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Digital technology diffusion in the age of AI: Cross-country 
evidence from microdata 

 

Flavio Calvino1, Hélder Costa1, Daniel Haerle1 

This paper analyses firms’ use of AI, big data analysis, internet of things, 

robotics and 3D printing across 15 OECD Member countries. It documents 

seven stylised facts on digital technology diffusion in the age of AI. 

Advanced technologies tend to build on enabling ones and diffusion varies 

considerably by sector and technology. Larger firms exhibit higher uptake, 

and this is not driven by sectoral composition. Human and technological 

capital – including education, ICT skills and firms’ digitalisation – emerge as 

critical enablers. Adopters tend to be more productive than non-adopters, 

with the notable exception of 3D printing, but part of the observed 

productivity premia can be attributed to differences in human and 

technological capital. These factors are associated with higher productivity 

and contribute to explaining adopters’ productivity advantages, particularly 

in the case of AI. Policies should combine technological, skill development 

and sector-sensitive measures to accelerate diffusion and unlock 

productivity. 
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Executive summary 

This paper provides a comprehensive analysis of advanced digital technology diffusion in the age of 

artificial intelligence (AI), leveraging official, representative microdata across 15 OECD Member countries. 

These data are analysed with a harmonised methodology, using a common statistical code developed by 

the OECD and distributed to a network of project participants with access to the source microdata. These 

surveys cover the period 2017-2023 and therefore do not yet fully capture the recent boom in generative 

AI. 

This paper discusses five advanced digital technologies: AI, big data analysis, internet of things (IoT), 

robotics and 3D printing. Recent adoption rates of AI and 3D printing range from 4% to 10%, while big data 

analysis and IoT are more widespread among firms at about 25%. This broad technological scope 

highlights relevant interdependencies and the technology-specific patterns and drivers of diffusion, as well 

as the heterogeneous impact of diffusion on the economy. The analysis focuses on the key characteristics 

of adopters, the role of policy-relevant enablers of technology diffusion, and the links between the use of 

such advanced technologies and productivity. Drawing on cross-country evidence from Belgium, Canada, 

Denmark, Estonia, France, Germany, Ireland, Israel, Italy, Japan, Korea, the Netherlands, Portugal, 

Switzerland and the United Kingdom, the analysis uncovers seven stylised facts:  

1. There are significant interdependencies among digital technologies: more advanced technologies 

tend to build on enabling ones, such as cloud computing, customer relationship management 

(CRM) and enterprise resource planning (ERP) software, along with fast broadband connectivity. 

These are, in fact, often used by firms when advanced technologies are adopted. 

2. The diffusion of advanced digital technologies exhibits significant sectoral heterogeneity. This 

pattern is consistent across countries, with AI and big data analysis showing broader adoption in 

ICT and professional and scientific services, IoT displaying more widespread adoption across 

sectors, and robotics and 3D printing being particularly prevalent in manufacturing and utilities.  

3. Larger firms are more likely to adopt advanced digital technologies, and this is not driven by 

sectoral composition. For example, across the countries considered, large firms are on average 20 

percentage points more likely to adopt AI than small firms with similar characteristics, with this gap 

ranging from 5 to 37 percentage points. 

4. Both human capital (in the form of ICT skills and training) and technological capital (proxied by the 

use of other digital technologies and digital infrastructure) are key to the adoption of advanced 

digital technologies. For AI, five of the six countries in which ICT skills data are available show a 

positive association of AI adoption with ICT skills; two of five available countries for ICT training; 

and all of the available nine countries for technological capital. 

5. Tertiary education and technical occupations appear to be critical for the adoption of advanced 

digital technologies. For example, in Denmark, the Netherlands and Portugal, a one percentage 

point increase in the share of tertiary-educated workers is associated with a higher likelihood of AI 

adoption of 0.53, 0.24 and 0.15 percentage points, respectively.  

https://www.oneauthor.org/#_Toc195691164
https://www.oneauthor.org/#_Toc195691164
https://www.oneauthor.org/#_Toc195691160
https://www.oneauthor.org/#_Toc195691161
https://www.oneauthor.org/#_Toc195691162
https://www.oneauthor.org/#_Toc195691162
https://www.oneauthor.org/#_Toc195691162
https://www.oneauthor.org/#_Toc195691163
https://www.oneauthor.org/#_Toc195691163
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6. Adopters of advanced digital technologies tend to be more productive than other firms, although 

this does not imply a causal link. For AI, the productivity advantage of adopters ranges from 7.7% 

in France to 31% in Belgium. These productivity advantages are stronger in large firms. 

7. Part of the observed productivity advantages can be attributed to differences in human and 

technological capital. These factors are themselves associated with higher productivity and 

contribute to explaining adopters’ productivity advantages, particularly in the case of AI and IoT. 

For instance, when controlling for human and technological capital, only two of ten countries retain 

a significant AI-related productivity advantage. 

These results carry relevant policy implications. While different advanced technologies vary in their users 

and sectoral reach, pointing to the need for policy to tailor interventions to sector-specific dynamics, 

policymakers should also consider the complementarities and path dependence that shape the technology 

diffusion process. A broad policy mix should therefore include measures aimed at strengthening firms’ 

digital capabilities and digital infrastructure, including connectivity, while fostering skill development for 

both ICT specialists and the wider workforce.  

Human and technological capital are particularly critical in the age of AI. In fact, productivity premia of AI 

adopters depend on complementary investments, including those in specialised skills, intangible assets 

and technology. While the analysis suggests that productivity gains are currently more pronounced for 

technologies such as big data analysis, firm-level returns from AI adoption may still be in the process of 

fully materialising. As the technology evolves and new firm-level data become available, it is important to 

continue monitoring these dynamics closely – both to better understand the productivity effects of AI 

adoption and to assess its implications for competition along the value chain. 

 

 

https://www.oneauthor.org/#_Toc195691165
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The diffusion of advanced digital technologies across firms has been a topic of high interest for 

policymakers, given their potential to transform economies and improve economic and social outcomes. 

Technologies such as AI have the potential to boost productivity by increasing efficiency, fostering 

innovation and improving decision-making with potentially significant aggregate productivity effects 

(OECD, 2024[1]; Filippucci, Gal and Schief, 2024[2]; Filippucci et al., 2025[3]). As productivity growth is a key 

driver of wages, these technologies can also play a crucial role in improving living standards, although this 

depends on how the productivity gains are shared between capital and labour. Additionally, in the context 

of the global climate crisis, advanced digital technologies may accelerate the green transition by optimising 

resource use and enabling firms to adopt more sustainable practices (OECD, 2024[4]; OECD, 2024[5]). 

However, as computational needs grow, the digitalisation of economic processes could also increase 

energy use (Calvino, Dechezleprêtre and Haerle, 2025[6]). Therefore, understanding current patterns of 

technology diffusion across OECD Member countries, the drivers of adoption, and the links between 

technology use and productivity is essential for designing policies that fully harness the benefits of 

advanced digital technologies, while also addressing potential barriers. 

As illustrated in Figure 1.1, firm-level adoption of advanced digital technologies has been steadily 

increasing across OECD Member countries in recent years – see, for example, OECD (2024[1]) for a 

comprehensive overview of recent trends in technology diffusion. Despite this aggregate upward trend, 

technologies such as big data analysis, IoT, 3D printing and, most notably, AI remain in use by only a 

minority of firms in the observed period, indicating that diffusion is still at a relatively early stage. Looking 

ahead, the generative capabilities of recent AI models, combined with their intuitive use, may offer firms 

opportunities to integrate AI more seamlessly into their processes. For instance, Chatterji et al. (2025[7]) 

recently documented that ChatGPT's adoption reached over 700 million weekly active users as of July 

2025, with 27% of the 2.6 billion daily messages being work-related, while OECD (2025[8]) suggests that 

nearly a third of SMEs in some OECD countries recently used generative AI. However, aggregate patterns 

conceal substantial heterogeneity across countries, sectors and firms. Understanding the factors driving 

adoption, the interdependencies among different technologies and the implications for productivity as 

diffusion progresses is therefore essential for policy and research.  

1 Introduction 
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Figure 1.1. Aggregate trends in technology adoption 

Share of technology adoption among firms, OECD averages (3-year moving average) for selected technologies 

 

Note: OECD averages are calculated when data are available for at least 60% of OECD Member countries. As data are collected at different 

intervals, coverage may vary over time. Missing values are replaced, where possible, with the most recent observation from the previous three 

periods. Averages are then computed as a simple mean of Member countries for each indicator, using 3-year trailing moving averages. The 

data are based on national ICT surveys. For more details see the OECD ICT Access and Usage by Businesses database webpage: https://data-

explorer.oecd.org/s/3il. 

Source: OECD ICT Access and Usage by Businesses database (OECD, 2025[9]). 

This paper aims to provide further evidence on the diffusion patterns of advanced digital technologies, with 

a focus on the firm characteristics and policy-relevant enablers associated with a higher likelihood of 

adoption, and the role of technology use for productivity, using network and regression analysis based on 

comprehensive microdata.1 This approach offers significant advantages over the officially published 

descriptive statistics, as it accounts for several important confounding factors that are related to technology 

adoption and firm productivity, such as firm size and age, industry, and some relevant complementary 

assets, notably related to human and technological capital. Specifically, this paper focuses on five 

technologies, henceforth referred to as advanced digital technologies (AI, big data analysis, IoT, robotics 

and 3D printing), and covers 15 OECD Member countries: Belgium, Canada, Denmark, Estonia, France, 

Germany, Ireland, Israel, Italy, Japan, Korea, the Netherlands, Portugal, Switzerland and the United 

Kingdom. 

Among advanced digital technologies, AI stands out as a likely general-purpose technology with 

transformative potential across all sectors (Filippucci et al., 2024[10]; Calvino, Haerle and Liu, 2025[11]). 

Unlike more domain-specific tools such as robotics or 3D printing, AI enables adaptive learning and 

decision-making, allowing firms to automate cognitive tasks, optimise complex processes, and generate 

new knowledge (Calvino, Reijerink and Samek, 2025[12]). Its versatility can amplify the potential of other 

technologies. For example, AI, IoT and robotics are increasingly converging to form highly responsive and 

autonomous systems, with AI providing the intelligence layer (see also OECD (2023[13]) for further 

discussion about AI capabilities), IoT supplying real-time data, and robotics enabling physical action 

(Börner et al., 2020[14]). This supports the development of autonomous, adaptive systems across sectors, 

reflecting a broader trend of technological co-evolution. Due to the synergies between these technologies, 

their joint transformative potential is often highlighted in policy discussions, such as by the European 
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Commission (European Commission, 2021[15]). However, these characteristics also raise unique policy 

challenges, from addressing skill gaps to ensuring trustworthy use, underscoring the importance of 

understanding AI diffusion patterns for aggregate growth. 

Given the substantial heterogeneity of diffusion across countries, driven by differences in firm 

characteristics, policy environments and economic context, this paper contributes to the discussion through 

a distributed microdata approach: the Digital Diffuse project. This methodology allows for the analysis of 

comprehensive and representative firm-level data in a decentralised manner, producing comparable output 

while complying with confidentiality constraints. With respect to the study by Calvino and Fontanelli 

(2023[16]), which this paper builds upon, this work significantly broadens the scope of analysis by 

considering different advanced digital technologies beyond AI, as well as focusing in more detail on the 

role of human capital, including additional education and occupation measures, on the role of technological 

capital, further analysing technological interdependencies, and considering further productivity proxies 

across more countries. Broadening the technological scope is critical not only for directly addressing 

relevant interdependencies but also because different technologies, due to their intrinsic characteristics, 

can exhibit specific patterns of adoption, different drivers of diffusion and heterogeneous impacts on the 

economy, whose consideration can be critical for policy action. 

The paper leverages data from official information and communications technology (ICT) surveys, balance 

sheet data and linked employer-employee data (LEED). ICT surveys are the main source of information 

and are representative of the underlying firm population of reference. Balance sheet data provide, for some 

countries, additional information on firm financials, notably relevant for productivity estimation. LEED allow 

zooming in on the human capital drivers of technology adoption. Balance sheet data and LEED are 

merged, when available, with the ICT surveys to provide additional insights by allowing for more detailed 

measures of productivity and human capital. 

The data are analysed in the context of the Digital Diffuse project, which uses a common statistical code 

developed by the OECD and is run in a decentralised manner on the country-specific surveys by national 

experts. The Digital Diffuse program generates a set of summary statistics and regression outputs based 

on the abovementioned data sources, enabling a uniquely detailed outlook on technology use, its drivers 

and role for the economy. The main results of the analysis can be summarised in seven stylised facts.  

First, looking at the role of advanced technologies within the digital technological capital in firms highlights 

that there are significant interdependencies among such technologies. Advanced digital technologies are, 

in fact, often adopted together, pointing towards their technological interrelatedness, and often build on 

foundational ones. Key software and digital infrastructure enablers, such as cloud computing, CRM and 

ERP software, along with fast broadband connectivity, play a central role in the analysed networks of 

technological co-occurrences. This highlights the importance of both technological and organisational 

interdependencies in the diffusion of digital technologies. 

Second, the diffusion of advanced digital technologies exhibits significant sectoral heterogeneity. 

Specifically, AI and big data analysis show broader adoption across service-oriented sectors, particularly 

in ICT and professional and scientific services. IoT appears to be more versatile, with more widespread 

adoption across sectors. Conversely, 3D printing and robotics are particularly relevant to the manufacturing 

and utilities sectors, highlighting their industrial applications. These patterns suggest that the uptake of 

specific technologies is highly sector dependent. 

Third, larger firms tend to be more likely to adopt advanced digital technologies. The likelihood of adoption 

increases monotonically with firm size for most technologies and countries. This notably holds after 

accounting for the sectoral composition of countries and for other firm characteristics notably firm age, 

which possibly suggests relevant scale advantages in the adoption of advanced digital technologies.  

Fourth, human and technological capital are consistently associated with a higher likelihood of using 

advanced digital technologies. Human capital is proxied by the presence of ICT specialists and ICT training 
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for non-ICT personnel, while technological capital includes measures of digital capabilities and 

infrastructure, as proxied by the share of adoption of other digital technologies and the use of fast 

broadband. These assets therefore prove to be critical and policy-relevant enablers for uptake, given their 

complementarities with advanced digital technology adoption. 

Fifth, zooming in on human capital suggests that education and technical occupations appear critical for 

the diffusion of advanced digital technologies. In fact, leveraging detailed worker-level information from 

LEED in selected countries further highlights that both the share of workers with bachelor’s degrees and 

the share of workers in technology-related occupations, so-called “techies”, are positively associated with 

the adoption of several advanced digital technologies.  

Sixth, adopters of advanced digital technologies tend to be more productive than non-adopters, although 

this does not imply a causal link. Both descriptive statistics and regression analyses often indicate higher 

productivity levels among adopting firms, with the notable exception of 3D printing. Across technologies, 

these productivity premia are strongest in larger firms, with a productivity premium observed also for larger 

firms adopting 3D printing. 

Seventh, human and technological capital are also associated with higher productivity, likely explaining 

some of the observed productivity premia of adopters, especially in the case of AI and IoT. In fact, both 

human capital, in the form of ICT skills and training, and technological capital, proxied by the use of other 

digital technologies and digital infrastructure, are strongly associated with higher productivity levels across 

the countries and technologies analysed. Moreover, when controlling for these factors, the previously 

observed positive correlation between the adoption of advanced digital technologies and productivity 

diminishes. Only the adoption of big data analysis and, to some extent, the use of robots tend to remain 

associated with higher productivity levels across several countries. Notably, for AI, the productivity 

advantage of adoption is not observed in most countries when controlling for human and technological 

capital, implying a low productivity premium from AI adoption alone in the period under analysis. 

Understanding the patterns of advanced digital technology diffusion, the role of its enablers and the links 

between technology adoption and productivity is essential for policymakers and businesses aiming to 

accelerate digital adoption and maximise productivity gains. The findings in this paper uncover key stylised 

facts based on comprehensive microdata covering a wide number of countries and advanced digital 

technologies analysed with a novel methodology and perspective.  

The key findings discussed above highlight a critical role of human and technological capital in both the 

adoption of advanced digital technologies and productivity. This suggests the relevance for policymakers 

of focusing on a comprehensive policy mix that strengthens firms’ digital capabilities, supports their 

investment in complementary assets and upskilling, and strengthens digital infrastructure, along with both 

technical and non-technical skills in the workforce. These implications are particularly relevant in the 

context of the rapid emergence of generative AI. Although often perceived as a user-friendly technology 

that lowers entry barriers, realising productivity gains will likely remain dependent on such enablers, with 

a key role for both specialised competences to develop tailor-made solutions and of critical thinking to 

understand when and how to use generative AI effectively (see also OECD (2024[17]) and Calvino, Reijerink 

and Samek (2025[12])). 

The remainder of the paper is organised as follows. Section 2 discusses related literature on the adoption 

and productivity effects of advanced digital technologies. Section 3 discusses the data and methodology 

employed in the analysis across participating countries. Section 4 presents the seven stylised facts 

documented in this paper. Section 5 provides concluding remarks and discusses possible next steps for 

analysis.  
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The literature investigating the adoption of digital technologies is extensive, with the concept of digital 

technology evolving over time from the simple adoption of computers (Bresnahan, Brynjolfsson and Hitt, 

2002[18]) to computer-controlled machines (Bartel, Ichniowski and Shaw, 2007[19]), adoption of internet 

services and other web-related services (Amador and Silva, 2025[20]), to more recent advanced digital 

technologies such as cloud computing, big data analysis, IoT and AI (Acemoglu et al., 2022[21]; Cho et al., 

2023[22]; Cette, Nevoux and Py, 2022[23]), among others. 

This brief overview mainly focuses on firm-level evidence about the five advanced technologies analysed 

in this report, in particular AI, big data analysis, IoT, robotics and 3D printing. In this work, while highlighting 

the relevant technological specificities and the critical heterogeneity underpinning their characteristics and 

diffusion, these technologies are sometimes altogether referred to as “advanced digital technologies”, 

considering the critical role of digital elements in characterising their key functionalities, e.g. creating 

physical objects from digital models, enabling industrial applications and programming to autonomously 

perform tasks, leveraging or interacting with, as well as collecting or exchanging, data, including through 

remote monitoring or control. These technologies typically require some level of digitalisation to operate. 

In this sense, they are more advanced than e.g. computers or standard software, are often included in the 

most recent waves of surveys monitoring the state of digitalisation, as further discussed in the next section, 

and are at the centre of debates about the most recent implications of the digital transformation. 

Additionally, they tend to be technologically connected, with AI playing a crucial role in advancing the digital 

technology ecosystem (OECD, 2024[1]), e.g. acting as an “intelligence layer” that turns connected devices 

and data streams into adaptive, autonomous systems across domains (Börner et al., 2020[14]), such as in 

cyber-physical systems like IoT (Radanliev et al., 2020[24]; Oliveira et al., 2021[25]) or robotics (Kroemer, 

Niekum and Konidaris, 2021[26]; Liu et al., 2022[27]) as well as 3D printing (Goh, Sing and Yeong, 2020[28]; 

Ciccone, Bacciaglia and Ceruti, 2023[29]). Similarly, AI and big data analysis reinforce each other: big data 

pipelines make modern AI feasible, while AI unlocks predictive and autonomous analytics that traditional 

methods could not deliver in complex production contexts (Peres et al., 2020[30]; Gandomi, Chen and 

Abualigah, 2023[31]; Himeur et al., 2022[32]). 

A first line of research regarding technology adoption focuses on the characteristics of firms that adopt 

advanced digital technologies (Cirillo et al., 2023[33]; McElheran et al., 2024[34]). This builds upon previous 

literature focusing on firms and digitalisation, including, for instance, the work of Bartelsman, Hagsten and 

Polder (2018[35]) and Bartelsman, van Leeuwen and Polder (2016[36]), which analyse previous ICT waves. 

A second line of research focuses more closely on the links between the use of advanced digital 

technologies by firms and productivity or other firm-level outcomes, building upon the broader literature on 

the returns to digitalisation (see Biagi (2013[37]) or Draca, Sadun and Van Reenen (2009[38]) for reviews of 

this topic). Further discussion of some analyses contributing to these streams of research is provided 

below, highlighting key findings and research gaps. 

