
Every three to four years, list of critical
vulnerabilities. Their list is “a standard awareness document for
developers and web application security... represent[ing] a broad
consensus about the most critical security risks to web applications.”

OWASP puts out their Top 10

At Snyk, we think that every developer that’s serious about security should be familiar
with the OWASP Top 10 to ensure that their applications are safe from bad actors. And
to help those security-conscious developers further, we will be releasing a series of
Snyk Top 10 lists based on the data available to us from scans run by our users. In this
first piece, we’ll be taking a look at the Snyk Top 10 Open Source Vulnerabilities in
2022. It’s important to note that we’re looking at specific vulnerability types, not
grouping them as OWASP does.

Everyday, tens of thousands of scans are run by our customers to find vulnerable open
source libraries in their applications (and in the transitive dependencies of those
libraries). Here are what we found to be the most prevalent critical and high
vulnerabilities from Jan. 1–Sept. 30 of this year. It’s important to note that these
vulnerabilities are skewed in favor of Java, as that was the ecosystem most scanned by
our user base.

Snyk Top 10:

Open Source
Vulnerabilities in 2022

R E P O RT

Snyk Top 10

Open Source Vulnerabilities

https://owasp.org/www-project-top-ten/

Two common types of DoS vulnerabilities
 High CPU/memory consumption: An attacker sending crafted requests that could cause the system to

take a disproportionate amount of time to process. Example:

 Crash - An attacker sending crafted requests that could cause the system to crash. Example:
.

commons-fileupload:commons-
fileupload

npm
`ws` package

The top high/critical vulnerability in Java, .NET, and Ruby, let’s look at the top DoS vuln for each
ecosystem. It’s important to note that each of these below vulnerabilities has low complexity and high
availability (making them easy to exploit), but can all be remediated with a simple version upgrade.

Denial of service (DoS) attacks are used to shut down access to a network or server by
bombarding the target with so many requests that it’s unable to process the load. Both
Google and AWS experienced large scale DoS attacks in 2020, but this type of attack
isn’t just reserved for major cloud providers.

1.
 Denial of Service (DoS)

Snyk Top 10

Open Source Vulnerabilities

Java

 - com.fasterxml.jackson.core:jackson-databind is a library which contains the
general-purpose data-binding functionality and tree-model for Jackson Data Processor. Affected versions of
this package are vulnerable to Denial of Service (DoS) via a large depth of nested objects.

.NET

 - .NET and Visual Studio denial of service vulnerability (resource exhaustion)

Ruby

 - An issue in protobuf-java allowed the interleaving of
com.google.protobuf.UnknownFieldSet fields in such a way that would be processed out of order. A
small malicious payload can occupy the parser for several minutes by creating large numbers of short-lived
objects that cause frequent, repeated pauses.

CVE-2020-36518

CVE-2022-29117

CVE-2021-22569

T o p o f
2 0 2 2

https://security.snyk.io/SNYK-JAVA-COMMONSFILEUPLOAD-30082
https://security.snyk.io/SNYK-JAVA-COMMONSFILEUPLOAD-30082
https://snyk.io/vuln/npm:ws:20171108
https://snyk.io/vuln/npm:ws:20171108
https://security.snyk.io/vuln/SNYK-JAVA-COMFASTERXMLJACKSONCORE-2421244
https://security.snyk.io/vuln/SNYK-CENTOS8-DOTNET-2814058
https://security.snyk.io/vuln/SNYK-RUBY-GOOGLEPROTOBUF-2331705

2.
 Remote Code Execution (RCE)

Snyk Top 10

Open Source Vulnerabilities

3.
Deserialization of Untrusted Data
Deserialization of untrusted data is when an application deserializes untrusted data without sufficiently
verifying that the resulting data will be valid, thus allowing the attacker to control the state or the flow of
the execution. A Java deserialization vulnerability occurs when a malicious user tries to insert a modified
serialized object into the system in order to compromise the system or it’s data. If you want to learn more
about this vulnerability type, we recommend reading

.

Serialization and deserialization in Java: Explaining

the Java deserialize vulnerability

Remote code execution (RCE) attacks occur when a bad actor is able to run commands from a remote
system that they shouldn’t have access to. RCEs can occur a few ways, including through the use of
malware or by exploiting a vulnerable library that hasn’t been patched. This vulnerability allows attackers
to exploit a server or an application using their code on the server or application. For this list, we’re
focused on the latter, as this vulnerability can lie dormant in a seemingly safe library for years — as was
the case with Log4Shell.

In late 2021, Log4j — the widely-used open source Java logging library that has been around since 2001 —
was found to have a RCE that impacted systems around the globe. Named , this exploit sent teams
into a frenzied weekend of patching. In the case of this exploit, Log4j was often a transitive dependency of
another open source package or a part of a container image, so remediation was time consuming if the
proper tools (like Snyk) weren’t used. Snyk team did an extensive work around creating a publicly available
repo — — covering the information available on the internet.

