of the system with independent windows relative
to the performance of the system with overlapping windows
as well as the relative benefits of adding a voting filter to the
system.

Accuracy is defined as the ratio of the correctly iden-
tified users to the total number of samples, ie., Acc =

TP+TN
TP+TN+FP+FN . As seen from Fig. 11, all configurations
achieve reasonably high accuracy ≥ 97 % with a period of two
epochs. However, by having independent sliding windows, the
system can achieve an accuracy of ≥ 98 % with as little as
one epoch of information.
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Fig. 11: The accuracy of the systems under different windowing
techniques. While ‘IW’ denotes independent windowing techniques,
‘OW’ stands for overlapping windows.

In terms of precision, namely, P = TP
TP+TF , the perfor-

mance of the overlapping window system hovers at around 94
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% (without a voting filter), though it can be boosted to around
97 % with the assistance of a voting filter. On the other hand,
an independent window system has a better precision at around
96 % and 98 % for systems without and with a voting filter.
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Fig. 12: The precision of the system under multiple windowing
conditions. While ‘IW’ denotes independent windowing techniques,
‘OW’ stands for overlapping windows.

Fig. 13 suggests that both systems can achieve perfect
true positive rates (also known as sensitivity as defined by
TPR = TP

TP+FN , meaning there is no room for malicious
data being correctly identified as legitimate. This indicates the
highly secure nature of our system.
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Fig. 13: True Positive Rates (TPR) as a function of epochs under
different windowing schemes. While ‘IW’ denotes independent win-
dowing techniques, ‘OW’ stands for overlapping windows.

Moving on to Fig 14, one can see the true negative rate
as defined by TNR = TN

TN+FN of the systems, suggesting
the percentage of legitimate data being correctly identified.
Likewise, the figures for independent windows are better than
those employing overlapping windows with a margin of around
2 %.

Moreover, Fig 15 depicts the F1 score of the systems (as
defined by F1 = 2Precision×RecallPrecision+Recall =

TP
TP+ 1

2 (FP+FN)
, giving

the harmonic mean of precision and recall. It turns out that
independent windows outperform overlapping windows with
a margin of about 2 % at the lower number of epochs λ ≤ 5.
The difference is however less noticeable (about 1 %) at a
higher number of epochs λ ≥ 6.

While the accuracy, indicating the total number of correct
predictions divided by the total number of predictions) is
suitable for a well-balanced class of data, it is not ideal
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Fig. 14: True Negative Rates (TPR) as a function of epochs
under different windowing schemes. While ‘IW’ denotes independent
windowing techniques, ‘OW’ stands for overlapping windows.
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Fig. 15: F1 scores as a function of epochs under different windowing
schemes. While ‘IW’ denotes independent windowing techniques,
‘OW’ stands for overlapping windows.

for imbalanced data. Thus, we also employed the F1 score,
describing the harmonic mean of precision and recall. It is a
more appropriate metric to identify the minority class as in
the case of data imbalance.

As such, poor prediction of the minority class will cause an
increase in the F1 score since it keeps the balance between
precision and recall. Improved F1 score can only be achieved
if the system identifies more of a certain class correctly.
Accordingly, the F1 score only increases if both the number
and quality of prediction improve. In our case, we can be
confident with the ability of the system to deal with such a
case since the F1-scores of the system are reasonably high.

Fig. 16 highlights the false negative rates of the system
as defined by FNR = FN

TP+FN . As can be seen, they can
achieve a perfect minimum score regardless of the length of
the epochs, confirming the value of TPR in Fig. 13. Again,
it means no malicious data being misclassified as legitimate
(negative), or the system can perfectly capture all malicious
attacks, reconfirming the robustness of the system.