2 Existing literature on advanced 

digital technologies: a brief 

overview 
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Characteristics of adopters of advanced digital technologies 

Several firm characteristics are associated with a higher likelihood of adopting advanced digital 

technologies. The most common characteristic positively related to their use is firm size. In analyses 

focusing on different advanced digital technologies, the evidence suggests that adopters are, on average, 

larger in terms of turnover and number of employees. This has been documented by several studies, such 

as Zolas et al. (2020[39]) and Acemoglu et al. (2022[21]) for AI and robotics in the United States, Calvino 

et al. (2022[40]) for IoT, big data analysis and 3D printing in Italy, Calvino et al. (2022[41]) and Calvino and 

Fontanelli (2023[16]) for AI in the United Kingdom and several other OECD Member countries, and 

Cerqueira, Alexandre and Portela (2023[42]) for big data analysis in Portugal. This suggests the existence, 

for several advanced digital technologies of scale advantages, of economies of scale, or network 

externalities, which may lead to higher adoption by larger firms. 

The relationship between firm age and the use of advanced digital technologies is less clear once not only 

the relevant links between firm age and size are considered, but also the characteristics of the respective 

technology itself. A number of studies find that younger firms are more likely to adopt advanced digital 

technologies, such as Acemoglu et al. (2022[21]) for AI and robotics, Calvino et al. (2022[40]) for big data 

analysis, IoT and 3D printing, Cerqueira, Alexandre and Portela (2023[42]) for big data analysis, and Cho 

et al. (2023[22]) for AI, big data analysis, IoT and 3D printing. Meanwhile, Zolas et al. (2020[39]) find the 

opposite for AI and robotics. 

Human capital also seems to play a relevant role in the adoption of advanced digital technologies. In fact, 

firms adopting advanced digital technologies often seem to employ a more skilled workforce, which has 

been documented for earlier ICT technologies (Bresnahan, Brynjolfsson and Hitt, 2002[18]; Abowd et al., 

2007[43]; Haller and Siedschlag, 2011[44]) as well as for big data analysis (Calvino et al., 2022[40]; Cerqueira, 

Alexandre and Portela, 2023[42]), IoT and 3D printing (Calvino et al., 2022[40]), and AI (Calvino et al., 

2022[41]; Calvino and Fontanelli, 2023[16]; Mammadov et al., 2024[45]). Additionally, human capital in the 

form of managerial capabilities and skills has also been shown to play a role in the adoption of these 

technologies (Gulzar, Naqvi and Smolander, 2025[46]; Calvino et al., 2022[40]). Particularly in the case of AI, 

Borgonovi et al. (2023[47]) highlight that leading AI employers exhibit higher demand for AI professionals 

combining technical expertise with leadership, innovation, and problem-solving skills, while Green 

(2024[48]) finds that occupations highly exposed to AI have seen a significant rise in demand for cognitive, 

emotional and digital skills over the last decade. Additionally, Lane (2024[49]) finds that more skilled 

occupations are more exposed to AI and will likely face higher disruption. This is supported by firms 

reporting the need for highly educated workers in their decision to adopt AI (Lane, Williams and Broecke, 

2023[50]; OECD, 2025[8]).2 

Furthermore, the adoption of advanced digital technologies does not usually happen in isolation. Adopters 

were often already more digitalised, suggesting that prior digitalisation is an important enabler of adopting 

the most advanced digital technologies, such as AI (Zolas et al., 2020[39]; Acemoglu et al., 2022[21]; Cho 

et al., 2023[22]; Calvino and Fontanelli, 2023[16]; Calvino and Fontanelli, 2024[51]; McElheran et al., 2024[34]). 

Relevant complementarities between enabling and more advanced digital technologies are further 

highlighted by Calvino, Criscuolo and Ughi (2024[52]), focusing on digital technology diffusion during 

COVID-19 in Europe, as well as by Zolas et al. (2020[39]) in the United States. Also, technical factors such 

as digital infrastructure and enabling technologies have been identified as enablers of successful 

technology adoption (Gulzar, Naqvi and Smolander, 2025[46]).  

A relevant role of other firm characteristics in the adoption of advanced digital technologies has also been 

documented, although less extensively studied. In particular, firms that engage in R&D (Calvino et al., 

2022[40]), as well as firms that are more export-intensive (Haller and Siedschlag, 2011[44]; Koch, Manuylov 

and Smolka, 2021[53]), are more likely to adopt digital technologies. Finally, geographical location seems 

to play an important role, with adopters of advanced digital technologies more likely to be located 
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geographically close to the presence of ICT sectors (Calvino et al., 2022[40]; Dahlke et al., 2024[54]), often 

in capital cities (Haller and Siedschlag, 2011[44]; Calvino et al., 2022[41]). 

Advanced digital technologies, productivity and other firm-level outcomes 

The productivity benefits of the adoption of advanced digital technologies by firms are not yet entirely clear 

and may vary by technology and timing. Some papers find no relationship between the adoption of some 

advanced digital technologies and productivity, consistent with the “Modern Productivity Paradox” (Solow, 

1987[55]). This discrepancy between technology diffusion and productivity has been addressed by the J-

curve hypothesis, which suggests that while adoption may not yield positive immediate effects, possibly 

even first inducing a decline in productivity, it brings about positive productivity impacts only in the medium 

to long run due to complementary investments (Brynjolfsson, Rock and Syverson, 2021[56]). 

Indeed, for ICT more generally, Draca, Sadun and Van Reenen (2009[38]) argue that when taking into 

account both ICT capital and complementary organisational capital, ICT has contributed to productivity 

growth. Similarly, Biagi (2013[37]) emphasises the general-purpose nature of ICT technologies, which have 

raised productivity, accounting for both organisational changes and human capital. For the case of AI, 

Brynjolfsson, Rock and Syverson (2017[57]; 2021[56]) and Acemoglu et al. (2022[21]) argue that the main 

cause of a lack of observed productivity effects is the delay between recognition of a new technology's 

potential and its measurable effects. This may be especially pronounced for advanced digital technologies, 

such as AI, with potential general-purpose characteristics that are still evolving (Agrawal, Gans and 

Goldfarb, 2025[58]; Cockburn, Henderson and Stern, 2019[59]; Brynjolfsson, Rock and Syverson, 2019[60]; 

Crafts, 2021[61]; Klinger, Mateos-Garcia and Stathoulopoulos, 2018[62]), an example of which is the recent 

emergence of generative AI.3 Indeed, McElheran et al. (2025[63]) find causal evidence of J-curve-shaped 

returns for the use of industrial AI and robotics, where short-term productivity losses precede longer-term 

benefits. 

On the other hand, a recent surge in the number of analyses studying the role of advanced technologies 

documents a positive relationship between the adoption of digital technologies and productivity. While a 

link between productivity and technology adoption had already been established for a broader set of ICT 

technologies (Gal et al., 2019[64]; Amador and Silva, 2025[20]), such a relationship is also being observed 

for advanced digital technologies. In fact, Müller, Fay and vom Brocke (2018[65]), Cette, Nevoux and Py 

(2022[23]), Cerqueira, Alexandre and Portela (2023[42]), and Bettiol et al. (2023[66]) find a positive link 

between productivity and technology use for both cloud computing and big data analytics. Conti, de Matos 

and Valentini (2024[67]) and Andres, Niebel and Sack (2025[68]) find positive links only for big data, while 

Espinoza et al. (2020[69]) and Bettiol et al. (2023[66]) find a positive relationship for IoT. Cirillo et al. (2022[70]) 

find positive effects for IoT, robotics, big data, among others. These analyses focus on data from different 

countries. Additionally, a positive relationship between technology adoption and firm productivity has been 

found by Koch, Manuylov and Smolka (2021[53]) for robotics, Calvino et al. (2022[40]) for IoT, big data 

analysis and 3D printing, Acemoglu et al. (2022[21]) for AI and robotics, and Cho et al. (2023[22]) for AI, IoT, 

big data analysis and 3D printing. Several papers focus on AI specifically, with positive links between 

adoption or AI innovation and productivity further found, among others, by Damioli, Van Roy and Vertesy 

(2021[71]), Czarnitzki, Fernández and Rammer (2023[72]), Calvino and Fontanelli (2023[16]; 2024[51]) and 

Calvino et al. (2022[41]). At the worker level, findings from OECD surveys suggest that employers and 

workers alike see positive productivity impacts from AI adoption in firms (Lane, Williams and Broecke, 

2023[50]). 

However, several challenges appear when exploring the links between the use of advanced technologies 

and productivity. A first challenge is related to the fact that more productive firms may be more likely to 

adopt digital technologies in the first place. A second challenge stems from disentangling the role of digital 

technologies from other factors that may drive productivity. 
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As discussed above, relevant complementarities between the adoption of advanced digital technologies 

and other firm characteristics are often highlighted. These characteristics can be key to the ability of firms 

to extract productivity benefits. For example, Calvino and Fontanelli (2023[16]) highlight that the productivity 

premia of AI adopters are often linked to intangibles rather than to the use of AI itself. Barbosa and Faria 

(2022[73]) find that only already more productive and more digitalised firms are able to extract benefits for 

productivity from adoption. The importance of complementary assets, such as firms’ prior digital technology 

intensity and the skills of its workers, in realising the productivity benefits of technology adoption is also 

highlighted by Bresnahan, Brynjolfsson and Hitt (2002[18]), Brynjolfsson, Jin and McElheran (2021[74]), 

Calvino et al. (2022[40]), Cho et al. (2023[22]) and Calvino and Fontanelli (2024[51]). Similarly, management 

practices have been shown to be key in extracting productivity gains from IT adoption (Bloom, Sadun and 

Reenen, 2012[75]; Cette, Nevoux and Py, 2022[23]; Cerqueira, Alexandre and Portela, 2023[42]). 

Finally, other firm-level outcomes also appear to be linked to the use of advanced digital technologies. For 

instance, Rammer, Fernández and Czarnitzki (2022[76]) find that the adoption of AI is relevant for more 

ambitious product innovations, while Bartel, Ichniowski and Shaw (2007[19]) and Niebel, Rasel and Viete 

(2018[77]) relate IT investments to higher efficiency of the production process. Babina et al. (2024[78]) 

document several effects of investments in AI, such as growth in sales, employment and market valuations. 

DeStefano, Kneller and Timmis (2023[79]) find positive effects of the adoption of cloud computing on 

employment and revenue for young firms. For incumbent firms, the effects appear to be concentrated in 

the reallocation of the workforce between establishments. Furthermore, Caldarola and Fontanelli (2025[80]) 

find that cloud services positively impact the growth rates of firms, with smaller firms experiencing more 

significant benefits compared to larger firms, while Bisio et al. (2025[81]) further analyse the links between 

technology adoption and firm resilience.  

Key insights and gaps 

Evidence on the diffusion of advanced digital technologies shows that adoption is influenced by several 

firm characteristics, with larger firms more likely to adopt several of these technologies due to scale 

advantages and network externalities, while the relationship between adoption and firm age is more mixed. 

Additionally, human capital in the form of workforce skills and managerial capabilities as well as 

technological capital given by digital infrastructure and enabling technologies appear to play a relevant role 

in technology adoption. Regarding productivity outcomes, while some literature suggests a J-curve effect 

where initial productivity declines precede longer-term benefits, recent analyses have documented positive 

links between adoption and productivity across various advanced digital technologies. Crucially, 

complementary investments and organisational changes appear critical for realising productivity growth. 

Much of the empirical evidence in the literature discussed above is, however, country-specific, which limits 

its representativeness across countries. Furthermore, many studies rely on aggregated information, such 

as at the sector level, and focus on a single technology. Additionally, many studies focus only on either the 

determinants of technology adoption or its productivity implications.  

This paper addresses these gaps by providing comprehensive cross-country evidence from 15 different 

countries, leveraging detailed and representative microdata across several advanced digital technologies, 

offering a unique and comprehensive picture of advanced digital technology adoption, its determinants, 

and its relationship with productivity. 
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This section discusses the data and methodology employed to investigate the use of advanced digital 

technologies by firms across countries. It covers firm-level surveys across countries as well as the 

distributed microdata approach utilised to analyse the data – the Digital Diffuse program.  

Firm-level surveys across countries 

This section provides an overview, for each country, of data coverage for ICT surveys and when applicable, 

balance sheet data and LEED. Key features of the different sources are briefly summarised below, with 

additional comprehensive information on the national surveys and the metadata reported in Annex A and 

Annex B, respectively.4 

Official ICT surveys provide representative data containing relevant information on the use of advanced 

digital technologies by firms. The common features of these sources are their representativeness, as they 

are generally collected by national statistical offices, and the presence of information about the use by 

businesses of several digital technologies, notably including advanced ones, together with key firm 

characteristics. 

Information on technology use is generally binary (i.e. firms are asked whether they use a given technology 

or not). ICT surveys in different countries contain information on relevant advanced digital technologies, 

notably including AI, big data analysis, cloud computing, IoT, robotics and 3D printing, among others. For 

selected advanced technologies, such as AI, firms are also asked for additional information, e.g. whether 

the technology was developed internally or acquired from a third party. 

Information on firm characteristics generally includes key measures, notably the sector of activity of the 

firm, its size (employment) and turnover, which allow building a proxy for labour productivity. 

The data are typically repeated cross-sections, based on stratified sampling methodologies. This allows 

on the one hand, when survey weights are present, for the analysis to be representative of the population 

under consideration (typically enterprises with 10 or more persons employed). On the other hand, also 

considering the typical focus on technology use rather than on the date of first adoption, this makes the 

analysis oriented towards exploring changes in adoption behaviour more challenging. 

A key challenge for a multi-technology analysis across different countries is ensuring the harmonisation of 

the reported information, which can differ in terms of time, sectoral and size coverage, as well as the 

definitions used. 

In some cases, in order to carry out a more detailed analysis, it is possible to combine the information in 

ICT surveys with additional information available in other micro-level data sources, such as balance sheet 

data or LEED, depending on data availability and data access. Together, these data sources contain 

additional information on firm characteristics, financial indicators of firm performance and information about 

the human capital of firms. For countries where such data are available, details on data availability are 

provided. 

3 Data and methodology 
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Digital Diffuse: a distributed microdata project 

This section discusses the distributed microdata approach used. The evidence is based on representative 

firm-level data sourced from official firm-level surveys containing information on the use of ICTs from 15 

countries. For countries where balance sheet data and/or LEED are available, additional evidence 

leverages these sources.  

Building upon the AI diffuse project (Calvino and Fontanelli, 2023[16]), Digital Diffuse uses a common 

statistical code developed by the OECD Digital Diffuse team. This is commonly referred to as a distributed 

microdata approach. First, the code is run in a decentralised manner on the country-specific surveys by 

national experts from statistical offices, academia, other institutions, or directly by the OECD Secretariat. 

Then, the country-specific outputs of the program are sent back to the OECD for cross-country analysis. 

Before analysis, consistency checks and metadata validation steps are carried out in collaboration with 

experts from each country. This strategy effectively deals with challenges related to cross-country 

microdata access while preserving confidentiality. 

The Digital Diffuse program runs in a Stata environment and generates a set of summary statistics and 

regression outputs based on firm-level survey data on technology adoption. Summary statistics and 

regressions are computed in both weighted and unweighted forms conditional on the availability of 

sampling (probability) weights, or of a business register from which these can be calculated. The Digital 

Diffuse program can run flexibly on different data sources but requires the following information: firm-level 

employment, turnover, sector of activity, binary variables identifying technology use by firms, and the year 

of observation.  

Furthermore, the program is able to scale up the analysis in a modular manner to leverage information 

from balance sheet data and LEED. If balance sheet data are available, additional measures of firm-level 

productivity are computed, such as value added over employment and measures of multifactor productivity 

(MFP). The availability of LEED allows the analysis to include additional measures of human capital at the 

firm level, both for descriptive statistics and regression analysis. These measures include average years 

of formal education, share of individuals with tertiary education and share of individuals with a master’s or 

PhD degree. These measures can be calculated for the entire workforce, and, conditional on data 

availability, for managers and workers in a non-managerial position. Additional human capital measures 

are the share of workers in a technical occupation, in an ICT technical occupation and in a non-ICT 

technical occupation. 

The code has been designed to analyse the use by firms of various digital technologies, including both 

advanced and widely adopted ones. This study defines advanced digital technologies as AI, big data 

analysis, IoT, robotics and 3D printing, which are at the core of the present analysis. Other technologies, 

such as cloud computing services, customer relationship management (CRM) software, e-commerce, and 

enterprise resource planning (ERP) software, are also analysed, but in the present analysis related 

information is used only to assess their role as enablers of the use of the abovementioned advanced digital 

technologies. For the current analysis, the code allows to investigate the role of ICT skills (proxied by the 

presence of ICT specialists and training for non-ICT specialists) and digital infrastructure (ultra-fast 

broadband connection), information that is often directly available in firm-level surveys. 

Further details on the Digital Diffuse program are provided in Annex A. 
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This section presents seven stylised facts about the adoption of advanced digital technologies by firms 

across 15 countries. These stylised facts provide evidence based on summary statistics and regression 

analyses examining firm characteristics associated with a higher likelihood of adopting each advanced 

digital technology. The analysis also explores the role of human and technological capital in technology 

adoption and provides evidence on the co-occurrence patterns among different digital technologies. 

Finally, the analysis explores the relationship between technology adoption and firm-level productivity, and 

the role of relevant confounding factors. Where possible, these dimensions are explored at more granular 

levels, highlighting trends across countries and technologies. To the best of our knowledge, this is the first 

study to provide international evidence using regression analysis carried out with a harmonised 

methodology on the diffusion and role of multiple advanced digital technologies in the age of AI.1 While 

great efforts were made to harmonise the methodology, as discussed above, cross-country comparisons 

should be made with caution given differences in definitions and reference periods across countries (further 

details are available in the Annex). 

Stylised fact 1: There are significant interdependencies among digital 

technologies and more advanced technologies tend to build on enabling ones 

Looking at the role of advanced technologies within the digital technological capital in firms is key to 

understanding the determinants of adoption and any associated productivity advantages. This section 

focuses on the extent to which digital technologies are interdependent, highlighting that they are often 

adopted together, with more advanced technologies building on foundational ones. Leveraging the analysis 

of co-occurrences in technology adoption, that is, the simultaneous observation of a given technology pair 

within a firm in a given survey year, a network of technologies can be constructed to analyse the role of 

technological capital through co-adoption patterns. A typical example of such a technology network is 

shown in Figure 4.1: Foundational technologies such as ERP, CRM and cloud take a central position in 

the network, as indicated by the node size. Community detection reveals that they tend to be adopted 

together. In particular, technologies that take a central role in this network are often observed to be present 

simultaneously with other technologies and are therefore likely to be important for other technologies, 

suggesting a role for them as technological “enablers”. This is also confirmed by the analysis of conditional 

adoption probabilities between technologies for various countries.2 Conversely, data-driven advanced 

digital technologies centred on AI tend to be adopted together and form their own community. Specifically, 

in many countries, the adoption of the related technologies of AI and big data analysis, as well as other 

advanced technologies, is often observed together when they are present in the same wave. 

 
1 See Calvino and Fontanelli (2023[16]) for a previous cross-country study that focuses on the diffusion and role of AI 

specifically. 

2 See Figure A C.1 in the appendix for a representation of conditional probabilities for the case of Switzerland in 2019. 

4 Seven stylised facts about advanced 

digital technologies and firms 
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Interestingly, IoT tends to cluster with enabling technologies, potentially suggesting a broader integration 

in the firm technology portfolio. Indeed, this is supported by the overall adoption rates of IoT, as illustrated 

in section 1. Additionally, as shown in detail in stylised fact 2, IoT also has broad adoption across sectors. 

Figure 4.1. Typical network of technology co-occurrences: Switzerland 

 

Note: Node size is scaled by eigen centrality, and the edges are scaled by the number of co-occurrences. Communities are represented by 

clouds and identified using the springclass community detection algorithm (𝛾 = 1). The data refer to the year 2019. 

Source: Authors’ calculations based on microdata from the KOF Enterprise Panel.  