Log4Shell was promptly followed by Spring4Shell, an RCE discovered in the Spring Framework. To learn more
about this RCE, we recommend taking our free
hands-on lesson.

Log4Shell

awesome-log4shell

Spring4Shell: Exploiting a remote code execution vulnerability

I N t h e
N e w s

This type of vulnerability can occur in many different languages, but the most prevalent occurrence we
found was — another Log4j vulnerability. This is a high complexity vulnerability, but
remains high severity due to the level of impact it can have and the package is an integral part of popular
protocols like Remote Method Invocation (RMI), Java Management Extension (JMX), Java Messaging
System (JMS), Action Message Format (AMF), Java Server Faces (JSF) ViewState, etc.

CVE-2022-23307
T o p
i n s t a n c e

https://snyk.io/blog/serialization-and-deserialization-in-java/
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://snyk.io/log4j-vulnerability-resources/
https://github.com/snyk-labs/awesome-log4shell
https://learn.snyk.io/lessons/spring4shell/java/
https://security.snyk.io/vuln/SNYK-JAVA-LOG4J-2342646

Snyk Top 10

Open Source Vulnerabilities

4.
SQL Injection

5.
Prototype Pollution

SQL Injection is a type of vulnerability when an application takes inputs from the user without validating
and passes on the database to process. This allows an attacker to add untrusted data to a database
query. For instance, when filling in a web form, a SQL injection could allow an attacker to create user input
to steal valuable data, bypass authentication, or corrupt records. For more information on SQL injection,
we recommend reading our or taking our .

SQL injection cheat sheet interactive SQL injection lesson

Prototype pollution is a vulnerability affecting JavaScript, and it refers to the ability to inject properties into
existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object
attributes to be altered, including their magical attributes such as __proto__, constructor, and
prototype. An attacker manipulates these attributes to overwrite (pollute) a JavaScript application object
prototype of the base object by injecting other values. Properties on the `Object.prototype` are then
inherited by all the JavaScript objects through the prototype chain. When that happens, this most
commonly leads to a denial of service by triggering JavaScript exceptions, or if the code evaluates the
specific attribute of the JavaScript object controled by the attacker it is able to tamper with the application
source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs
 Unsafe object recursive merg
 Property definition by path

To learn more about prototype pollution, check out this ,
try this , or check out this .

Capture the Flag walkthrough from SnykCon 2021
interactive tutorial Git repository about exploiting prototype pollution

This was the most frequently found vulnerability for Python this year, with coming in at

the top of the list. This flaw in Django is vulnerable to SQL injection via

QuerySet.explain(**options) in option names, using a suitably crafted dictionary (with dictionary

expansion) as the **options argument on PostgreSQL. It can be resolved by upgrading Django to

2.2.28, 3.2.13, 4.0.4 or higher.

CVE-2022-28347
T o p
P y t h o n
V u l n

This is a common vulnerability type for the JS ecosystem, with at the top. This prototype

pollution vulnerability in async. Affected versions of this package are vulnerable via the mapValues()

method, due to improper check in createObjectIterator function. It can be resolved with a simple

upgrade to 2.6.4, 3.2.2 or higher.

CVE-2021-43138
T o p J S
V u l n

https://snyk.io/blog/sql-injection-cheat-sheet/
https://learn.snyk.io/lessons/sql-injection/javascript/
https://www.youtube.com/watch?v=ycbRA_Ipq1U
https://learn.snyk.io/lessons/prototype-pollution/javascript/
https://github.com/Kirill89/prototype-pollution-explained
https://security.snyk.io/vuln/SNYK-PYTHON-DJANGO-2606966
https://security.snyk.io/vuln/SNYK-JS-ASYNC-2441827

Snyk Top 10

Open Source Vulnerabilities

6.
Insecure Temporary File

7.
 Directory/Path Traversal
A directory traversal (a.k.a. path traversal) attack aims to access files and directories that are stored
outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations,
or by using absolute file paths, it may be possible to access arbitrary files and directories stored on the
filesystem; including application source code, configuration, and other critical system files. To learn
more about directory traversal vulnerabilities, , watch this ,
or read this blog that explores .

try this interactive lesson helpful exploit video
3 different types of directory traversal exploits in C/C++

Insecure temporary files are, well, exactly what they sound like. With this type of vulnerability, temporary
files containing sensitive information are created with incorrect permissions or in folders that lack proper
permissions. This would fall under the class of vulnerability that OWASP refers to as Broken Access
Control.

The most frequently occuring instance of this vulnerability is in
org.springframework.boot:spring-boot. Affected versions are vulnerable via the
org.springframework.boot.web.server.AbstractConfig

urableWebServerFactory.createTempDir method, allowing for temporary directory hijacking
and privilege escalation. Fortunately, this can be remediated with a simple upgrade to 2.2.11 or higher.