Fig. 17 describes the false-positive rates of the systems
FPR = FP

FP+TN as a function of epochs. FPR highlights
the number of misidentified legitimate users as malicious. As
can be seen, the systems employing independent windows
outperform the performance of systems employing overlapping
windows with a margin of 4 % while employing a voting filter
can suppress the false positive rate by a factor of 2 %. The

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3302807

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

0 2 4 6 8 10

The Number of Samples (Epochs)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
ns

FNR

IW

IW with Voting Filter

OW

OW with Voting Filter

Bag-of-Features IW

Fig. 16: False Negative Rates (FNR) as a function of epochs
under different windowing schemes. While ‘IW’ denotes independent
windowing techniques, ‘OW’ stands for overlapping windows.

higher the number of epochs, the discrepancy in FPR is more
noticeable.
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Fig. 17: False Positive Rates (FPR) as a function of epochs un-
der different windowing schemes. While ‘IW’ denotes independent
windowing techniques, ‘OW’ stands for overlapping windows.

To highlight the relative merits of our intrusion detection
algorithm, we also conducted a rigorous comparative study
with respect to the bag of visual words or bag-of-features
(BoF) detection algorithm widely used in image processing
(see Table VI and Figs. 12-16) for a visual comparison.
The algorithm in general contains three major integral parts,
namely, feature extraction, codebook generation, and feature
vector generation. Interested readers are recommended to
study in [30] for details. Our research indicates the superiority
of our proposed framework with respect to the BoF detection
algorithm widely implemented in image processing.

In Table VII, we discuss the performance of our proposed
cyber security systems, namely, the independent window ap-
proach supported by a voting filter with κ = 3 (framework-1)
and the independent window approach without a voting filter
(framework-2), relative to the performance of the well-known
bag-of-feature detection algorithm (BoF), and Support Vector
Machine (SVM).

As can be seen, among seven statistical measures, our pro-
posed algorithms demonstrate their superiority. The indepen-
dent window approach (Framework 1) supported by a voting
filter demonstrates its best performance closely followed by

TABLE VII: Direct one epoch comparison of our proposed security
framework in the face of data imbalance, namely, Framework-1 for
a system with voting filter κ = 3, and Framework-2 for the system
without a voting filter, with respect to the performance of the Bag-
of-Feature (BoF), and Support Vector Machine (SVM)

Parameters Framework-1 Framework-2 Bag-of-Features SVM
Accuracy 0.992 0.982 0.945 0.912

TPR 1.000 1.000 0.940 1.000
TNR 0.984 0.964 0.950 0.845
FPR 0.016 0.036 0.050 0.155
FNR 0.000 0.000 0.060 0.000

Precision 0.985 0.966 0.950 0.830
F1 0.992 0.983 0.940 0.907

the independent window technique without a voting filter
(Framework-2).

Meanwhile, the SVM algorithm performs better with respect
to the BoF detection algorithm in two categories, namely,
TPR and TNR while BoF outperforms SVM in FPR, TNR,
Precision, and F1. Our proposed system also turns out to be
superior compared to the performance of the existing systems
as indicated by the highest accuracy, TPR, TNR, precision,
and the F1-score while achieving the lowest FPR and FNR.

VII. CONCLUSION

We have performed real-time cyber attacks (penetration
testing) on Robot Operating Systems (ROS) applied on the
GVR-BOT ground vehicle. We collected ROS network traffic
data to train the CNN system under both legitimate conditions
as well as malicious cyber attacks.

Our research confirms the efficacy, security, and practicality
of the proposed cyber-intrusion detection algorithm. In fact,
our detection algorithm is highly secure as proven by reason-
ably high accuracy → 1, representing TPR (sensitivity) →
1 and TNR (specificity) → 1. The system can also achieve
a F1 → 1 score (indicating near-perfect precision and recall
values). Its practicality is also supported by reasonably small
FPR → 0 and reasonably short detection time within 3
consecutive epochs or less. Our proposed framework also
performs better compared to the well-known BoF, and SVM
detection algorithms widely used for image classification.

For future work, we would like to modify the structure
of the CNN algorithm to deal with limited training of data.
We are also interested in investigating the efficacy of our
intrusion detection system on different robotic platforms, such
as unmanned aerial vehicles, whose dynamics are reasonably
faster and more complex compared to a ground robot. Under
the umbrella of deep learning (supervised and unsupervised)
systems, we are also keen to study the relative merits of our
CNN intrusion detection algorithm with respect to similar
detection techniques such as using evolving type-2 fuzzy
systems, that can accommodate the footprint-of-uncertainties.
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