Moving to a cross-country picture, Figure 4.2 illustrates the eigenvector centrality5 of technologies within 

the networks of technology co-occurrences based on surveys across various countries and years. Here, 

every row represents an undirected network in a country-year, with the nodes given by the technologies 

and the edges defined by the observed number of co-occurrences between each technology pair. A clear 

pattern emerges: the most central technologies, which frequently coincide with the adoption of others, are 

foundational technologies such as cloud computing, key business software applications such as those 

related to CRM and ERP software, along with digital infrastructure such as fast broadband connectivity, 

pointing towards their role as enablers of more advanced digital technologies. 
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Figure 4.2. Centrality of technologies 

Eigen centrality of technologies by country and survey year 

 

Note: The colour gradient represents the eigen centrality for each available technology (column) in the network of observed technology co-

occurrences for each country-year (row). A high value indicates an influential position of the technology in the network. Greyed out cells 

correspond to technologies either not surveyed or not available in a given country-year. Networks with blanked co-occurrences due to 

confidentiality or a low number of available technologies are excluded.  

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

As these technologies play a central role in the network, it positions them as drivers in technological co-

adoption by, for instance, reducing adoption costs or helping realise potential productivity benefits of 

adopting advanced digital technologies. For example, fast broadband ensures the necessary connectivity 

for reliable and quick data transfer, which is essential for advanced digital technologies and crucial for 

applications like cloud and edge computing in IoT (OECD, 2022[82]). The availability of fast broadband 

connection therefore impacts the efficiency and viability of advanced digital technologies, reinforcing its 

role as a foundational technology. Similarly, cloud computing services can offer scalable infrastructure 

capable of handling large datasets and computing capacity without the need for physical hardware 

investment (Berisha, Mëziu and Shabani, 2022[83]). These services are often integrated with AI-specific 

tools, facilitating the adoption of big data analytics, AI and IoT. Additionally, many approaches to adopting 

advanced technologies such as AI include their integration with existing software in the firm, such as CRM 

(Ledro, Nosella and Dalla Pozza, 2023[84]) and ERP systems (Goundar et al., 2021[85]), which in turn are 

often cloud-based, an enabler itself. With these key enablers playing a central role in the network of 

technological co-occurrences, this highlights the importance of both technological and organisational 

interdependencies in the diffusion of digital technologies. 
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Stylised fact 2: The diffusion of advanced digital technologies exhibits significant 

sectoral heterogeneity 

Given the different technological and organisational contexts in different industries, the applications of the 

technologies considered in the current analysis vary across sectors, leading to different levels of diffusion. 

This stylised fact highlights the different patterns of diffusion of advanced digital technologies across 

sectors for the countries considered. Figures 4.3-4.7 present the relative adoption rates of each advanced 

digital technology across countries and sectors of the economy. The ICT sector often emerges as a leader 

in digital technology adoption, yet notable differences exist among technologies. The use of relative 

indicators may facilitate comparisons between countries, considering that – as previously highlighted – 

definitions may vary across countries and statistics may refer to different years (further details are provided 

in the figure notes and in Annex C). 

The ICT sector stands out as the leading adopter of AI in all countries except Germany, where its adoption 

rate is second highest after professional and scientific activities.6 This is illustrated in Figure 4.3, which 

presents AI adoption patterns across countries and sectors, revealing a distinct sectoral distribution 

concentrated in this sector. This result has also been documented by Calvino and Fontanelli (2023[16]) and 

may reflect the high concentration of AI innovation and human skills required in this sector.7 

The professional and scientific activities sector also emerges as a significant adopter of AI in several 

countries. In contrast, manufacturing and utilities, the leading adopter of robotics and 3D printing, shows 

considerably lower AI adoption rates. This suggests that while AI may play an important role in optimising 

industrial processes, for instance, when embedded in advanced robotics, its adoption across firms in the 

manufacturing and utilities sector is not as deep as it is in service-oriented and knowledge-intensive 

sectors.8  

Furthermore, relevant heterogeneity across countries is observed. In particular, unreported adoption levels 

reveal that Denmark tends to exhibit relatively high adoption of AI across several sectors, while countries 

such as Italy, Japan and Portugal tend to show generally lower adoption rates, except in the ICT sector. 
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Figure 4.3. Relative adoption rates of AI by industry and country – different years 

 

Note: This figure reports the relative adoption rates of AI across sectors. Within each country, the adoption rates are normalised such that the 

sector with the highest rate is equal to one. Values are weighted for all countries except for Germany, Ireland and Korea. Some cells are blanked 

for confidentiality reasons. The year of reference for each country is 2023 for Belgium, 2023 for Canada, 2020 for Switzerland, 2020 for Germany, 

2020 for Denmark, 2023 for Estonia, 2022 for France, 2023 for the United Kingdom, 2023 for Ireland, 2020 for Israel, 2023 for Italy, 2019-2021 

for Japan, 2019 for Korea, 2021 for the Netherlands and 2022 for Portugal. Owing to methodological differences, figures may deviate from 

officially published national statistics.  

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

Figure 4.4 presents the relative adoption rates of big data analysis. The use of this technology follows a 

pattern similar to AI, with the ICT sector consistently reporting the highest adoption rates across most 

countries. This reflects the fundamental role of data analytics in digital services, where businesses 

leverage large-scale data processing for decision-making and machine learning applications. 

However, in contrast to AI, big data analysis shows higher overall relative adoption rates beyond the ICT 

sector. The diffusion of big data analysis is also strong in the professional and scientific activities sector, 

which reports the second highest adoption rates for 7 of the 11 countries analysed. In contrast, 

manufacturing and utilities and construction consistently present lower adoption rates across countries. 

As with AI, there appears to be significant heterogeneity across countries, with some economies exhibiting 

broader sectoral adoption while others more concentrated in select industries. For example, Belgium, 

Switzerland, Denmark and the Netherlands show a relatively more even diffusion of big data across 

sectors, whereas Israel, Korea and to some extent Italy seem to show a stronger contrast between the ICT 

sector and the rest of the economy. Once again, comparisons between countries should be taken with 

caution, also considering differences in survey years. 
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Figure 4.4. Relative adoption rates of big data analysis by industry and country – different years 

 

Note: This figure reports the relative adoption rates of big data analysis across sectors. Within each country, the adoption rates are normalised 

such that the sector with the highest rate is equal to one. Values are weighted for all countries except for Germany and Korea. Some cells are 

blanked for confidentiality reasons. The year of reference for each country is 2020 for Belgium, 2020 for Switzerland, 2018 for Germany, 2018 

for Denmark, 2019 for France, 2020 for Israel, 2020 for Italy, 2019-2021 for Japan, 2019 for Korea, 2020 for the Netherlands and 2019 for 

Portugal. Owing to methodological differences, figures may deviate from officially published national statistics. 

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

Figure 4.5 presents the relative adoption rates of IoT across countries and sectors. As with AI and big data 

analysis, the ICT sector generally presents the highest adoption rates. However, IoT exhibits a distinct, 

broader pattern compared to other advanced digital technologies. In fact, in countries such as Belgium, 

France, Israel and Italy, the construction, manufacturing and utilities, and transport and storage sectors 

surpass the adoption rates found in the ICT sector. This suggests that the industrial applications of IoT – 

such as predictive maintenance, process automation, and supply chain management, as well as logistics 

for the transport and storage sector – are key drivers of its diffusion in these economies. 

In contrast, lower adoption rates are observed in sectors such as administrative and real estate and 

professional and scientific activities, suggesting that IoT applications in some service-based industries tend 

to remain relatively limited. Overall, the adoption of IoT aligns with sectors that rely on physical 

infrastructure and logistics rather than purely data-driven sectors. The ICT sector is the only service-based 

sector where the diffusion of this technology is pervasive. 
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Figure 4.5. Relative adoption rates of IoT by industry and country – different years 

 

Note: This figure reports the relative adoption rates of IoT across sectors. Within each country, the adoption rates are normalised such that the 

sector with the highest rate is equal to one. Values are weighted for all countries except for Canada and Korea. Some cells are blanked for 

confidentiality reasons. The year of reference for each country is 2021 for Belgium, 2023 for Canada, 2019 for Switzerland, 2020 for Denmark, 

2020 for France, 2020 for Israel, 2021 for Italy, 2019-2021 for Japan, 2019 for Korea, 2021 for the Netherlands and 2020 for Portugal. Owing to 

methodological differences, figures may deviate from officially published national statistics. 

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

Figure 4.6 presents the adoption rates of robotics across countries and sectors. Unlike some other 

advanced digital technologies considered, robotics adoption is concentrated in industrial sectors rather 

than services, such as the ICT sector. In fact, for all countries, the highest adoption of robotics is observed 

in the manufacturing and utilities sector. This aligns with the relevance and long-standing use of robots to 

automate manufacturing processes, suggesting that this technology might be particularly effective in 

enhancing productivity and efficiency in industrial settings. 

The figure also reveals varying levels of robotics adoption across sectors. After manufacturing and utilities, 

wholesale and retail reports the highest adoption rates in five of the nine countries analysed.  
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Figure 4.6. Relative adoption rates of robotics by industry and country – different years 

 

Note: This figure reports the relative adoption rates of robotics for Belgium (BEL), Switzerland (CHE), Denmark (DNK), France (FRA), the United 

Kingdom (GBR), Israel (ISR), Italy (ITA), Japan (JPN), Korea (KOR), the Netherlands (NLD) and Portugal (PRT) across sectors. Within each 

country, the adoption rates are normalised such that the sector with the highest rate is equal to one. Values are weighted for all countries except 

for Korea. Some cells are blanked for confidentiality reasons. The year of reference for each country is 2020 for Belgium, 2020 for Switzerland, 

2019 for Denmark, 2019 for France, 2023 for the United Kingdom, 2020 for Israel, 2020 for Italy, 2019-2021 for Japan, 2019 for Korea, 2021 for 

the Netherlands and 2019 for Portugal. Owing to methodological differences, figures may deviate from officially published national statistics.  

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

Finally, Figure 4.7 presents the relative adoption rates of 3D printing, revealing substantial variation in 

diffusion across sectors and countries. Similar to robotics, 3D printing is more prevalent in manufacturing 

and utilities, followed by the professional and scientific activities and ICT sectors. This pattern aligns with 

its industrial applications, including the production of complex and high-precision components, prototyping, 

tooling and small-batch production, among others (see OECD (2017[86]) for an in-depth discussion of the 

application and impact of 3D printing). Notably, Portugal is the only country for which manufacturing and 

utilities does not have the highest adoption rate of 3D printing, where it is surpassed by the ICT sector. 

The professional and scientific activities sector exhibits notable adoption levels in certain countries, likely 

due to the use of 3D printing in research, design and engineering applications. In contrast, the ICT sector 

does not consistently emerge as the leading adopter, suggesting that while digital innovation plays a crucial 

role in 3D printing, its primary applications remain in physical production and development rather than in 

purely digital or service-oriented sectors. Moreover, some heterogeneity in diffusion patterns is also 

observed across countries, with some differences in adoption rates between sectors more pronounced in 

certain countries, while more homogeneous in others. These variations might stem from differences in 

industrial composition within broad sectors, policy measures, specific technological needs of each 

economy, or differences in the timing of the surveys. 
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Figure 4.7. Relative adoption rates of 3D printing by industry and country – different years 

 

Note: This figure reports the relative adoption rates of 3D across sectors. Within each country, the adoption rates are normalised such that the 

sector with the highest rate is equal to one. Values are weighted for all countries except for Canada and Korea. Some cells are blanked for 

confidentiality reasons. The year of reference for each country is 2020 for Belgium, 2023 for Canada, 2019 for Switzerland, 2019 for Denmark, 

2019 for France, 2020 for Israel, 2020 for Italy, 2019-2021 for Japan, 2019 for Korea, 2020 for the Netherlands and 2019 for Portugal. Owing to 

methodological differences, figures may deviate from officially published national statistics. 

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 

Overall, the adoption of advanced digital technologies varies significantly across sectors and, to some 

extent, across countries, highlighting specificities in sectoral applications. AI and big data analysis show 

broader adoption in service-oriented industries, particularly in ICT and professional and scientific sectors. 

IoT appears to be more versatile, with more widespread adoption across sectors. Robotics and 3D printing 

are particularly relevant to the manufacturing and utilities sector, highlighting their industrial applications. 

These patterns suggest that the uptake of specific technologies is highly sector-dependent.  

Similarly, the patterns of co-adoption discussed in the previous stylised fact also show some sectoral 

heterogeneity, as shown in Figure A C.2 and Figure A C.3 of Annex C for the ICT and manufacturing 

sectors, respectively, two sectors with each high and distinct adoption patterns. In the ICT sector, AI and 

big data analysis are not only widely diffused, but also appear to play a more central role in the network of 

technology co-occurrences compared to the survey average as they are often adopted together with other 

technologies. Concerning IoT, on the other hand, while adoption rates observed in the ICT sector are 

higher than in other sectors of the economy, it does not appear to take a central position in the network, 

pointing to more standalone adoption patterns of this technology in the ICT sector. In the manufacturing 

sector, conversely, while IoT, robotics and 3D printing are widely diffused, only 3D printing and, to a lesser 

extent, robotics take a more central position in the network than it does in other sectors, implying a greater 

integration of these technologies with other technologies and digital infrastructure in the manufacturing 

sector. These technological interdependencies may help explain the heterogeneous patterns observed 

across sectors. 
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Understanding the sectoral patterns of adoption is essential for policymakers and businesses aiming to 

accelerate digital adoption and maximise productivity gains across sectors. Taking them into account 

through regression analysis is critical for a better understanding of the dynamics and implications of the 

diffusion of advanced digital technologies. 

Stylised fact 3: Larger firms are more likely to adopt advanced digital 

technologies 

This stylised fact focuses on the link between the use of advanced digital technologies and firm size, 

highlighting the higher propensity of advanced technology use by larger firms. The analysis focuses on the 

latest available data on advanced digital technologies, accounting for a number of relevant confounding 

factors in the size-technology relationship using a regression analysis. In particular, Figure 4.8 presents 

the coefficients of the size class dummies from adoption regressions, where the dependent variable is the 

use of an advanced digital technology. These regressions are estimated separately for each country and 

technology. The estimated models include controls for year, age and industry fixed effects. Given the 

observed sectoral heterogeneity in adoption discussed in stylised fact 2, this approach allows to better 

understand the link between firm size and the use of advanced digital technologies by accounting for key 

dimensions, such as industry composition. All reported coefficients are to be interpreted relative to the 

baseline category of firms, i.e. those with 10 to 19 persons engaged (see Box 4.1 for further details on the 

econometric strategy). 

It is apparent that the likelihood of adoption increases monotonically with firm size for almost all 

technologies and countries considered. A coefficient of 0.4 – such as that observed for large Belgian firms 

(250 or more persons engaged) adopting AI or big data analysis – indicates that being a large firm 

increases the likelihood of adopting that specific advanced digital technology by 40 percentage points 

compared to a firm with 10 to 19 persons engaged. There is, however, relevant heterogeneity in adoption 

patterns both across technologies within countries and across countries. For example, firm size seems to 

be a less important predictor of adoption for 3D printing across most countries, compared to other 

technologies. Furthermore, for some countries and some technologies, such as AI for Belgium, Canada, 

Germany, Japan, Korea and the United Kingdom, only higher size classes appear to exhibit statistically 

significant coefficients.  

These results suggest that even when controlling for key firm-level characteristics such as sectoral 

heterogeneity and firm age, larger firms remain more likely to adopt advanced digital technologies, 

consistent with a role for scale advantages in their diffusion. By contrast, while Calvino and Fontanelli 

(2023[16]) and Zolas et al. (2020[39]) identify a relevant association between firm age with technology 

adoption, a heterogeneous picture emerges for the role of age across countries and technologies once 

firm size is taken into account, as shown in Figure A C.4 in Annex C. 
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Figure 4.8. Adoption regression coefficients for size class dummies 
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Note: This figure reports the coefficients of size class dummies for Belgium, Canada, Denmark, Estonia, France, Germany, Ireland, Israel, Italy, 

Japan, Korea, the Netherlands, Portugal, Switzerland and the United Kingdom. The adoption regression includes age classes and year dummies, 

when available. Each regression includes 2-digit NACE rev. 2 sector dummies. All estimated regressions are weighted except for Germany, 

Ireland and Korea. See Table A B.2. for the sample coverage years of each technology adoption regression. See Table A C.1 – Table A C.5 for 

the complete list of coefficients. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 
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Box 4.1. Econometric strategy for adoption regressions 

Adoption regressions are used to evaluate which firm-level characteristics are associated with the use 

of advanced digital technologies. The results presented in this paper rely on a series of linear probability 

models, estimated using the following equation: 

Technology useit = β0 + β1SizeClassit + β2AgeClassit + δs + γt + εit 

where Technology useit is a binary variable indicating whether firm i uses an advanced digital technology 

in year t. The equation is estimated separately for each technology. SizeClassit and AgeClassit represent 

fixed effects based on size and age classes, respectively. δ𝑠 and γ𝑡 capture sector and, where available, 

year fixed effects. Finally, εit denotes the error term. The inclusion of variables in the model, particularly 

age class and year fixed effects, depends on data availability. 

To analyse the role of additional factors relevant to the adoption of advanced digital technologies, 

specifically human and technological capital, the equation above is extended as follows: 

Technology useit = β0 + β1SizeClassit + β2AgeClassit + β3X′it + δs + γt + εit 

where 𝑋′𝑖𝑡 is a vector of binary variables that identify relevant factors. These include, where available, 

the presence of ICT specialists and ICT training to capture the role of human capital, use of fast 

broadband to capture digital infrastructure and the share of other digital technologies adopted. Fast 

broadband is defined as having a broadband connection with at least 100 Mbit/s. The share of other 

digital technologies is computed as the number of digital technologies that firm i has adopted in year t 

out of all technologies surveyed. The following technologies are considered, conditional on survey 

coverage: AI, big data analysis, cloud computing services, IoT, robotics, 3D printing, customer 

relationship management (CRM), enterprise resource planning (ERP) and e-commerce. The availability 

of such information varies across countries and years. The technology under analysis is excluded from 

this calculation.  

Stylised fact 4: Human and technological capital are key to the adoption of 

advanced digital technologies 

Some assets, such as human and technological capital in the form of intangibles and digital infrastructure, 

may affect the uptake of advanced digital technologies by providing the necessary tools and skills to identify 

use cases or leverage their potential, enabling technology adoption. It has been, in fact, found that the 

adoption of new technologies is linked to technological and organisational complements (Brynjolfsson and 

Milgrom, 2013[87]). For example, the adoption of predictive analysis is positively correlated with IT 

infrastructure, human capital in the form of educated employees and high flow efficiency processes 

(Brynjolfsson, Jin and McElheran, 2021[74]), and AI exhibits relevant complementarities in adoption with 

human capital and firms’ digital capabilities (Calvino and Fontanelli, 2023[16]). 

To explore the role of human and technological capital, the analysis builds on the econometric strategy 

discussed above (see Box 4.1 for details). The use of each advanced digital technology is analysed as a 

function of firm-level characteristics, including firm size, firm age and relevant assets proxying the role of 

human and technological capital: the presence of ICT specialists, ICT training for non-ICT personnel, use 

of fast broadband internet and the share of other technologies adopted. The presence of ICT specialists 

and ICT training for non-ICT personnel in ICT surveys provides a first proxy of human capital. Meanwhile, 

the adoption rate of other digital technologies serves as a proxy for a firm’s digital capabilities or technology 

intensity. Additionally, the use of fast broadband proxies the role of high-quality digital infrastructure. Both 
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are crucial components of a firm’s technological capital. The inclusion of each explanatory variable 

depends on data availability in each country. 

Figure 4.9 presents the sign and statistical significance of selected coefficients from adoption regressions 

across advanced digital technologies and countries, conditional on data availability. With respect to the 

role of human capital, the presence of ICT specialists and ICT training is widely associated with higher 

adoption rates across most technologies and countries. However, ICT specialists appear not to be 

significantly associated with the adoption of 3D printing in Switzerland, Portugal and Canada. Similarly, 

ICT training does not significantly influence the adoption of both 3D printing and robotics in Belgium and 

Portugal.  

The results also show that digital capabilities and, to some extent, digital infrastructure play a crucial role 

in the uptake of advanced digital technologies, highlighting the role of different forms of technological 

capital as relevant complementary assets for advanced digital technology adoption. The share of other 

digital technologies adopted, including both other advanced digital technologies as well as enabling 

technologies, is positively associated with the adoption of all advanced digital technologies for which data 

are available. This suggests that firms’ prior digital technology intensity is an important factor in the 

adoption of new technologies. The presence of fast broadband appears to have a positive but, to some 

extent, weaker link with the use of these technologies, possibly due to its high diffusion in the most recent 

years. In fact, for most countries of the analysis, the share of businesses with a broadband download speed 

of at least 100 Mbit/s is higher than 60%. 