CVE-2022-27772
M o s t
C o m m m o n
I n s t a n c e

The top directory traversal we saw this year was , appearing in the moment JS date
package. Affected versions of this package are vulnerable when a user provides a locale string which
is directly used to switch moment locale, but can be remediated by upgrading to 2.29.2 or higher.

CVE-2022-24785T o p
D i r e c t o r y
T r a v e r s a l

https://learn.snyk.io/lessons/directory-traversal/javascript/
https://www.youtube.com/watch?v=a1okGZQSteg
https://snyk.io/blog/exploring-3-types-of-directory-traversal-vulnerabilities-in-c-c/
https://security.snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKBOOT-2438287
https://security.snyk.io/vuln/SNYK-JS-MOMENT-2440688

Snyk Top 10

Open Source Vulnerabilities

8.
Privilege Escalation

9.
Regular Expression Denial of Service
(ReDoS)

Regular expression denial of service (ReDoS) vulnerabilities are a type of DoS attack. Regular expressions
(regex) are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for
attackers to take your site down.

The goal of the attack is bog the target server by having it process a bulk, invalid regex statement. The
regex engine will match the first possible way to accept the current character and proceed to the next
one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the
previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the
end, and if many characters have multiple valid regex paths, the number of backtracking steps can
become very large, resulting in what is known as catastrophic backtracking. If you’d like to learn more,
check out this .
interactive ReDoS tutorial

Privilege escalation is another type of OWASP’s Broken Access Control vulnerability. In this case, access
controls are bypassed by an attacker to gain increased permissions to a resource. If you’d like to learn
more (and are a fan of DevSecOps), we recommend reading the blog

.
Kernel privilege escalation: how

Kubernetes container isolation impacts privilege escalation attacks

The top instance of privilege escalation this year was in tomcat-catalina.
Affected versions are vulnerable via a `time of check, time of use` vulnerability that allows a local
attacker to perform actions with the privileges of the user that the Tomcat process is using. This issue
is only exploitable when Tomcat is configured to persist sessions using the FileStore, and can be
remediated by upgrading org.apache.tomcat:tomcat-catalina to version 8.5.74, 9.0.57, 10.0.15,
10.1.0-M9 or higher.

CVE-2022-23181

T o p
I n s t a n c e

T o p
2 0 2 2
V u l n

Just like with directory traversals, the top ReDoS vulnerability in 2022 was in the moment package as
. Affected versions of this package are vulnerable via the preprocessRFC2822()

function in from-string.js, when processing a very long crafted string (over 10k characters). The
simple fix is to upgrade moment to version 2.29.4 or higher.

CVE-2022-31129

https://learn.snyk.io/lessons/redos/javascript/
https://snyk.io/blog/kernel-privilege-escalation/
https://snyk.io/blog/kernel-privilege-escalation/
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHETOMCAT-2386868
https://security.snyk.io/vuln/SNYK-JS-MOMENT-2944238

Snyk Top 10

Open Source Vulnerabilities

10.
 NULL Pointer Dereference

Book a Demo

These were just the top ten high/critical vulnerability types found by
Snyk scans from Jan. 1–Oct 31, 2022, with the total growing
considerably once all vulnerability types are included (medium/
low). In order to keep these vulnerabilities out of your code, we
recommend the following

 Shift security left - The sooner you catch a vulnerability, the
easier it is to fix

 Implement developer security tooling - Implement a tool (like
Snyk) that can find vulnerabilities in real time and then offer
simple fixes to developers (not just a link off to documentation),
as well as contextual prioritization

 Cover your full application - Vulnerabilities in open source and
proprietary code are just as dangerous as misconfigurations in
your IaC/cloud configs. Be sure to secure all aspects of your
application

 Automate, automate, automate - Automate scans and fixes as
much as you can to make security a paved path

 Keep learning - Stay ahead of attackers by keeping your security
skills fresh. The lessons we’ve linked throughout are
one way to do so, as security is an ever evolving field.

Snyk Learn

Stay security aware

And finally, the 10th most frequently found high/critical vulnerability found during Snyk scans was NULL
pointer dereference. Additionally, this was the top high/critical vulnerability in Go as well as being one of
the most common vulnerabilities in C and C++. This vulnerability occurs when an application attempts to
dereference a point that it expects to be valid, but finds a NULL value instead, which creates a crash. This
crash then creates a denial of service flaw.

Keep vulnerabilities out
Find out how simple Snyk makes it to

find and fix vulnerabilities in your
open source dependencies and

across your entire SDLC.

The top occurrence this year was in golang.org/x/crypto/ssh. In this case, a

NULL pointer dereference through v0.0.0-20201203163018-be400aefbc4c allows remote

attackers to cause a denial of service against SSH servers. To remediate, upgrade the crypto/ssh

package to 0.0.0-20201216223049-8b5274cf687f or higher.

CVE-2020-29652
T o p
O c c u r a n c e

https://snyk.io/schedule-a-demo/
https://learn.snyk.io
https://security.snyk.io/vuln/SNYK-GOLANG-GOLANGORGXCRYPTOSSH-2331920