These findings highlight a key enabling role of assets related to human and technological capital, notably 

skills and digital capabilities, in the adoption of advanced digital technologies, suggesting the existence of 

relevant complementarities. In fact, a positive and significant relationship between different complementary 

assets – notably related to proxies of human and technological capital – and technology use holds across 

several technologies and countries. Furthermore, since some technologies are more widely diffused across 

specific sectors, this relationship does not appear to be sector-specific. Stylised facts 1 and 5 further 

investigate the role of human and technological capital by considering the roles of education, ICT 

occupations and technological co-occurrences in technology adoption. 
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Figure 4.9. Regression results on adoption of advanced digital technologies, human and 
technological capital 

 

Note: This figure reports the sign and statistical significance of coefficients from adoption regressions. All regressions are weighted except for 

Germany. For some countries, technologies or cells are omitted due to not being covered. See Table A B.2. for the coverage years of each 

technology adoption regression. See Table A C.6 – Table A C.10 for the complete list of coefficients. Statistical significance is denoted as 

follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 
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Stylised fact 5: Education and technical occupations appear critical for the 

adoption of advanced digital technologies 

This stylised fact further zooms in on the role of human capital in the adoption of advanced digital 

technologies, leveraging more detailed information from LEED. The discussion focuses on Denmark, the 

Netherlands and Portugal, where merging ICT surveys with LEED was possible. 

More detailed human capital proxies are constructed in two ways, conditional on data availability: the first 

proxy is the share of a firm's workforce with tertiary education qualifications, and the second is the share 

of the workforce employed in technology-related occupations (“techies”). The techie classification follows 

Harrigan, Reshef and Toubal (2021[88]; 2023[89]), and is further disaggregated into ICT techies and non-

ICT techies following Fontanelli et al. (2025[90]), using the International Standard Classification of 

Occupations (ISCO-08).9  

The use of information from LEED provides significantly more detail with respect to the information on 

human capital commonly available in ICT surveys discussed above, which often only indicate whether a 

firm employs ICT specialists or provides ICT training, lacking granular detail on workforce qualifications 

and roles. A further limitation is the inconsistent availability of human capital data in ICT surveys, since 

these are not included in every survey wave. Combined with the surveys’ rotating panel design, this limits 

the analysis to certain countries and technologies, as shown in Figure 4.9. 

Figure 4.10 presents the regression coefficients for the share of workers with tertiary education across the 

five advanced digital technologies considered in the three countries for which this information is available. 

The estimated model includes this additional variable in the baseline adoption model (see Box 4.1 for 

details). Other human capital proxies available in ICT surveys (such as the presence of ICT specialists or 

training) are excluded from these specific regressions. 

The relationship between a firm's share of tertiary-educated workers and its adoption of advanced 

technologies shows both common patterns and notable differences across the Netherlands, Portugal and 

Denmark. 

In the Netherlands, a higher share of workers with tertiary education is positively associated with the 

adoption of AI, big data analysis, robotics and 3D printing. This relationship is particularly strong for big 

data analysis: a one percentage point increase in the share of tertiary-educated workers is associated with 

a more than 0.3 percentage point higher likelihood of adoption. In contrast, the association is only marginal 

for robotics and is not statistically significant for IoT. 

The findings for Portugal are broadly consistent, showing a positive association for most technologies, with 

the main exception being 3D printing. A key difference emerges for IoT, where, unlike in the Netherlands, 

the baseline model shows a significantly positive relationship with workforce education. 

The results for Denmark also show a strong positive relationship for AI and big data analysis - and it is 

even more pronounced in this case. A one percentage point increase in the tertiary education share is 

associated with a 0.5 percentage point higher likelihood of AI adoption and a 1.2 percentage point increase 

for big data analysis adoption. However, unlike in the Netherlands, there is no significant association for 

either robotics or 3D printing in Denmark. 

A consistent finding across all three countries is the robust role of tertiary education in the adoption of AI 

and big data analysis. Unreported results confirm that the positive association between tertiary education 

and the adoption of each of the two technologies remains significant even after controlling for a firm's 

overall digital intensity. For other technologies such as IoT and robotics in the Netherlands, and IoT in 

Portugal, this is not the case, suggesting their adoption is more closely linked to a firm's existing 

technological capital rather than human capital alone. 
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Figure 4.10. Adoption regression coefficients for tertiary education 

 

Note: This figure reports the sign and statistical significance of coefficients for the share of workers with tertiary education. All regressions are 

weighted. The dependent variable is the adoption of an advanced digital technology. All models include size and age classes, and industry and 

year fixed effects. See Table A B.2. for the coverage years of each technology adoption regression. Statistical significance is denoted as follows: 

*** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys and LEED See section 3 for details on the methodology and the Annex for 

details on the different sources. 

Focusing further on the role of occupational composition, Figure 4.11 presents the regression coefficients 

of the share of techies for the adoption of each advanced digital technology in Denmark and Portugal. In 

Portugal, the results suggest that technical skills are positively correlated with the adoption of AI, IoT and 

3D printing, whereas in Denmark this is the case for big data analysis and 3D printing.10 In Portugal, a 

higher share of techies is particularly associated with IoT: a one percentage point increase in the share of 

workers with technical skills is associated with a 0.21 percentage point higher likelihood of IoT adoption. 

In Denmark, by contrast, a significant positive association is found for big data analysis and 3D printing, 

with the latter showing a similarly strong magnitude.11 

Together with the findings in Box 4.3, these results further corroborate the relevance of specialised human 

capital for the adoption of advanced digital technologies. 
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Figure 4.11. Adoption regression coefficients for technical occupations measures 

 

Note: This figure reports the sign and statistical significance of coefficients for the share of workers with technical occupations. All regressions 

are weighted. The dependent variable is the adoption of an advanced digital technology. All models include size and age classes, and industry 

and year fixed effects. See Table A B.2. for the coverage years of each technology adoption regression. Statistical significance is denoted as 

follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys and LEED. See section 3 for details on the methodology and the Annex for 

details on the different sources. 
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Box 4.2. Spotlight on the role of human capital in adopting and developing AI 

Using a similar methodology, Fontanelli et al. (2024[91]) explore how firms’ occupational composition 

influences the adoption of AI in France. For this purpose, the authors leverage information from ICT 

surveys, balance sheet data and LEED. These provide detailed information on AI use and the share of 

workers in higher intellectual (e.g. managers, executives, engineers) and intermediate (e.g. supervisors, 

foremen, technicians) occupations. Within these two broad categories, it is possible to distinguish 

between human capital related to ICT and non-ICT technical and non-technical human capital, and to 

disentangle more detailed occupational categories (e.g. ICT engineers). 

The analysis finds a positive relationship between the share of ICT engineers and the likelihood of 

adopting AI, a link primarily driven by ICT engineers specialised in R&D. A positive link emerges 

between ICT engineers and both the acquisition of AI systems from external providers and the 

development of in-house AI systems.  

Moreover, the role of ICT engineers appears particularly relevant in fostering AI adoption in Wholesale 

and Retail, ICT business services and Professional, Scientific and Technical services. This highlights 

the importance of advanced ICT knowledge in sectors dealing with large datasets or requiring high 

levels of ICT and R&D competencies. Still, non-ICT engineers play an important role in AI development, 

suggesting the relevance of a broader set of skills to design and maintain AI systems. 

These findings further underscore the critical role of highly qualified human capital in supporting the 

diffusion of advanced technologies such as AI.  

Stylised fact 6: Adopters of advanced digital technologies tend to be more 

productive than other firms 

This subsection analyses the relationship between firm productivity and the use of advanced digital 

technologies. For this purpose, it leverages regression results from 14 countries, highlighting the different 

productivity profiles of adopters of each advanced digital technology. 

Overall, the results – which are not to be interpreted causally but just as conditional correlations – show 

that firms adopting advanced digital technologies tend to be, on average, more productive. This pattern is 

observed across most technologies considered, with some country-specific exceptions. 

The relationship between the adoption of advanced digital technologies and productivity is investigated 

through a simple regression analysis. As previously discussed, unlike descriptive statistics, regression 

analysis controls for other key dimensions that might be related to firm productivity.12 This includes 

accounting for sectoral specificities, which contributes to the robustness of the analysis. Figure 4.12 

presents the baseline productivity regressions for AI, big data analysis, IoT, robotics and 3D printing. The 

regressions are estimated separately for each country and technology. The dependent variable is firm 

productivity, as proxied by the ratio of turnover and employment, while the main explanatory variable is the 

use of the respective advanced digital technology. Additional controls include firm size, firm age, industry 

and time fixed effects, conditional on data availability (see Box 4.3 for details on the econometric strategy). 
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Box 4.3. Econometric strategy for productivity regressions 

To assess the link between the use of advanced digital technologies and firm productivity, the following 

equation is estimated: 

log(Productivity)it = β0 + β1Technology useit + β2SizeClassit + β3AgeClassit + δs + γt + εit 

where log(Productivity)it is the logarithm of a firm’s productivity, measured as the ratio of turnover to 

the number of persons engaged. The main explanatory variable, Technology useit, is a binary variable 

indicating whether firm i has adopted a given advanced digital technology in year t. The equation is 

estimated separately for each technology. SizeClassit and AgeClassit represent fixed effects based on 

size and age classes, respectively. δ𝑠 and γ𝑡 capture sector and, where available, year fixed effects. 

Finally, εit denotes the error term. The inclusion of variables in the model, particularly age class and 

year fixed effects, depends on data availability. 

As robustness checks, the same equation is re-estimated using the ratio of value added to the number 

of persons engaged in logarithmic form as the dependent variable. These robustness checks are limited 

to countries where balance sheet data can be merged with the ICT survey data. 

Similarly to adoption regressions, to analyse the role of other key firm-level assets in explaining firm 

productivity, the equation above is extended as follows: 

log(Productivity)it = β0 + β1Technology useit + β2SizeClassit + β3AgeClassit + β4Xit
′ + δs + γt + εit 

where 𝑿′𝒊𝒕 is a vector of binary variables that identify additional relevant factors, notably related to 

human and technological capital. These include, where available, the presence of ICT specialists and 

ICT training, use of fast broadband and share of other digital technologies adopted (see Box 4.1 for 

details on variable definitions). 
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Figure 4.12. Estimation results of the baseline productivity regressions 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the baseline productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Canada, Germany and Korea. Although not reported, the model includes controls for firm size and age 

classes, as well as sector and year fixed effects, where available. For further details, see Box 4.3. See Table A C.11 – Table A C.15 for the 

complete list of coefficients. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

With respect to the relationship between AI use and firm productivity across countries, the figure shows 

that in most countries there is a positive and statistically significant association between AI adoption and 

the proxy for labour productivity analysed. Relevant exceptions appear to be Japan, where, however, AI 

adoption is proxied by machine learning, which represents only a subset of AI technologies, Israel, 

Switzerland and the United Kingdom. The productivity advantage of AI adopters is estimated to range from 

7.7% in France to 31% in Belgium, highlighting relevant cross-country variation. These results align with 

those discussed at greater length by Calvino and Fontanelli (2023[16]).  

Similarly, Figure 4.12 reveals a strong and statistically significant relationship between the use of big data 

analysis and firm productivity in the vast majority of countries. The estimated productivity advantages range 

from approximately 5% in France to nearly 28% in Korea. 

The results for the links between IoT use and firm productivity suggest that the use of this technology is 

associated with a productivity advantage in 9 of the 11 countries analysed, with premia for IoT adopters 

ranging from 9% in the Netherlands to 23% in Korea. For a few countries, including Switzerland and Israel, 

no statistically significant relationship is observed between the use of IoT and firm-level productivity. 

Overall, these findings suggest that firms leveraging IoT technologies tend to be, on average, more 

productive than their non-adopting counterparts. 
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Similar to findings on other advanced digital technologies, robotics is associated with sizeable productivity 

advantages in most countries, ranging from around 14% in Denmark to 21% in Italy. 

Finally, the results suggest that the adoption of 3D printing is associated with higher productivity levels in 

only 2 of the 11 countries analysed: Italy and Japan. The estimated productivity advantage for adopting 

firms here ranges from around 8% to 20%.13 However, no statistically significant relationship is identified 

in the other countries analysed, suggesting a different role for 3D printing compared to other advanced 

digital technologies.14  

For most countries in the sample, the observed productivity advantages are strongest in large firms. The 

importance of firm size becomes evident when these results are contrasted with the aforementioned 

findings. For example, while Figure 4.12 reveals a positive productivity association with 3D printing on 

average across all firms in only 2 of 11 countries, further unreported analysis suggests the existence of 

productivity advantages for large firms in 9 of the 10 countries for which data are available. This trend also 

holds for other technologies: premia for large firms are observed in 8 of 12 countries for AI; 7 of 9 for big 

data analysis; 6 of 10 for IoT; and 7 of 10 for robotics.  

Beyond the adoption of advanced digital technologies, unreported results from the models estimated in 

Figure 4.12 suggest a strong relationship between firm size, firm age and productivity. The advantage of 

older firms is particularly robust for those older than 10 years, with positive and statistically significant 

effects across most technologies and countries. With respect to firm size, larger firms also tend, overall, to 

be more productive than other firms. 

Unreported results using value added per employee as an alternative productivity measure in Belgium, the 

Netherlands and Portugal tend to qualitatively confirm the overall findings. While the estimated coefficients 

for technology adoption tend to be smaller, they remain statistically significant for the Netherlands and 

Portugal. In Belgium, however, the positive coefficients for big data analysis, IoT and robotics are no longer 

statistically significant. 

It should be stressed that the positive relationship documented between advanced digital technologies and 

firm productivity should not be interpreted as causal. The implemented econometric strategy may be 

subject to endogeneity, selection and simultaneity issues. Importantly, more productive firms may be more 

likely to adopt advanced digital technologies in the first place. Parallel to their importance previously 

discussed in the context of technology adoption, the next stylised fact addresses some of these issues by 

exploring the role of enablers related to human and technological capital in firm productivity. 

Stylised fact 7: Human and technological capital are associated with higher 

productivity, explaining part of the productivity premia of adopters 

This stylised fact explores the extent to which the relationship between firm productivity and the use of 

advanced digital technologies is related to human and technological capital, key assets complementary to 

adoption, namely the presence of ICT specialists, ICT training for non-ICT personnel, use of fast broadband 

internet and digital technology intensity. The analysis builds on the previous stylised fact by including these 

complementary assets in the productivity regression (see Box 4.3 for details on the econometric strategy). 

By accounting for these assets, this section aims to better understand whether higher productivity levels 

are primarily driven by the adoption of advanced digital technologies or rather by broader firm capabilities 

or assets, such as human capital, digital capabilities and digital infrastructure. 

Figures 4.13–4.17 present the regression results for each advanced digital technology. The overall findings 

indicate that proxies for both human and technological capital are strongly associated with higher 

productivity levels across the countries and technologies considered. Moreover, when controlling for these 

factors, the positive link between the adoption of advanced digital technologies and productivity highlighted 
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in the previous stylised fact weakens considerably. Notably, only the adoption of big data analysis and, to 

some extent, the use of robots remain associated with higher productivity levels across several countries. 

Figure 4.13 presents the regression results for the role of AI adoption and complementary assets in firm 

productivity across countries. For European countries following Eurostat guidelines, the surveys that 

covered AI often did not include all measures of complementary assets, in particular human capital proxies 

such as the presence of ICT specialists or ICT training. As a result, Figure 4.13 only includes the full set 

of explanatory variables for Estonia and the Netherlands. 

The results highlight two key findings. First, controlling for firms’ digital technology intensity alone 

significantly weakens the productivity premia of AI adopters. Among the ten15 countries that exhibit a 

productivity advantage in Figure 4.12, only two retain a significant premium, but substantially lower in 

magnitude in both cases, and with lower statistical significance in Italy. Second, complementary assets 

remain consistently associated with higher productivity levels. Overall, this suggests that firms benefiting 

from AI adoption tend to be those that are already highly digitalised, rather than the technology itself being 

the sole driver of productivity gains. This corroborates the findings discussed by Calvino and Fontanelli 

(2023[16]). Given the timing of the surveys considered, it is noteworthy to highlight that the analysis does 

not yet fully reflect the impacts of the recent boom in generative AI. Future work will focus on those more 

closely as new data become available. 

Figure 4.13. Estimation of productivity regressions including complementary factors – AI 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the extended productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Canada, Germany and Korea. Although not reported, the model includes controls for firm size and age 

class, as well as sector and year fixed effects, where available. Regressions for Germany include a dummy equal to 1 if the firm has export 

activities. For further details, see Box 4.3. See Table A C.16 for the complete list of coefficients. Statistical significance is denoted as follows: *** 

p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 
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Box 4.4. AI adoption and productivity: evidence from Denmark using a production function 
approach 

In a forthcoming paper, Warzynski (forthcoming[92]) examines the relationship between AI adoption, 

productivity and labour composition in Denmark, which has seen a rapid diffusion of AI among firms, 

increasing from 7% in 2017 to 36% in 2021. Drawing on the 2017-2021 ICT surveys merged with 

balance sheet data and LEED, the analysis confirms that adopters were typically larger and more 

productive, and they significantly increased their share of techies (defined as two-digit ISCO-08 code 

25) prior to and after adoption, particularly in ICT-related sectors. 

To assess the impact of AI on firm performance, the study employs two complementary approaches. 

First, a forward-looking growth model compares early adopters to other firms over a two-year horizon, 

showing that AI adopters experienced 3.7% higher growth in value added per worker and a 7.1% 

increase in the share of techies. Second, a production function framework is used to estimate the 

contribution of AI alongside traditional inputs. The baseline specification follows a Cobb–Douglas 

functional form with value added as the dependent variable and inputs including capital, tech labour, 

non-tech labour, and an AI adoption indicator. Estimation relies on the Wooldridge proxy-variable 

method (Wooldridge, 2009[93]) and OLS for robustness.  

The results indicate that AI adoption is associated with a modest direct effect on value added (around 

3%), but when interaction terms are introduced, complementarities become evident: the contribution of 

tech and non-tech labour rises significantly in AI-adopting firms, while traditional capital appears less 

productive, suggesting that intangible AI-related capital plays a distinct role. These findings provide 

further evidence about the “Productivity J-Curve” hypothesis (Brynjolfsson, Rock and Syverson, 

2021[56]) and align overall with the cross-country evidence in this paper: AI adoption alone does not 

guarantee productivity gains, but rather, its impact depends on complementary investments in human 

capital and organisational change. 

Figure 4.14 presents the regression results for the role of big data analysis and complementary assets in 

firm productivity across countries. Consistent with the findings for AI, the results suggest that the available 

measures of human and technological capital are generally positively and significantly associated with 

productivity levels. Notable exceptions include the presence of ICT specialists in Belgium and ICT training 

for non-ICT personnel in Israel, for which no statistically significant coefficients are observed. 

While the productivity advantages of firms leveraging big data analysis significantly decline in magnitude, 

they remain positive and statistically significant in many countries. However, in France, Italy, Japan and 

Portugal – one of the two countries where all complementary asset variables are available – the productivity 

premia are no longer observed.  

These findings suggest that the productivity benefits of big data analysis may be less dependent on pre-

existing firm characteristics and may instead be more directly linked to its adoption and utilisation. 
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Figure 4.14. Estimation of productivity regressions including complementary factors – Big data 
analysis 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the extended productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Germany and Korea. Although not reported, the model includes controls for firm size and age class, as 

well as sector and year fixed effects, where available. Regressions for Germany include a dummy equal to 1 if the firm has export activities. For 

further details, see Box 4.3. See Table A C.17 for the complete list of coefficients. Statistical significance is denoted as follows: *** p < 0.01, ** 

p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

Figure 4.15 presents the regression results for the association of IoT adoption and complementary assets 

on firm productivity across countries. As with other advanced digital technologies, controlling for the 

presence of complementary assets again reveals that the use of IoT is not consistently associated with 

higher productivity.  

The relationship between technology use and productivity varies across countries. A statistically significant 

productivity premium is observed in Denmark, France, Italy and Korea. This pattern underscores the role 

of complementary assets, which in some cases appear more strongly associated with productivity than the 

technology itself. 

In line with previous results, the considered proxies for human and technological capital are generally 

positively and significantly associated with productivity levels, with some notable exceptions, as discussed 

above. 
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Figure 4.15. Estimation of extended productivity regressions including complementary factors – 
IoT 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the extended productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Canada and Korea. Although not reported, the model includes controls for firm size and age class, as 

well as sector and year fixed effects, where available. For further details, see Box 4.3. See Table A C.18 for the complete list of coefficients. 

Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

Figure 4.16 presents the regression results for the impact of the use of robots and related complementary 

assets on firm productivity across countries. Accounting for the role of complementary assets again 

reduces the magnitude of the productivity advantages associated with using robots. 

However, despite this reduction, premia remain statistically significant in six of the eight countries where 

they were initially observed (see Figure 4.12). For Belgium, Japan, and Korea the previously identified 

premium is no longer present. 
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Figure 4.16. Estimation of productivity regressions including complementary factors – Robotics 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the extended productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Korea. Although not reported, the model includes controls for firm size and age class, as well as sector 

and year fixed effects, where available. For further details, see Box 4.3. See Table A C.19 for the complete list of coefficients. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

Figure 4.17 presents the regression results for the coefficients of 3D printing use and complementary 

assets, highlighting their association with firm-level productivity across countries. The results indicate that, 

after controlling for proxies for firms’ human and technological capital, a positive and statistically significant 

association between the use of 3D printing and productivity is now observed only in Japan – down from 

Japan and Italy in the previous analysis (see Figure 4.12). Moreover, the magnitude of the productivity 

advantages for 3D printing users in Japan declined considerably, becoming only weakly significant. By 

contrast, the adoption of 3D printing is now even associated with a small productivity penalty in Canada, 

Switzerland and Korea. The relationship between these proxies and productivity is consistently positive 

across countries. 

Overall, these findings suggest that the use of 3D printing does not yield consistent productivity gains. 

However, they highlight the importance of complementary assets, which consistently show a strong and 

positive association with productivity advantages.  
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Figure 4.17. Estimation of productivity regressions including complementary factors – 3D printing 

 

Note: This figure presents the sign and statistical significance of the coefficients on technology use indicators in the extended productivity 

regressions, estimated separately for each country and technology. The dependent variable is the logarithm of firm-level productivity, measured 

as turnover over employment. The key explanatory variable is a binary indicator for whether a firm uses the relevant advanced digital technology. 

All regressions are weighted, except for Canada and Korea. Although not reported, the model includes controls for firm size and age classes, 

as well as sector and year fixed effects, where available. For further details, see Box 4.3. See Table A C.20 for the complete list of coefficients. 

Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

The findings discussed in this stylised fact highlight the crucial role of human and technological capital, not 

only as key assets complementary to adoption but also as important for firms’ productivity advantages. 

These complementary assets are indeed critical to driving firm-level productivity, corroborating the 

importance of accounting for these factors to mitigate selection bias. 

Overall, the results on productivity premia associated with advanced digital technologies reveal a mixed 

pattern. For AI, IoT and 3D printing, the advantages, in many cases, disappear once accounting for the 

role of human and technological capital more broadly, whereas for big data analysis and robotics, the 

premia tend to remain significant, albeit notably reduced, in multiple countries. 

Among the analysed complementary assets, firms’ technological capital - in particular, firms’ digital 

technology intensity - emerges as an influential factor, consistently associated with higher productivity 

levels across most countries.16 In most cases, it also accounts for a substantial share of the observed 

decline in the productivity advantages of adopters of advanced digital technologies, underscoring the 

importance of firms' pre-existing digital capabilities in boosting productivity.  
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Box 4.5. Management education and qualifications: evidence from the United Kingdom 

While the MES 2023 survey for the United Kingdom lacks information on ICT specialists and training, it 

provides data on managerial human capital. Specifically, it captures the proportion of managers with a 

recognised management qualification and the proportion with a university degree or equivalent. Both 

variables are collected in brackets (e.g. none, fewer than 20%, 20-49%, etc.) and are used as 

categorical variables in the analysis. This box provides insights into the role of these management skills 

in the adoption of AI and robotics, as well as their influence on productivity. The adoption and 

productivity regressions use the econometric strategies outlined in Box 4.1 and Box 4.3, respectively. 

Adoption 

The results suggest that managers' formal qualifications are not associated with the adoption of either 

technology. However, managers' university-level education does appear to play a role. For AI, a weak 

positive association is found: firms where over 80% of managers hold a degree are four percentage 

points more likely to adopt AI, though this result is only statistically significant at the 10% level. For 

robotics, the association is stronger and more robust. Firms with 20-49% or more of their managers 

holding a university degree are around four percentage points more likely to adopt robotics, with this 

link being consistent across all higher education brackets. 

Productivity 

The baseline results, shown in Figure 4.13, indicate no productivity premium for AI adoption, while 

robotics users are, on average, 21% more productive than non-users in the same sector and size class. 

Including the variables for managers' qualifications and education does not substantially alter these 

findings. The productivity premium for robotics users remains statistically significant at 18%, while the 

lack of a premium for AI adoption also persists. Furthermore, management skills themselves are 

strongly correlated with firm productivity. Firms where over 80% of managers hold a recognised 

management qualification are 50% more productive than those where none of the managers hold such 

a qualification. A significant, positive association is also found for managers' university education, with 

a productivity premium of up to 31% for firms in the highest bracket. 

This suggests that, while a highly skilled management team may increase the likelihood of adopting 

certain technologies like robotics and is associated with higher productivity, it does not appear to be the 

key factor in explaining productivity gains after adoption in the UK context. 
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This paper provides a comprehensive analysis of advanced digital technology diffusion in the age of AI, 

leveraging official, representative microdata across 15 OECD Member countries. The analysis in this paper 

has identified seven stylised facts regarding the key characteristics of the adopters of AI, big data analysis, 

IoT, robotics and 3D printing, the role of policy-relevant enablers of technology diffusion, and the links 

between the use of advanced digital technologies and productivity. 

The analysis reveals some key insights into the patterns and determinants of advanced technology 

adoption: advanced technologies tend to be adopted together and often build on foundational enablers 

such as cloud computing, CRM and ERP systems, and fast broadband. This highlights both technological 

and organisational complementarities, a likely reason for the fact that technology diffusion varies 

considerably by sector and technology, with AI and big data analysis most prevalent in the ICT sector, 

robotics and 3D printing in manufacturing, and IoT comparatively more versatile. Adoption also rises with 

firm size, even after accounting for sectoral composition and firm age, which suggests meaningful scale 

advantages for firms integrating new technologies into processes. In line with previous findings, additional 

complementarities in the form of human and technological capital are also highly relevant for adoption as 

they are consistently associated with higher adoption. Further evidence from LEED on human capital 

indicates that education and technical occupations are important, as higher shares of graduates and 

technology-related roles tend to be linked to greater uptake of advanced technologies. 

Building on the analysis of diffusion, this paper finds that adopters of advanced technologies are generally 

more productive than non-adopters, with the notable exception of 3D printing. As with the determinants of 

adoption, much of the productivity advantage is associated with human and technological capital. When 

these factors are taken into account, positive associations with firm productivity persist most clearly for big 

data analysis and, to a lesser extent, robotics, while, notably, AI shows a limited productivity premium over 

the period studied. 

Because adoption depends on complementarities, effective strategies should combine investments in 

digital infrastructure such as fast broadband, foundational systems such as cloud and ERP or CRM, and 

skills development for both ICT specialists and non-ICT workers. Policies should take a comprehensive 

approach, taking technological complementarities and the potential of AI as a general-purpose technology 

into account. Moreover, policies should be sector-sensitive and address scale barriers faced by SMEs, 

while recognising the different diffusion drivers and economic impacts across technologies. Strengthening 

human capital and technological capital simultaneously, while co-operating internationally to establish an 

interoperable governance and policy environment for trustworthy AI, is central to accelerating responsible 

diffusion and realising productivity gains (see also OECD (2024[17]) and Lorenz, Perset and Berryhill 

(2023[94]) for further discussion).  

While the current analysis is comprehensive in several respects, future work could extend the analytical 

scope in several directions. Future work may further zoom in on selected advanced technologies, 

examining their use patterns and links with firm-level or worker-level outcomes in greater detail, possibly 

establishing more causal links, as new cross-country data become available. In particular, ongoing work 

aims to focus on the role of AI, which has been growing in relevance, including with recent advancements 

in generative AI. More recent survey data may be better able to track the use of generative AI in firms by 

capturing recent trends and more comprehensively covering generative AI uses. They may more generally 

5 Concluding remarks 
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enable more detailed explorations of the patterns of use of different types of AI systems, their different 

uses across business functions, or the different development sources of the AI systems used (e.g. in-

house development vs. acquisition from external providers). More recent data may also shed more light 

on the extent to which productivity returns to AI adoption are becoming more visible over time, even after 

accounting for the role of human and technological capital, or on their heterogeneity across different types 

of AI users. Finally, future work may further explore the links between AI use and other relevant economic 

and social outcomes based on micro-level data, including, for example, analysing the interrelations 

between different types of AI use and competition, focusing further on different actors in the AI value chain, 

exploring the role of AI innovation for innovation in other fields, and more broadly analysing the micro-

economic drivers of AI-fuelled growth.  
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Endnotes

 
1 For a further conceptual discussion about technology diffusion see Comin and Mestieri (2014[102]), who 

highlight that technology diffusion describes the accumulation of technology across adopters over time. In 

this paper, diffusion and adoption are often used interchangeably, with limited reference to their timing. 

2 See also Lane and Saint-Martin (2021[101]) for a review of the impact of AI on skill needs and the work 

environment. 

3 For a discussion of generative AI as a potential general-purpose technology, see Calvino, Haerle and Liu 

(2025[11]). 

4 For further information on the ICT survey used in France, see e.g. Insee (2023[103]). 

5 Eigenvector centrality (or eigen centrality henceforth) is a centrality measure commonly used in network 

analysis to assess the influence of a node in a connected network.  

6 Results for Germany are based on unweighted data and on a sectoral classification different from (and 

broader than) the one used for other countries. 

7 See Calvino et al. (2024[100]) for a related discussion in the context of a taxonomy of AI-intensive sectors. 

8 However, it may also be the case that due to its general-purpose nature, AI may showcase some 

embedding in manufacturing equipment that is not fully captured by the surveys due to limited awareness, 

despite reference in some questions to AI embedded in devices. For further discussion on the literature on 

embedded devices, see e.g. Zhang and Li (2023[98]) or Elahi et al. (2023[99]). Future work will also aim to 

further focus on the different purposes for which AI is used. 

9 Specifically, techies fall under ISCO-08 codes 133, 214, 215, 251, 252, 311, 313, 315, 351, and 352. 

Within this group, codes 133, 251, 252, 351 and 352 identify ICT techies, while codes 214, 215, 311, 313 

and 315 denote non-ICT techies. 

10 Notably, the share of techies shows a statistically significant positive association with IoT in Portugal 

and 3D printing in Denmark when accounting for the firm’s overall digital technology intensity (not shown 

in figure). 

11 Unreported results for Denmark and Portugal suggest that different types of technical occupations (ICT 

techies vs non-ICT techies) may be relevant for the adoption of different advanced digital technologies. 
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12 Unreported descriptive statistics show that firms using advanced digital technologies tend to be more 

productive than their non-adopting counterparts. This pattern is particularly consistent for AI and big data 

analysis, where adopters exhibit higher productivity across most countries in the sample. 

13 Unreported analysis focusing on manufacturing and utilities, sectors that exhibit higher adoption rates 

of 3D printing, still suggests that – for most countries – adopters in this sector are not significantly more 

productive than other firms. 

14 Although noticeable productivity premia are observed for many advanced digital technologies, relevant 

differences in magnitude are observed across countries. Such differences could be driven by several 

factors, including differences in sectoral composition within broad sectors, technological maturity and 

diffusion levels. Countries with more advanced digital ecosystems and stronger AI integration within key 

industries may see greater productivity benefits. Additionally, differences in survey timing and AI definitions 

– such as the focus on machine learning in Japan – could partly explain the heterogeneity in estimated 

coefficients (see Annex B for further details). 

15 Germany was one of the countries for which a productivity premium was previously observed. However, 

data on the same set of complementary factors are not available. Unreported analysis suggests that once 

accounting for training, the presence of skilled employees, export status, financial constraints and 

innovation activity, the AI use coefficient is no longer statistically significant. See also Calvino and 

Fontanelli (2023[16]). 

16 Further unreported analysis for Israel, containing the share of other digital technologies adopted as a 

control, also shows a robust positive link between firm digitalisation and productivity. 
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Annex A. Additional information on data and 

methodology 

Balance sheets and LEED 

Balance sheet data for Belgium is available from the Central Balance Sheet Office. This data source, which 

has been available since 1985, provides comprehensive coverage over all corporations and includes 

details on firm characteristics such as value added and intermediate inputs, essential for productivity 

proxies. The unit of analysis for these financial data is the enterprise. Employment is measured in 

headcounts and FTE. 

Balance sheet data for Denmark is available from the FIRE dataset. This dataset provides detailed 

accounting information about the population of Danish firms and is available since 1992. It allows for the 

measurement of firm-level information such as revenue, value added, capital, material costs, employment, 

among others. Furthermore, LEED for the entire population of Danish workers are also available from the 

register-based Integrated Database for Labour Market Research (IDA). This dataset has been available 

since 1980 and contains rich worker-level information, such as formal education and a detailed description 

of workers’ occupations. 

For France, balance sheet data are provided by the annual structural statistics of companies (FARE), 

leveraging administrative tax data (see e.g. Insee & Ministère des Finances (DGFiP) (2021[95]) for further 

details). This dataset is available since 2008 and contains detailed information on the financial accounts 

of firms, which allows for the computation of additional proxies for productivity. FARE can be linked to the 

ICT survey. 

Balance sheet data for the Netherlands is also available from the Statistics on Finances of Non-Financial 

Enterprise Groups (SFO) and covers the period from 2001 onwards. These data contain information on 

capital stock, value added, sales, and intermediate inputs. Annual LEED, covering the period from 2016 to 

2022, include information on wages, hours worked, education level and type, gender and age, and can 

distinguish between part-time and full-time workers. 

Balance sheet data for Portugal is available from the Integrated Business Accounts System (SCIE – 

Sistema de Contas Integradas das Empresas). The SCIE contains firm-level administrative financial data, 

including balance sheet and other account data. These are collected every year for the population of firms 

in the private sector, except for the financial sector, from 2006 to 2022, covering around 400 000 firms per 

year. LEED is available from the Personnel Records (QP – Quadros de Pessoal). The QP is a matched 

employer-employee database collected by the Portuguese Ministry of Labour, Solidarity and Social 

Security. It provides information on workers in all Portuguese firms, except for the public administration, 

regional and local, as well as public institutions; and employers or workers of domestic service. The data 

include information on workers’ formal education, age, gender, occupation, monthly wage, hours of work 

and the type of labour contract, from 1985 to 2022, with information about around 3 million workers per 

year. 
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Description of the national ICT surveys 

ICT surveys following Eurostat guidelines 

For many European countries, the relevant data sources consist in national ICT surveys, which follow the 

guidelines provided by Eurostat through the Community Survey on ICT usage and e-commerce in 

enterprises and are gathered by national statistical offices annually. The surveys aim to collect and 

disseminate harmonised and comparable information on the use of ICT and e-commerce in enterprises at 

the European level. The data for these countries are thus generally based on common units of analysis 

and variable definitions, and they tend to overlap in terms of sectoral and size coverage. A main source of 

divergence between surveys may arise from the existence of optional questions that may be carried out 

only in some country-years. The countries included in the analysis whose data follow the Eurostat 

guidelines are Belgium, Denmark, Estonia, France, Ireland, Italy, the Netherlands and Portugal. 

Switzerland largely follows Eurostat guidelines in the implementation of its surveys. Survey weights are 

available for all countries with the exception of Ireland. 

The Eurostat Community Survey on ICT usage and e-commerce in enterprises has been covering 

advanced digital technologies since 2014, with the latest survey implemented for 2024. Variables covered 

in all waves typically include the sector classification, the number of employees, turnover and the 

availability of fast broadband internet. 

The survey uses the enterprise as the unit of analysis. The survey population generally comprises 

enterprises with 10 or more persons employed, with smaller firms (micro-enterprises) included on an 

optional basis. The sampling is rotating, except for enterprises with employment above a country-specific 

threshold, typically large firms, in which case all units are included. The survey includes probability weights 

for all countries. 

Other firm-level surveys  

The data for Canada are based on the 2023 Survey of Digital Technology and Internet Use (SDTIU), which 

is designed to measure the impact of digital technologies on the operations of Canadian enterprises. The 

data from this survey are used by government departments to develop policies and programmes that help 

improve Canada's innovation system and strengthen the overall economy. The SDTIU is sponsored by 

Innovation, Science and Economic Development Canada (ISED). Although survey weights are available, 

a significant share of firms that adopt advanced digital technologies lack information on turnover, 

particularly firms that adopt advanced digital technologies in certain sectors. The productivity regressions 

for Canada shown in this paper are therefore unweighted, and this should be taken into account when 

interpreting the results, e.g. by considering that large firms are more prevalent in unweighted samples.  

The firm-level data source for Germany is the Mannheim Innovation Panel (MIP), which is gathered by the 

Leibniz Centre for European Economic Research (ZEW) as part of the Community Innovation Survey. The 

ZEW has been collecting data on innovation activities of the German enterprise sector since 1993 on an 

annual basis through a representative survey. The survey is based on a stratified random sample of firms 

with 5 or more employees in the manufacturing sector and business services, however, as weights are not 

included in the version upon which this analysis is based, the reported results for Germany are unweighted, 

and this should be taken into account when interpreting the results (see also above). 

The data for Israel are based on the Survey on ICT Uses and Cyber Defence in Businesses, which 

examines firms’ use of advanced digital technologies in 2020. This survey, conducted from July 2020 to 

March 2021, estimates business activity in 2020. The survey includes probability weights. 

The data for Japan are collected by the Japanese National Innovation Survey (J-NIS) 2020 and 2022. 

These surveys provide information on the innovation activities of Japanese firms, focusing on technology 
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use during the three-year periods from 2017 to 2019 and from 2019 to 2021, respectively. The data 

collection is biannual, and the surveys include probability weights. 

The data for Korea are part of the Survey for Business Activities from Statistics Korea (KOSTAT). This 

survey asks establishments about their use of various digital technologies, including AI, big data analysis, 

cloud computing services, IoT, robotics and 3D printing. The survey covers all Korean firms with at least 

50 full-time employees and a capital stock of at least KRW 300 million, regardless of their sector of activity. 

For firms with fewer than 50 employees, the sample includes those in wholesale and retail trade and other 

service industries with a turnover exceeding KRW 1 billion. 

The data for Switzerland are sourced from the KOF Enterprise Panel,  based on two waves of the Swiss 

innovation survey and one wave of the ICT survey (see also Beck, Plekhanov and Wörter (2020[96])). 

The unit of analysis is the enterprise, specifically targeting enterprises with at least 5 full-time equivalents 

(FTEs). The surveys include probability weights. Questions referred to the previous year. 

The data for the United Kingdom are sourced from the 2023 wave of the Management and Expectations 

Survey (MES), which is collected by the Office for National Statistics (ONS). The survey covers UK 

businesses with ten or more employees across the production and services sectors. Key sectors excluded 

from its scope are agriculture, forestry and fishing (SIC divisions 1-3), financial and insurance activities 

(SIC divisions 64-66), and public institutions in health and education. Probability weights are included in 

the survey. 

Further description of the Digital Diffuse program 

Before running the statistical and regression analyses, the program performs a series of basic data 

cleaning steps, including deflation and purchasing power adjustment of monetary variables, and the 

computation of weights, if they are not specified as an input and a business register is available. A labour 

productivity proxy is then computed as the ratio between turnover and employment, usually taken directly 

from the ICT survey. Conditional on data availability, further productivity proxies are also computed from 

balance sheet data. 

The main set of summary statistics includes the shares of firms using each technology based on several 

sectoral aggregations, size and age classes, number of digital technologies used by firms and productivity 

quantiles. 

Different sectoral aggregations (based on the ISIC Rev. 4 classification) are computed by the program, 

notably including at 2-digit, SNA A7 and SNA A38 levels. 

Size and age are reported in terms of classes. The size class variable encompasses five categories (fewer 

than 10 persons engaged, between 10 and 19 persons engaged, between 20 and 49 persons engaged, 

between 50 and 249 persons engaged, and 250 or more persons engaged, plus a category for firms with 

missing information), whereas four classes are reported for firm age (less than 6 years old, between 6 and 

10 years old, 11 years old or more, and a category for firms with missing information on age). Information 

on firms with fewer than 10 persons engaged is generally excluded from the analysis since it is not covered 

by many surveys, although used for robustness checks when available (see below). As a proxy for firm 

digital technology intensity, the code builds a variable counting the overall number of technologies used at 

the firm-level, conditional on data availability. The technology under scrutiny is excluded and the number 

is normalised when the number of technologies is used as an explanatory variable in regression analysis 

(see Box 4.1 for further details). 

Firms are divided into productivity classes based on the quantiles of the productivity distribution, which are 

computed at the industry SNA A38 level in order to take into account sector level differences in productivity. 
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The analysis distinguishes six productivity classes: top 10%, between 90% and 60%, between 60% and 

40%, between 40% and 10%, and bottom 10% of the productivity distribution. 

The program also computes correlation tables year by year, average employment, turnover, productivity, 

and age based on several aggregations (e.g. use/non-use within sectors), generates tables reporting co-

occurrences of pairs of technologies, and generates overall counts of non-missing observations at different 

levels of aggregation. 

Beyond summary statistics, the Digital Diffuse program estimates two main series of regressions: adoption 

and productivity regressions. 

The adoption regressions employ the use of each advanced digital technology (where available) as 

dependent variables in regression models including size and age classes as explanatory variables and, 

when available, other complementary factors (firm digital technology intensity, digital infrastructure, ICT 

skills), as well as industry or geographic fixed effects. If LEED are available, the program re-estimates all 

models with each measure of skills as an additional explanatory variable. Separate regressions are 

estimated, including different sets of industry fixed effects at available levels of sectoral aggregation (see 

above). Geographical fixed effects are also included as robustness (where available). The regressions are 

mainly linear probability models. However, the program also computes probit regressions for robustness 

purposes. 

The productivity regressions include labour productivity as the dependent variable. Labour productivity is 

measured by turnover over employment and, where available, value added over employment. The 

adoption of advanced digital technologies are the main explanatory variables. Technology use variables 

are also interacted with size classes. These regressions also include a series of controls (size and age 

class, complementary factors – firm digital technology intensity, digital infrastructure, and ICT skills) and 

fixed effects (sectoral and geographic). As with the adoption regressions, where LEED are available, the 

program re-estimates all models with each measure of skills as an additional explanatory variable. 

Additional exploratory sets of productivity regressions are estimated by the program at the sectoral level. 

Robustness checks are also estimated excluding firms at the top 5% of the productivity distribution, lagging 

the explanatory variables and including as a regression the dependent variable in lagged form. 

Another set of productivity regressions leveraging MFP measures estimated using the methods proposed 

by Ackerberg et al. (2015[97]) and Wooldridge (2009[93]) are implemented conditional on data availability. 

As with the labour productivity regressions described above, the adoption of advanced digital technologies 

is used as the main set of explanatory variables. Controls such as size and age class, complementary 

factors – firm digital technology intensity, digital infrastructure, and ICT skills, and sectoral fixed effects are 

included. As with the previous set of regressions, where LEED are available, the program re-estimates all 

models with each measure of skills as an additional explanatory variable. 
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Annex B. Technology definitions and survey 

coverage 

This section provides detailed information on the coverage of the relevant technologies for this paper. 

Additionally, definitions are provided for the latest available year in which the technology was surveyed. 

Definitions for surveys following Eurostat guidelines 

AI 

AI is defined as “systems that use technologies such as text mining, computer vision, speech recognition, 

natural language generation, machine learning, deep learning to gather and/or use data to predict, 

recommend or decide, with varying levels of autonomy, the best action to achieve specific goals. Artificial 

intelligence systems can be purely software based, e.g. chatbots and business virtual assistants based on 

natural language processing; face recognition systems based on computer vision or speech recognition 

systems; machine translation software; data analysis based on machine learning; or embedded in devices, 

e.g. autonomous robots for warehouse automation or production assembly works; autonomous drones for 

production surveillance or parcel handling.” 

AI was surveyed in 2021, 2023 and 2024. The questions referred to the reference year and included 

information on the type of AI used, such as text mining, and the purpose of the technology, such as use of 

AI for marketing or sales. Optional questions include information on how AI was acquired and the reasons 

for not adopting it. 

Big data analysis 

Big data analysis refers to the use of technologies, techniques or software tools such as data or text mining, 

machine learning, etc. for analysing big data extracted from the enterprise's own data sources or other 

data sources. 

Big data analysis was surveyed in 2016, 2018 and 2020, although all questions were optional for countries 

to implement in 2016 and 2018. Questions referred to the previous year. The information collected is 

related to data sources, methods and the use of an external provider to perform the analysis. 

Cloud computing services 

Cloud computing services refer to “ICT services that are used over the internet to access software, 

computing power, storage capacity, etc., where the services have all of the following characteristics: are 

delivered from servers of service providers; can be easily scaled up or down (e.g. number of users or 

change of storage capacity); can be used on-demand by the user, at least after the initial set up (without 

human interaction with the service provider); are paid for, either per user, by capacity used, or they are 

pre-paid. Cloud computing may include connections via Virtual Private Networks (VPN).” 
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The use of cloud computing services was surveyed in 2014, 2015, 2016, 2017, 2018, 2020, 2021 and 

2023, although all questions were optional for countries to implement in 2015 and 2017. Questions referred 

to the reference year and also asked about the types of services bought. 

IoT 

IoT refers to interconnected devices or systems, often called “smart” devices or “smart” systems. They 

collect and exchange data and can be monitored or remotely controlled via the internet, through software 

on any kind of computers, smartphones or through interfaces like wall-mounted controls. 

IoT was surveyed in 2020 and 2021. However, in 2020, implementation was optional for all questions. 

Information referred to the reference year and included information on the type of devices used and 

purpose of the technology. 

CRM 

CRM is defined as “software for managing information about customers (e.g. relations or transactions)” 

that “facilitates communication with the customer and helps track customer interests, purchasing habits.” 

CRM was surveyed in 2014, 2015, 2017, 2019, 2021 and 2023. The information referred to the reference 

year and included information on the purpose of the technology. 

E-commerce 

E-commerce refers to the sales of goods or services where “the order is placed via web sites, apps or EDI-

type messages (EDI: Electronic Data interchange) by methods specifically designed for the purpose of 

receiving orders. The payment may be done online or offline. E-commerce does not include orders written 

in e-mail.” 

E-commerce is the only technology to have been surveyed in all years. Information collected referred to 

the previous year. Enterprises were inquired regarding the importance of e-commerce sales in total sales 

and percentage breakdown of web sales value by type of customer relationship, such as B2C (business 

to customer), B2B (business to business) or B2G (business to public authorities). 

ERP 

ERP is defined as “software used to manage resources by sharing information among different functional 

areas (e.g. accounting, planning, production, marketing). ERP software can be off-the-shelf software, 

customised to the needs of the enterprise or self-created software.” 

ERP was surveyed in 2014, 2015, 2017, 2019, 2021 and 2023. Information on usage referred to the 

reference year without sub-questions. 

Robotics 

Robotics refers to machines programmed to move and perform specific tasks automatically. There are two 

main types of robots: 

1. Industrial Robots: These are automatically controlled, reprogrammable, multipurpose 

manipulators, programmable in three or more axes, which may be either fixed in place or mobile 

for use. Most industrial robots are based on a robotic arm and a series of links and joints with an 

end effector that carries out the task. 

2. Service Robots: These have a degree of autonomy and can operate in complex and dynamic 

environments that may require interaction with persons, objects or other devices. They use wheels 
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or legs to achieve mobility and are often used in inspection, transport or maintenance tasks. 

Examples include autonomous guided vehicles, inspection and maintenance robots, and cleaning 

robots. 

Robotics was surveyed in 2018, 2020 and 2022, although all questions were optional to be implemented 

by countries in 2018. Information referred to the reference year and inquired enterprises on the type of 

robotics used, the purpose and motives of the usage of robotics. 

3D printing 

3D printing or additive layer manufacturing refers to the use of special printers either by the enterprise itself 

or the use of 3D printing services provided by other enterprises for the creation of three-dimensional 

physical objects using digital technology. 

3D printing was surveyed in 2018 and 2020. The questions referred to the previous year and included 

information on the ownership of the printers and the purpose of the technology. 

Country-specific information for other surveys 

Canada 

AI refers to systems that display intelligent behaviour by gathering or using data to predict, recommend or 

decide, with varying levels of autonomy, the best action to achieve specific goals. AI-based systems can 

be purely software based or embedded in a device. 

IoT: the interconnection via the Internet of computing devices embedded in everyday objects, enabling 

them to send and receive data. Examples include smart televisions, Wi-Fi enabled security cameras, 

automatic car tracking adapter, Canary smart security system, Cisco's connective factory, Phillips hue 

smart bulbs and August smart locks. 

Germany 

AI: a method of information processing that allows computers to autonomously solve problems. 

Big data analysis: systematic analysis of large amounts of data. 

Israel 

AI is a multidisciplinary field devoted to making machines intelligent; intelligence being the quality that 

enables an entity to function appropriately in its environment. Today, most applications in the field are 

based on the ability of machines and systems to interpret data, to learn and derive insights from said data, 

and to use these insights to perform tasks and achieve goals all in an adaptive process. 

Big data analysis refers to the use of techniques, technologies and software tools for analysing big data 

extracted from own enterprise's data sources or other data sources. Big data are generated from activities 

that are carried out electronically and from machine-to-machine communications (e.g. data produced from 

social media activities, from production processes, etc.). Big data typically have characteristics such as: 

(1) Significant volume referring to vast amounts of data generated over time. (2) Variety referring to the 

different formats of complex data, either structured or unstructured (e.g. text, video, images, voice, docs, 

sensor data, activity logs, click streams, coordinates, etc.). (3) Velocity referring to the high speed at which 

data are generated, becomes available and changes over time. (4) Reliability referring to the quality of the 

data and the effect it has on the information drawn from them. 
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IoT refers to the internet interconnection of computing devices embedded in machines, devices and 

everyday objects, enabling them to send and receive data and/or affect their operation, with or without 

human intervention. 

Robotics: An industrial robot is an automatically controlled, reprogrammable, multipurpose manipulator 

programmable in three or more axes, which may be either fixed in place or mobile for use in industrial 

automation applications. A service robot is a machine that has a degree of autonomy and is able to operate 

in a complex and dynamic environment that may require interaction with persons, objects or other devices, 

excluding its use in industrial automation applications. Does not include software robots (internet "bots".) 

Japan 

AI: Machine learning is a technology or method that enables a computer to acquire knowledge from 

experience (data) and automatically perform tasks such as prediction, classification, clustering, and 

grouping. Machine learning can be broadly divided into “supervised learning” in which correct answer data 

(a collection of pairs of inputs and outputs (correct answers)) is given, and “unsupervised learning” in which 

case data (a mere collection of input cases) is given. Machine learning also includes such as 

“reinforcement learning,” which gives clues for learning with rewards (scores) instead of correct answer 

data. Machine learning can be considered as a field of AI. 

Big data analysis refers to the use of techniques, technologies, and software tools for analysing big data 

extracted from internal and external data sources. "Big data" refers to the vast amounts of data generated 

in various types and formats that are collected through networks such as the Internet. 

Korea 

AI is a technology that mimics humans by learning, reasoning, perceiving, and understanding the natural 

language based on the computer programs. 

Big data analysis: large volumes of digital data on a massive scale may include numerical, text and image 

data. 

United Kingdom 

AI is technology where computer programs or machines can learn from data and perform tasks usually 

done by humans. AI is currently used in a variety of ways, including: online product recommendations, 

facial recognition, self-driving vehicles, medical diagnostic tools, chatbots that interact in a conversational 

way and can answer complex questions.  

Robotic equipment (or robots) is automatically controlled, reprogrammable, and multipurpose machines 

used in automated operations in industrial and service environments. Robots may be mobile, incorporated 

into stand-alone stations, or integrated into a production line. A robot may be part of a manufacturing cell 

or incorporated into another piece of equipment. 

Industrial robots may perform operations such as: palletising, pick and place, machine tending, material 

handling, dispensing, welding, packing and repacking, and cleanroom. 

Service robots are commonly used in businesses for such operations as cleaning, delivery, construction, 

inspection, and medical services such as dispensing or surgery. 
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Table A B.1. List of contributors to the Digital Diffuse project 

Country Contributor(s) Institution(s) 

BELGIUM Michel Dumont, Chantal Kegels  Federal Planning Bureau 

CANADA Howard Bilodeau, Aisha Khalid, Mark Uhrbach  Statistics Canada (STATCAN) 

DENMARK Frederic Warzynski FIND, Aarhus University 

ESTONIA Christina Palmou; Jaan Masso  Organisation for Economic Co-operation and Development 

(OECD); University of Tartu 

FRANCE Hélder Costa OECD 

GERMANY Luca Fontanelli University of Brescia 

IRELAND Iulia Siedschlag, Juan Duran Vanegas Economic and Social Research Institute (ESRI) 

ISRAEL Gilad Be’ery; Matan Goldman, Eliav Orenbuch, Daniel 

Roash 

Ministry of Economy and Industry; Central Bureau of Statistics 

(ICBS) 

ITALY Stefano Costa, Giulio Perani Italian National Statistical Office (ISTAT) 

JAPAN Yuya Ikeda National Institute of Science and Technology (NISTEP) 

KOREA Jaehan Cho, Hanhin Kim Korea Institute for Industrial Economics and Trade (KIET) 

NETHERLANDS Michael Polder, Christiaan Visser, Stef Weijers Statistics Netherlands (CBS) 

PORTUGAL Hélder Costa OECD 

SWITZERLAND Mathias Beck, Tatiana Bielakova, Johannes Dahlke, 

Martin Wörter, Dmitry Plekhanov 
Swiss Federal Institute of Technology (ETH) 

UNITED 

KINGDOM 
Oliver Schnabel, Rabiya Nasir; Christina Palmou Office for National Statistics (ONS); OECD 

  

Table A B.2. Technology coverage by country 

Country Technology Years covered 

Belgium 3D printing 2019 

AI 2020, 2022 

Big data analysis 2019 

IoT 2019-2020 

Robotics 2019 

Canada 3D printing 2023 

AI 2023 

IoT 2023 

Denmark 3D printing  2017-2019 

AI 2016-2018, 2020 

Big data analysis 2017-2018 

IoT 2020 

Robotics 2017-2019 

Estonia AI 2022-2023 

France 3D printing 2019 

AI 2020, 2022 

Big data analysis 2019 

IoT 2019-2020 

Robotics 2019 

Germany AI 2018, 2020 

Big data analysis 2018 

Ireland AI 2023 

Israel 3D printing 2020 

AI 2020 

Big data analysis 2020 

IoT 2020 

Robotics 2020 

Italy 3D printing 2019 

AI 2020, 2022 



70  DIGITAL TECHNOLOGY DIFFUSION IN THE AGE OF AI 

OECD SCIENCE, TECHNOLOGY AND INDUSTRY WORKING PAPERS 
      

Big data analysis 2019 

IoT 2019-2020 

Robotics 2019 

Japan 3D printing 2019, 2021 

AI 2019, 2021 

Big data analysis 2019, 2021 

IoT 2019, 2021 

Robotics 2021 

Korea 3D printing 2017-2019 

AI 2017-2019 

Big data analysis 2017-2019 

IoT 2017-2019 

Robotics 2017-2019 

Netherlands 3D printing 2017, 2019 

AI 2019-2021 

Big data analysis 2015-2017, 2019 

IoT 2019-2020 

Robotics 2017, 2019, 2021 

Portugal 3D printing 2017, 2019 

AI 2020, 2022 

Big data analysis 2015, 2017, 2019 

IoT 2019, 2020 

Robotics 2017, 2019 

Switzerland 3D printing 2018-2019 

AI 2018-2020 

Big data analysis 2018, 2020 

IoT 2019 

Robotics 2019-2020 

United Kingdom AI 2023 

Robotics 2023 
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Annex C. Regression tables and supplementary 

figures 

Regression tables 
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Table A C.1. Baseline adoption regressions – AI 

Variables BEL CAN CHE DEU DNK EST FRA GBR IRL ISR ITA JPN KOR NLD PRT 

Age: 6-10 0.0093 -0.0025 -0.0212 
 

-0.0248**  0.0240** 
  

0.0119 
 

0.0162 -0.0166*** 0.0209*** -0.0055 

  (0.0251) (0.0250) (0.0551) 
 

(0.0106)  (0.0097) 
  

(0.0245) 
 

(0.0183) (0.0054) (0.0070) (0.0251) 

Age: >10 0.0179 0.0020 -0.0227 
 

-0.0412***  -0.0033 
  

-0.0116 
 

0.0226 -0.0175*** 0.0012 -0.0041 

  (0.0200) (0.0205) (0.0479) 
 

(0.0089)  (0.0071) 
  

(0.0160) 
 

(0.0155) (0.0049) (0.0056) (0.0228) 

Size: 20-49 0.0182 0.0159 0.0365** 0.0234 0.0298*** 0.0001 0.0142*** 0.0105 0.0374** 0.0218* 0.0152** 0.0106 0.0015 0.0672*** 0.0318*** 

  (0.0124) (0.0209) (0.0168) (0.0094) (0.0063) (0.0099) (0.0052) (0.0165) (0.0147) (0.0128) (0.0066) (0.0073) (0.0038) (0.0045) (0.0109) 

Size: 50-249 0.0981*** 0.0243 0.0448** 0.0518*** 0.0737*** 0.0474 0.0684*** 0.0192 0.0855*** 0.0147 0.0351*** 0.0326*** 0.0128*** 0.1590*** 0.0926*** 

  (0.0137) (0.0174) (0.0180) (0.0092) (0.0064) (0.0104) (0.0072) (0.0160) (0.0204) (0.0133) (0.0063) (0.0064) (0.0034) (0.0055) (0.0143) 

Size: 250+ 0.3748*** 0.1753*** 0.1820*** 0.1350*** 0.2339*** 0.2125*** 0.2241*** 0.0636*** 0.3285*** 0.0641*** 0.1897*** 0.1720*** 0.0496*** 0.3508*** 0.2566*** 

  (0.0176) (0.0219) (0.0236) (0.0153) (0.0108) (0.0247) (0.0097) (0.0223) (0.0317) (0.0153) (0.0082) (0.0084) (0.0041) (0.0079) (0.0168) 

N 5375 3895 4248 6159 15804 5808 17757 11762 2017 1987 32497 20922 38629 30295 8465 

R2 0.140 0.077 0.121 0.068 0.149 0.137 0.096 0.061 0.185 0.244 0.038 0.069 0.065 0.115 0.092 

Note: This table reports the main estimation results of the baseline adoption regression of AI using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression 

includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany, Ireland and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.2. Baseline adoption regressions – Big data analysis 

Variables BEL CHE DEU DNK FRA ISR ITA JPN KOR NLD PRT 

Age class: 6-10 0.1181** 0.2100** 
 

-0.0347* 0.0513*** 0.0064 
 

0.0324 -0.0250*** -0.0140 0.0120 

  (0.0520) (0.0966) 
 

(0.0196) (0.0173) (0.0306) 
 

(0.0324) (0.0067) (0.0151) (0.0327) 

Age class: >10 0.0482 0.0946* 
 

-0.0599*** 0.0049 -0.0338 
 

-0.0031 -0.0259*** -0.0530*** -0.0360 

  (0.0403) (0.0535) 
 

(0.0160) (0.0138) (0.0215) 
 

(0.0198) (0.0060) (0.0126) (0.0285) 

Size class: 20-49 0.0566** 0.0236 0.0684*** 0.0480*** 0.0476*** 0.0294* 0.0585*** 0.0142 0.0186*** 0.0526*** 0.0338** 

  (0.0273) (0.0316) (0.0243) (0.0115) (0.0088) (0.0156) (0.0135) (0.0088) (0.0041) (0.0090) (0.0144) 

Size class: 50-249 0.1897*** 0.1520*** 0.2039*** 0.1292*** 0.1202*** 0.0424** 0.1091*** 0.0387*** 0.0362*** 0.1385*** 0.0693*** 

  (0.0274) (0.0331) (0.0262) (0.0117) (0.0107) (0.0173) (0.0155) (0.0092) (0.0034) (0.0084) (0.0135) 

Size class: 250+ 0.4166*** 0.3060*** 0.4149*** 0.3800*** 0.2341*** 0.1410*** 0.2090*** 0.1532*** 0.0946*** 0.3273*** 0.1798*** 

  (0.0314) (0.0436) (0.0397) (0.0179) (0.0120) (0.0201) (0.0114) (0.0092) (0.0045) (0.0099) (0.0152) 
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N 2179 2612 1380 7978 16459 1987 20034 20886 38629 33072 9675 

R2 0.102 0.117 0.171 0.109 0.067 0.198 0.066 0.048 0.082 0.065 0.043 

Note: This table reports the main estimation results of the baseline adoption regression of big data analysis using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. 

Each regression includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.3. Baseline adoption regressions – Internet of things 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

Age class: 6-10 0.0530 -0.0765 0.0256 -0.0392 0.0203 0.0665*** 
 

0.0127 -0.0146*** 0.0026 0.0280 

  (0.0381) (0.0640) (0.1020) (0.0307) (0.0181) (0.0238) 
 

(0.0505) (0.0054) (0.0111) (0.0620) 

Age class: >10 0.0250 -0.0103 0.0090 -0.0155 -0.0093 0.0526*** 
 

0.0369 -0.0087* 0.0137 0.0383 

  (0.0306) (0.0519) (0.0798) (0.0255) (0.0151) (0.0135) 
 

(0.0427) (0.0049) (0.0093) (0.0576) 

Size class: 20-49 0.0465** 0.0298 0.0505 0.0570*** 0.0364*** 0.0224 0.0802*** 0.0375** 0.0047 0.1034*** 0.0455** 

  (0.0197) (0.0374) (0.0334) (0.0185) (0.0086) (0.0175) (0.0138) (0.0164) (0.0042) (0.0078) (0.0196) 

Size class: 50-249 0.1198*** 0.0483 0.1050*** 0.1556*** 0.1150*** 0.0679*** 0.1509*** 0.0635*** 0.0184*** 0.1698*** 0.1353*** 

  (0.0190) (0.0319) (0.0359) (0.0182) (0.0103) (0.0253) (0.0126) (0.0143) (0.0039) (0.0080) (0.0204) 

Size class: 250+ 0.2570*** 0.2042*** 0.2100*** 0.3247*** 0.2267*** 0.1360*** 0.2829*** 0.2043*** 0.0540*** 0.2870*** 0.2340*** 

  (0.0214) (0.0327) (0.0491) (0.0268) (0.0120) (0.0234) (0.0118) (0.0149) (0.0046) (0.0104) (0.0255) 

N 4813 3895 1601 4027 15990 1987 35586 20922 38629 20457 6902 

R2 0.045 0.043 0.120 0.070 0.060 0.070 0.055 0.028 0.045 0.071 0.077 

Note: This table reports the main estimation results of the baseline adoption regression of internet of things using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. 

Each regression includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.4. Baseline adoption regressions – Robotics 

Variables BEL CHE DNK FRA GBR ISR ITA JPN KOR NLD PRT 

Age class: 6-10 0.0032 -0.0729 -0.0171 0.0298*** 
 

0.0229 
 

0.0288 -0.0028 0.0004 0.0351 

  (0.0124) (0.0491) (0.0111) (0.0099) 
 

(0.0199) 
 

(0.0343) (0.0033) (0.0021) (0.0264) 

Age class: >10 0.0000 -0.0328 -0.0099 0.0152** 
 

0.0007 
 

0.0433** -0.0036 0.0019 0.0084 
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  (0.0102) (0.0417) (0.0093) (0.0077) 
 

(0.0093) 
 

(0.0184) (0.0030) (0.0018) (0.0204) 

Size class: 20-49 -0.0046 0.0374** 0.0391*** 0.0225*** 0.0139 0.0044 0.0137** 0.0243* -0.0002 0.0104*** 0.0277** 

  (0.0064) (0.0174) (0.0077) (0.0057) (0.0089) (0.0105) (0.0066) (0.0127) (0.0013) (0.0016) (0.0128) 

Size class: 50-249 0.0209*** 0.0934*** 0.1084*** 0.0708*** 0.0449*** 0.0548*** 0.0395*** 0.0572*** 0.0017 0.0281*** 0.1078*** 

  (0.0074) (0.0173) (0.0080) (0.0068) (0.0104) (0.0160) (0.0071) (0.0127) (0.0014) (0.0018) (0.0140) 

Size class: 250+ 0.1068*** 0.3010*** 0.2602*** 0.2080*** 0.1434*** 0.1450*** 0.1216*** 0.1949*** 0.0209*** 0.0669*** 0.1661*** 

  (0.0115) (0.0313) (0.0126) (0.0092) (0.0168) (0.0208) (0.0074) (0.0127) (0.0021) (0.0031) (0.0139) 

N 4840 4266 11845 16459 12015 2019 20034 10495 38629 61708 6391 

R2 0.041 0.142 0.200 0.146 0.075 0.134 0.033 0.100 0.015 0.103 0.134 

Note: This table reports the main estimation results of the baseline adoption regression of robotics using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each 

regression includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.5. Baseline adoption regressions – 3D printing 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

Age class: 6-10 0.0424* -0.0166 0.0635* 0.0031 0.0028 0.0140 
 

0.0045 -0.0052 0.0152*** 0.0013  
(0.0224) (0.0135) (0.0382) (0.0084) (0.0063) (0.0179) 

 
(0.0087) (0.0033) (0.0058) (0.0288) 

Age class: >10 0.0143 -0.0114 0.0724*** -0.0017 -0.0003 0.0155 
 

0.0122* -0.0038 0.0104** -0.0063  
(0.0135) (0.0142) (0.0226) (0.0067) (0.0053) (0.0149) 

 
(0.0066) (0.0030) (0.0042) (0.0275) 

Size class: 20-49 0.0006 -0.0102 0.0174 0.0183*** 0.0160*** -0.0114 0.0088 0.0047 0.0002 0.0222*** 0.0000  
(0.0134) (0.0102) (0.0157) (0.0061) (0.0041) (0.0153) (0.0066) (0.0054) (0.0014) (0.0043) (0.0086) 

Size class: 50-249 0.0190 0.0221** 0.0448** 0.0493*** 0.0346*** -0.0105 0.0459*** 0.0292*** 0.0024* 0.0357*** 0.0224**  
(0.0139) (0.0107) (0.0174) (0.0066) (0.0051) (0.0150) (0.0082) (0.0053) (0.0014) (0.0043) (0.0102) 

Size class: 250+ 0.1555*** 0.0535*** 0.1880*** 0.1048*** 0.1212*** 0.0632*** 0.0933*** 0.1046*** 0.0206*** 0.0636*** 0.0459***  
(0.0203) (0.0132) (0.0397) (0.0102) (0.0074) (0.0243) (0.0083) (0.0060) (0.0020) (0.0064) (0.0093) 

N 2179 3895 2950 11845 16459 2019 20034 20911 38629 17838 6391 

R2 0.134 0.135 0.156 0.175 0.142 0.103 0.123 0.074 0.016 0.085 0.077 

Note: This table reports the main estimation results of the baseline adoption regression of 3D printing using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each 

regression includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 
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Table A C.6. Extended adoption regressions – AI 

Variables BEL CAN CHE DEU DNK EST FRA GBR ISR ITA NLD PRT 

Broad band 
 

-0.0119 
   

0.0370** 
  

0.0072 
 

-0.0043 
 

  
 

(0.0139) 
   

(0.0156) 
  

(0.0138) 
 

(0.0044) 
 

Exporter 
   

0.0401*** 
 

 
      

  
   

(0.0116) 
 

 
      

ICT Spec. 
 

0.0021 0.0472** 0.0557*** 0.1327*** 0.0940*** 
  

0.0547*** 
 

0.0496*** 
 

  
 

(0.0203) (0.0187) (0.0201) (0.0235) (0.0285) 
  

(0.0212) 
 

(0.0066) 
 

ICT Train. 
 

0.0127 
 

0.0331*** -0.0002 0.1070*** 
  

0.0453 
 

0.0575*** 
 

  
 

(0.0240) 
 

(0.0093) (0.0213) (0.0248) 
  

(0.0404) 
 

(0.0067) 
 

Tech intensity 0.6325*** 0.5497*** 0.1820*** 
 

0.9002*** 0.1322*** 0.5005*** 0.1713*** 
 

0.3097*** 0.7546*** 0.4223*** 

  (0.0393) (0.0676) (0.0384) 
 

(0.0634) (0.0431) (0.0295) (0.0246) 
 

(0.0228) (0.0197) (0.0480) 

N 5375 3895 3806 4129 4027 2743 17757 11762 1987 32497 30272 8465 

R2 0.207 0.199 0.139 0.083 0.266 0.199 0.146 0.083 0.260 0.065 0.236 0.129 

Note: This table reports the main estimation results of the extended adoption regression of AI using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression 

includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. Robust standard 

errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.7. Extended adoption regressions – Big data analysis 

Variables BEL CHE DEU DNK FRA ISR ITA NLD PRT 

Broad band 0.1069*** 
   

0.0247*** 0.0471** 
 

0.0460*** 0.0104 

  (0.0325) 
   

(0.0092) (0.0194) 
 

(0.0081) (0.0137) 

Exporter 
  

0.1030*** 
      

  
  

(0.0306) 
      

ICT Spec. 0.0408 0.1120*** 0.1319** 
 

0.0882*** 0.0663*** 
 

0.1119*** 0.0866*** 

  (0.0257) (0.0345) (0.0544) 
 

(0.0134) (0.0249) 
 

(0.0096) (0.0215) 

ICT Train. 0.0608** 
 

0.0851*** 
 

0.0485*** 0.0932* 
 

0.0926*** 0.0718*** 

  (0.0301) 
 

(0.0247) 
 

(0.0122) (0.0495) 
 

(0.0097) (0.0206) 

Tech intensity 1.0351*** 0.4320*** 
 

0.7194*** 0.6705*** 
 

0.4997*** 0.9242*** 0.8334*** 

  (0.1151) (0.0760) 
 

(0.0558) (0.0550) 
 

(0.0532) (0.0309) (0.0968) 

N 2179 2429 989 7978 16459 1987 20034 33072 9563 



76  DIGITAL TECHNOLOGY DIFFUSION IN THE AGE OF AI 

OECD SCIENCE, TECHNOLOGY AND INDUSTRY WORKING PAPERS 
      

R2 0.178 0.183 0.194 0.138 0.100 0.235 0.093 0.158 0.113 

Note: This table reports the main estimation results of the extended adoption regression of big data analysis using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. 

Each regression includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. 

Robust standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.8. Extended adoption regressions – Internet of things 

Variables BEL CAN CHE DNK FRA ISR ITA NLD PRT 

Broad band 0.1172*** 0.0467 
  

-0.0124 0.0114 
 

0.0202*** 0.0294 

  (0.0431) (0.0299) 
  

(0.0084) (0.0211) 
 

(0.0064) (0.0296) 

ICT Spec. 0.0515* 0.0846** 0.0782** 0.1152*** 0.0391*** 0.0559* 
 

0.0165* 0.0693 

  (0.0276) (0.0383) (0.0323) (0.0233) (0.0146) (0.0291) 
 

(0.0097) (0.0426) 

ICT Train. 0.0962*** 0.0126 
 

0.0368 0.0403** 0.0409 
 

0.0640*** 0.1375*** 

  (0.0328) (0.0391) 
 

(0.0262) (0.0161) (0.0476) 
 

(0.0099) (0.0402) 

Tech intensity 0.7723*** 0.8798*** 0.4010*** 0.5776*** 0.5972*** 
 

0.9543*** 0.5152*** 0.7736*** 

  (0.1273) (0.0933) (0.0786) (0.0658) (0.0575) 
 

(0.0486) (0.0266) (0.1545) 

N 2179 3895 1385 4027 7305 1987 35586 20457 3083 

R2 0.109 0.163 0.195 0.130 0.087 0.079 0.103 0.123 0.160 

Note: This table reports the main estimation results of the extended adoption regression of internet of things using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. 

Each regression includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. 

Robust standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.9. Extended adoption regressions – Robotics 

Variables BEL CHE DNK FRA GBR ISR ITA NLD PRT 

Broad band -0.0024 
  

-0.0051 
 

0.0239** 
 

0.0017 0.0072 

  (0.0073) 
  

(0.0058) 
 

(0.0107) 
 

(0.0019) (0.0124) 

ICT Spec. 0.0063 -0.0095 
 

0.0255*** 
 

0.0482** 
 

0.0109*** 0.0640*** 

  (0.0077) (0.0168) 
 

(0.0076) 
 

(0.0188) 
 

(0.0025) (0.0203) 

ICT Train. 0.0126 
  

0.0082 
 

0.0251 
 

0.0163*** 0.0292 

  (0.0118) 
  

(0.0074) 
 

(0.0299) 
 

(0.0028) (0.0191) 
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Tech intensity 0.1595*** 0.2210*** 0.2708*** 0.1811*** 0.0947*** 
 

0.1676*** 0.0847*** 0.3738*** 

  (0.0410) (0.0448) (0.0393) (0.0321) (0.0153) 
 

(0.0296) (0.0078) (0.0899) 

N 2179 3844 11845 16459 12015 2019 20034 53056 6262 

R2 0.074 0.161 0.205 0.151 0.089 0.147 0.042 0.119 0.167 

Note: This table reports the main estimation results of the extended adoption regression of robotics using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each 

regression includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. 

Robust standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.10. Extended adoption regressions – 3D printing 

Variables BEL CAN CHE DNK FRA ISR ITA NLD PRT 

Broad band 0.0099 -0.0051 
  

-0.0021 -0.0161 
 

0.0009 0.0279** 

  (0.0135) (0.0100) 
  

(0.0041) (0.0102) 
 

(0.0037) (0.0115) 

ICT Spec. 0.0255** 0.0116 0.0082 
 

0.0317*** 0.0620** 
 

0.0150** 0.0067 

  (0.0125) (0.0118) (0.0183) 
 

(0.0068) (0.0278) 
 

(0.0062) (0.0150) 

ICT Train. 0.0253 -0.0127 
  

0.0238*** 0.0009 
 

0.0203*** 0.0078 

  (0.0178) (0.0155) 
  

(0.0063) (0.0320) 
 

(0.0062) (0.0109) 

Tech intensity 0.1260** 0.1151*** 0.1890*** 0.3092*** 0.1871*** 
 

0.2108*** 0.1978*** 0.1681*** 

  (0.0517) (0.0330) (0.0435) (0.0302) (0.0256) 
 

(0.0323) (0.0191) (0.0527) 

N 2179 3895 2709 11845 16459 2019 20034 17838 6262 

R2 0.146 0.153 0.176 0.186 0.157 0.114 0.133 0.104 0.088 

Note: This table reports the main estimation results of the extended adoption regression of 3D printing using a linear probability model. Each regression includes 2-digit NACE rev. 2 sector dummies. Each 

regression includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. 

Robust standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.1 for further details on the econometric strategy. 

Table A C.11. Baseline productivity regressions – AI 

Variables BEL CAN CHE DEU DNK EST FRA GBR ISR ITA JPN KOR NLD PRT 

AI 0.3098*** 0.1819*** 0.0383 0.0785** 0.1152*** 0.1729*** 0.0768** 0.0662 0.0656 0.1588*** 0.1103 0.1760*** 0.1653*** 0.1966***  
(0.0560) (0.0658) (0.0421) (0.0331) (0.0306) (0.0653) (0.0336) (0.0925) (0.2190) (0.0335) (0.0766) (0.0309) (0.0222) (0.0560) 

Age class: 6-10 0.0357 0.3500*** 0.1790 
 

0.1081***  0.1583*** 
 

0.3380*** 
 

0.0911 -0.0235 0.1045** -0.0213 
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(0.1096) (0.0900) (0.1430) 

 
(0.0321)  (0.0352) 

 
(0.1210) 

 
(0.1494) (0.0295) (0.0497) (0.0962) 

Age class: >10 0.0634 0.4943*** -0.0032 
 

0.2070***  0.2651*** 
 

0.7140*** 
 

0.3488*** 0.0482* 0.0795* 0.1567**  
(0.0963) (0.0724) (0.0902) 

 
(0.0271)  (0.0302) 

 
(0.1030) 

 
(0.1276) (0.0256) (0.0476) (0.0788) 

Size class: 20-49 -0.0165 -0.0078 -0.0369 0.1280*** 0.0831*** 0.1402*** 0.1507*** 0.0763 0.0923 0.1397*** 0.0174 -0.2130*** 0.0652*** 0.0863*  
(0.0501) (0.0610) (0.0337) (0.0269) (0.0183) (0.0384) (0.0179) (0.0704) (0.0748) (0.0198) (0.0366) (0.0432) (0.0225) (0.0460) 

Size class: 50-249 -0.1047** 0.1571*** 0.0674* 0.2240*** 0.1098*** 0.2270*** 0.2256*** 0.1256* 0.1520** 0.2729*** 0.1480*** -0.3950*** 0.1404*** 0.2988***  
(0.0527) (0.0542) (0.0373) (0.0260) (0.0177) (0.0385) (0.0223) (0.0704) (0.0763) (0.0189) (0.0338) (0.0401) (0.0219) (0.0406) 

Size class: 250+ 0.1458** 0.1692** 0.1550** 0.4250*** 0.1033*** 0.3162*** 0.3462*** 0.0087 -0.0154 0.3245*** 0.3680*** -0.2620*** 0.0520** 0.1470*  
(0.0683) (0.0698) (0.0612) (0.0348) (0.0267) (0.0561) (0.0255) (0.1070) (0.0892) (0.0207) (0.0380) (0.0413) (0.0252) (0.0833) 

N 5336 3425 3934 6158 15598 5607 17701 11734 2019 32495 20501 38608 30024 8440 

R2 0.386 0.312 0.478 0.277 0.372 0.329 0.420 0.194 0.307 0.418 0.288 0.438 0.459 0.394 

Note: This table reports the main estimation results of the baseline productivity regression results of AI. Each regression includes 2-digit NACE rev. 2 sector dummies, except for Israel where and SNA 38 

fixed effects are used. Each regression includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Canada, Germany and Korea. Robust standard 

errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.12. Baseline productivity regressions – Big data analysis 

Variables BEL CHE DEU DNK FRA ISR ITA JPN KOR NLD PRT 

Big data 0.2593*** 0.1240*** 0.2599*** 0.0668** 0.0499*** -0.0170 0.0988*** 0.2109*** 0.2770*** 0.1355*** 0.1228*** 

  (0.0644) (0.0432) (0.0489) (0.0303) (0.0185) (0.1780) (0.0359) (0.0542) (0.0238) (0.0184) (0.0371) 

Age class: 6-10 0.0433 0.1370 
 

0.0967** 0.0177 0.3420*** 
 

0.0853 -0.0194 0.0547* 0.3249*** 

  (0.1607) (0.1770) 
 

(0.0435) (0.0341) (0.1190) 
 

(0.1493) (0.0294) (0.0325) (0.0737) 

Age class: >10 0.2530* -0.0415 
 

0.1773*** 0.1694*** 0.7440*** 
 

0.3517*** 0.0523** 0.0124 0.3384*** 

  (0.1496) (0.1210) 
 

(0.0360) (0.0294) (0.1030) 
 

(0.1276) (0.0255) (0.0277) (0.0671) 

Size class: 20-49 0.0410 -0.0869** 0.1410*** 0.0618** 0.1854*** 0.0960 0.1462*** 0.0160 -0.2180*** -0.0099 0.1520*** 

  (0.0682) (0.0425) (0.0529) (0.0250) (0.0164) (0.0741) (0.0271) (0.0366) (0.0432) (0.0194) (0.0327) 

Size class: 50-249 -0.0585 0.0260 0.2099*** 0.0798*** 0.2729*** 0.1750** 0.2686*** 0.1434*** -0.4030*** 0.0236 0.2975*** 

  (0.0647) (0.0499) (0.0533) (0.0245) (0.0200) (0.0761) (0.0336) (0.0337) (0.0401) (0.0191) (0.0322) 

Size class: 250+ -0.0818 0.0622 0.4149*** 0.0857** 0.3562*** 0.0419 0.3369*** 0.3548*** -0.2800*** -0.0529** 0.2122*** 

  (0.0843) (0.0858) (0.0751) (0.0374) (0.0213) (0.0901) (0.0281) (0.0361) (0.0413) (0.0226) (0.0780) 

N 2128 2441 1380 7822 16445 1987 20034 20464 38608 32655 9660 

R2 0.367 0.491 0.303 0.386 0.408 0.358 0.442 0.290 0.439 0.404 0.416 
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Note This table reports the main estimation results of the baseline productivity regression results of big data analysis. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression includes 

year dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical significance is denoted 

as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.13. Baseline productivity regressions – Internet of things 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

IoT 0.1247*** 0.0934** -0.0540 0.1486*** 0.1207*** -0.0221 0.1664*** 0.1397*** 0.2250*** 0.0924*** 0.1616***  
(0.0413) (0.0470) (0.0841) (0.0442) (0.0198) (0.1040) (0.0193) (0.0315) (0.0234) (0.0236) (0.0437) 

Age class: 6-10 -0.0177 0.3486*** 0.2330 0.1344** 0.1107*** 0.3430*** 
 

0.0905 -0.0231 0.0833* 0.1774  
(0.1063) (0.0895) (0.2380) (0.0654) (0.0363) (0.1190) 

 
(0.1499) (0.0295) (0.0490) (0.1262) 

Age class: >10 0.1395 0.4873*** 0.0535 0.2727*** 0.2385*** 0.7460*** 
 

0.3447*** 0.0471* 0.0171 0.2798**  
(0.0985) (0.0723) (0.1380) (0.0576) (0.0310) (0.1020) 

 
(0.1284) (0.0256) (0.0429) (0.1155) 

Size class: 20-49 0.0617 -0.0110 0.0670 0.1138*** 0.2099*** 0.0959 0.1342*** 0.0151 -0.2140*** 0.0439* 0.0882**  
(0.0470) (0.0610) (0.0552) (0.0406) (0.0174) (0.0747) (0.0200) (0.0366) (0.0432) (0.0262) (0.0443) 

Size class: 50-249 -0.0041 0.1525*** 0.0688 0.1298*** 0.2548*** 0.1760** 0.2596*** 0.1447*** -0.3970*** 0.1300*** 0.3169***  
(0.0469) (0.0543) (0.0628) (0.0391) (0.0217) (0.0768) (0.0215) (0.0335) (0.0402) (0.0234) (0.0423) 

Size class: 250+ 0.1149* 0.1774** 0.2610*** 0.0531 0.3530*** 0.0425 0.2983*** 0.3610*** -0.2660*** 0.0856*** 0.0507  
(0.0601) (0.0697) (0.0719) (0.0555) (0.0236) (0.0893) (0.0206) (0.0356) (0.0413) (0.0286) (0.1189) 

N 4736 3425 1450 4001 15972 1987 35586 20500 38608 20276 6893 

R2 0.350 0.311 0.456 0.387 0.425 0.358 0.457 0.291 0.438 0.472 0.416 

Note: This table reports the main estimation results of the baseline productivity regression results of internet of things. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression 

includes year dummies when multiple survey waves are available. All estimated regressions are weighted except for Canada, Germany and Korea. Robust standard errors in parentheses. Statistical 

significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.14. Baseline productivity regressions - Robotics 

Variables BEL CHE DNK FRA GBR ISR ITA JPN KOR NLD PRT 

Robotics 0.2005** 0.0324 0.1345*** 0.1289*** 0.2091** -0.1190 0.2103*** 0.1435** 0.1350*** 0.1559*** 0.1916*** 

  (0.0872) (0.0349) (0.0250) (0.0235) (0.0869) (0.1820) (0.0531) (0.0618) (0.0329) (0.0284) (0.0532) 

Age class: 6-10 0.0866 0.1880 0.0666* 0.0164 
 

0.3450*** 
 

0.1116 -0.0261 0.0883*** 0.2064** 

  (0.1027) (0.1410) (0.0360) (0.0341) 
 

(0.1190) 
 

(0.2627) (0.0295) (0.0307) (0.1025) 
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Age class: >10 0.2092** -0.0139 0.1689*** 0.1677*** 
 

0.7450*** 
 

0.4124* 0.0456* 0.0654** 0.2231** 

  (0.0902) (0.0922) (0.0305) (0.0295) 
 

(0.1020) 
 

(0.2312) (0.0256) (0.0286) (0.0960) 

Size class: 20-49 0.0276 -0.0265 0.0556*** 0.1849*** 0.0694 0.0960 0.1491*** 0.0766 -0.2130*** 0.0407*** 0.1547*** 

  (0.0469) (0.0338) (0.0205) (0.0164) (0.0697) (0.0745) (0.0273) (0.0504) (0.0432) (0.0149) (0.0402) 

Size class: 50-249 0.0416 0.0686* 0.0753*** 0.2698*** 0.1208* 0.1810** 0.2711*** 0.2086*** -0.3930*** 0.1026*** 0.3043*** 

  (0.0470) (0.0382) (0.0198) (0.0200) (0.0707) (0.0779) (0.0335) (0.0491) (0.0401) (0.0146) (0.0412) 

Size class: 250+ 0.1610*** 0.2020*** 0.0716** 0.3410*** 0.0177 0.0569 0.3319*** 0.2999*** -0.2570*** 0.0345** 0.1706 

  (0.0575) (0.0404) (0.0294) (0.0215) (0.1015) (0.0951) (0.0283) (0.0593) (0.0413) (0.0167) (0.1059) 

N 4779 3932 11666 16445 11984 1987 20034 10263 38608 61025 6382 

R2 0.345 0.478 0.381 0.409 0.199 0.358 0.442 0.289 0.437 0.426 0.424 

Note: This table reports the main estimation results of the baseline productivity regression results of robotics. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression includes year 

dummies when multiple survey waves are available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in parentheses. Statistical significance is denoted as 

follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.15. Baseline productivity regressions – 3D printing 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

3D printing 0.0768 -0.1115 -0.0614 -0.0286 0.0297 0.1270 0.0849** 0.2025*** -0.0142 0.0190 0.0749 

  (0.0878) (0.1098) (0.0429) (0.0349) (0.0329) (0.1830) (0.0360) (0.0505) (0.0346) (0.0358) (0.0731) 

Age class: 6-10 0.0715 0.3441*** 0.2020 0.0645* 0.0201 0.3400*** 
 

0.0876 -0.0266 0.0910* 0.2129** 

  (0.1617) (0.0899) (0.1610) (0.0360) (0.0341) (0.1190) 
 

(0.1501) (0.0295) (0.0499) (0.1029) 

Age class: >10 0.2652* 0.4835*** 0.0525 0.1671*** 0.1697*** 0.7430*** 
 

0.3486*** 0.0450* -0.0020 0.2252** 

  (0.1508) (0.0723) (0.0994) (0.0305) (0.0294) (0.1020) 
 

(0.1277) (0.0256) (0.0435) (0.0962) 

Size class: 20-49 0.0559 -0.0110 0.0112 0.0610*** 0.1873*** 0.0969 0.1512*** 0.0188 -0.2130*** 0.0117 0.1600*** 

  (0.0678) (0.0610) (0.0396) (0.0205) (0.0164) (0.0741) (0.0273) (0.0367) (0.0432) (0.0277) (0.0402) 

Size class: 50-249 -0.0107 0.1620*** 0.1040** 0.0908*** 0.2779*** 0.1750** 0.2755*** 0.1469*** -0.3930*** 0.0586** 0.3233*** 

  (0.0630) (0.0543) (0.0449) (0.0197) (0.0200) (0.0755) (0.0338) (0.0338) (0.0401) (0.0265) (0.0405) 

Size class: 250+ 0.0116 0.2055*** 0.2590*** 0.1089*** 0.3643*** 0.0318 0.3496*** 0.3667*** -0.2530*** 0.0077 0.1991* 

  (0.0787) (0.0691) (0.0473) (0.0289) (0.0213) (0.0884) (0.0279) (0.0361) (0.0413) (0.0310) (0.1056) 

N 2128 3425 2711 11666 16445 1987 20034 20491 38608 17643 6382 

R2 0.360 0.310 0.438 0.379 0.407 0.358 0.441 0.289 0.437 0.422 0.422 
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Note: This table reports the main estimation results of the baseline productivity regression results of 3D printing. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression includes 

year dummies when multiple survey waves are available. All estimated regressions are weighted except for Canada, Germany and Korea. Robust standard errors in parentheses. Statistical significance is 

denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.16. Extended productivity regressions – AI  

Variables BEL CAN CHE DEU DNK EST FRA GBR ISR ITA JPN KOR NLD PRT 

AI 0.2014*** 0.0571 -0.0248 0.0291 0.0239 0.0644 0.0040 0.0234 -0.0337 0.0700** -0.0706 0.0162 0.0140 0.0742 

  (0.0612) (0.0707) (0.0448) (0.0377) (0.0438) (0.0848) (0.0345) (0.0967) (0.2250) (0.0330) (0.0791) (0.0348) (0.0238) (0.0556) 

Broad band 
 

0.1046** 
   

0.2932*** 
  

0.2470*** 
   

0.0680*** 
 

  
 

(0.0442) 
   

(0.0545) 
  

(0.0738) 
   

(0.0235) 
 

ICT Spec. 
 

0.0705 0.0888** 0.1840*** 0.1735*** 0.2009*** 
  

0.2670** 
   

0.1391*** 
 

  
 

(0.0495) (0.0378) (0.0463) (0.0501) (0.0725) 
  

(0.1140) 
   

(0.0252) 
 

ICT Train. 
 

0.1555*** 
 

0.1289*** 0.1358* 0.1647** 
  

0.0551 
   

0.1199*** 
 

  
 

(0.0542) 
 

(0.0228) (0.0824) (0.0779) 
  

(0.1700) 
   

(0.0224) 
 

Tech intensity 0.8787*** 0.2037* 0.3060*** 
 

0.5764*** 0.1149 0.6643*** 0.3090*** 
 

0.9746*** 0.5499*** 0.5250*** 0.6224*** 1.2717*** 

  (0.1608) (0.1228) (0.0792) 
 

(0.1439) (0.1229) (0.0776) (0.1175) 
 

(0.0708) (0.0726) (0.0469) (0.0733) (0.1653) 

Exporter 
   

0.2960*** 
 

 
        

  
   

(0.0296) 
 

 
        

N 5336 3425 3535 4129 4001 2627 17701 11734 2019 32495 20501 38608 30001 8440 

R2 0.393 0.318 0.483 0.307 0.399 0.348 0.425 0.197 0.323 0.432 0.296 0.439 0.472 0.415 

Note: This table reports the main estimation results of the extended productivity regression results of AI. Each regression includes 2-digit NACE rev. 2 sector dummies, except for Israel where and SNA 38 

fixed effects are used. Each regression includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except 

for Canada, Germany and Korea. Robust standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.17. Extended productivity regressions – Big data analysis 

Variables BEL CHE DEU DNK FRA ISR ITA JPN KOR NLD PRT 

Big data 0.1917*** 0.0810* 0.2280*** 0.0513* 0.0125 -0.1300 0.0524 0.0661 0.2080*** 0.0690*** 0.0304 

  (0.0683) (0.0436) (0.0529) (0.0306) (0.0186) (0.1760) (0.0377) (0.0552) (0.0281) (0.0193) (0.0391) 

Broad band 0.2176 
   

0.0513*** 0.2210*** 
   

0.0674*** 0.0907*** 

  (0.3037) 
   

(0.0173) (0.0701) 
   

(0.0178) (0.0322) 
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ICT Spec. 0.0427 0.0610 0.1879** 
 

0.1173*** 0.2780** 
   

0.1503*** 0.2305*** 

  (0.0590) (0.0472) (0.0834) 
 

(0.0235) (0.1150) 
   

(0.0218) (0.0451) 

ICT Train. 0.2422*** 
 

0.0934** 
 

0.0904*** -0.0515 
   

0.1265*** 0.1045*** 

  (0.0752) 
 

(0.0463) 
 

(0.0216) (0.1650) 
   

(0.0204) (0.0370) 

Tech intensity 0.3769 0.2380*** 
 

0.3249*** 0.5252*** 
 

0.8094*** 0.4784*** 0.2680*** 0.2854*** 0.5568*** 

  (0.2913) (0.0857) 
 

(0.1132) (0.0992) 
 

(0.1287) (0.0778) (0.0522) (0.0728) (0.1726) 

Exporter 
  

0.3610*** 
        

  
  

(0.0590) 
        

N 2128 2273 989 7822 16445 1987 20034 20464 38608 32655 9548 

R2 0.378 0.502 0.354 0.387 0.414 0.370 0.447 0.295 0.440 0.411 0.425 

Note: This table reports the main estimation results of the extended productivity regression results of big data analysis. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression 

includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. Robust standard 

errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.18. Extended productivity regressions – Internet of things 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

IoT 0.0426 0.0003 -0.1210 0.0777* 0.1202*** -0.0633 0.1295*** 0.0441 0.1310*** 0.0163 -0.0293 

  (0.0613) (0.0493) (0.0954) (0.0454) (0.0331) (0.1080) (0.0199) (0.0333) (0.0261) (0.0246) (0.0647) 

Broad band 0.2176 0.1043** 
  

0.0200 0.2160*** 
   

0.0652*** 0.1067 

  (0.3061) (0.0443) 
  

(0.0210) (0.0715) 
   

(0.0233) (0.0660) 

ICT Spec. 0.0413 0.0688 0.1080* 0.1715*** 0.0877** 0.2730** 
   

0.1445*** 0.2013** 

  (0.0592) (0.0496) (0.0641) (0.0504) (0.0347) (0.1160) 
   

(0.0328) (0.0887) 

ICT Train. 0.2364*** 0.1538*** 
 

0.1411* 0.0954** -0.0611 
   

0.1100*** 0.1172* 

  (0.0756) (0.0543) 
 

(0.0829) (0.0376) (0.1680) 
   

(0.0287) (0.0635) 

Tech intensity 0.7946*** 0.2841** 0.3580** 0.4830*** 0.1887 
 

0.6957*** 0.5637*** 0.4020*** 0.5203*** 1.0477*** 

  (0.2777) (0.1323) (0.1670) (0.1359) (0.1233) 
 

(0.0804) (0.1016) (0.0491) (0.0809) (0.2587) 

N 2128 3425 1268 4001 7298 1987 35586 20500 38608 20276 3081 

R2 0.376 0.318 0.463 0.399 0.427 0.370 0.462 0.296 0.439 0.480 0.437 

Note: This table reports the main estimation results of the extended productivity regression results of internet of things. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression 

includes year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Canada, Germany and Korea. Robust 

standard errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 
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Table A C.19. Extended productivity regressions – Robotics 

Variables BEL CHE DNK FRA GBR ISR ITA JPN KOR NLD PRT 

Robotics 0.0750 0.0085 0.1269*** 0.1104*** 0.1719* -0.2030 0.1689*** 0.0765 -0.0046 0.0898*** 0.1111** 

  (0.1779) (0.0381) (0.0253) (0.0238) (0.0877) (0.1820) (0.0541) (0.0624) (0.0337) (0.0284) (0.0555) 

Broad band 0.2181 
  

0.0508*** 
 

0.2200*** 
   

0.0796*** 0.0747* 

  (0.3053) 
  

(0.0173) 
 

(0.0723) 
   

(0.0158) (0.0391) 

ICT Spec. 0.0414 0.0685* 
 

0.1199*** 
 

0.2800** 
   

0.1489*** 0.1756*** 

  (0.0592) (0.0368) 
 

(0.0235) 
 

(0.1180) 
   

(0.0173) (0.0573) 

ICT Train. 0.2369*** 
  

0.0918*** 
 

-0.0584 
   

0.1165*** 0.1481*** 

  (0.0756) 
  

(0.0216) 
 

(0.1670) 
   

(0.0161) (0.0473) 

Tech intensity 0.6987*** 0.2910*** 0.3237*** 0.3412*** 0.2358** 
 

0.7235*** 0.5508*** 0.4980*** 0.5096*** 0.5391*** 

  (0.2434) (0.0812) (0.1018) (0.0854) (0.1085) 
 

(0.1120) (0.0880) (0.0415) (0.0481) (0.1793) 

N 2128 3564 11666 16445 11984 1987 20034 10263 38608 52454 6253 

R2 0.376 0.480 0.382 0.415 0.201 0.370 0.448 0.297 0.439 0.436 0.428 

Note: This table reports the main estimation results of the extended productivity regression results of robotics. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression includes year 

dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Germany and Korea. Robust standard errors in 

parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 

Table A C.20. Extended productivity regressions – 3D printing 

Variables BEL CAN CHE DNK FRA ISR ITA JPN KOR NLD PRT 

3D printing 0.0034 -0.2192** -0.1250*** -0.0510 -0.0239 0.0957 0.0440 0.0928* -0.1270*** -0.0455 0.0081  
(0.0876) (0.1109) (0.0475) (0.0353) (0.0337) (0.1860) (0.0366) (0.0553) (0.0357) (0.0367) (0.0739) 

Broad band 0.2162 0.1066** 
  

0.0502*** 0.2160*** 
   

0.0580** 0.0761*  
(0.3053) (0.0442) 

  
(0.0173) (0.0719) 

   
(0.0243) (0.0390) 

ICT Spec. 0.0421 0.0670 0.0310 
 

0.1185*** 0.2640** 
   

0.1358*** 0.1752***  
(0.0591) (0.0497) (0.0431) 

 
(0.0235) (0.1180) 

   
(0.0334) (0.0573) 

ICT Train. 0.2365*** 0.1508*** 
  

0.0914*** -0.0637 
   

0.1251*** 0.1467***  
(0.0756) (0.0539) 

  
(0.0216) (0.1660) 

   
(0.0296) (0.0472) 

Tech intensity 0.7431*** 0.2992*** 0.4130*** 0.5474*** 0.4651*** 
 

0.7907*** 0.4578*** 0.5410*** 0.3687*** 0.6366***  
(0.2408) (0.1089) (0.1090) (0.0956) (0.0823) 

 
(0.1163) (0.0819) (0.0403) (0.0860) (0.1742) 

N 2128 3425 2505 11666 16445 1987 20034 20491 38608 17643 6253 



84  DIGITAL TECHNOLOGY DIFFUSION IN THE AGE OF AI 

OECD SCIENCE, TECHNOLOGY AND INDUSTRY WORKING PAPERS 
      

R2 0.376 0.319 0.443 0.382 0.414 0.370 0.447 0.295 0.440 0.429 0.428 

Note: This table reports the main estimation results of the extended productivity regression results of 3D printing. Each regression includes 2-digit NACE rev. 2 sector dummies. Each regression includes 

year dummies when multiple survey waves are available, as well as size and age dummies when available. All estimated regressions are weighted except for Canada, Germany and Korea. Robust standard 

errors in parentheses. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Source: Estimations based on country-specific firm-level surveys. See Annex A for details on the different sources. See Box 4.3 for further details on the econometric strategy. 
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Supplementary figures 

Figure A C.1. Conditional probabilities of technology use in Switzerland 

 

Note: Conditional probabilities of observing a technology (column), given that another technology is also observed in the network (row). The 

data refer to the year 2019. 

Source: Authors’ calculations based on microdata from the KOF Enterprise Panel. 

Conditional probabilities based on number of total occurrences by row,
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Figure A C.2. Centrality of technologies in the ICT sector relative to other sectors 

Difference in eigen centrality of technologies by country and survey year in the ICT sector compared to eigen 

centrality calculated across all available sectors 

 

Note: The colour gradient represents the difference in eigen centrality between the ICT sector and the sector averages for each available 

technology (column) in the network of observed technology co-occurrences for each country-year (row). Positive values (in blue) indicate a more 

central position of the technology in the ICT sector compared to the overall network, while negative values (in red) represent a less central 

position. Greyed out cells correspond to technologies either not surveyed or not available in a given country-year. Networks with blanked co-

occurrences due to confidentiality or a low number of available technologies are excluded.  

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 
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Figure A C.3. Centrality of technologies in the manufacturing sector relative to other sectors 

Difference in eigen centrality of technologies by country and survey year in the manufacturing and utilities sector 

compared to eigen centrality calculated across all available sectors 

 

Note: The colour gradient represents the difference in eigen centrality between the manufacturing and utilities sector and the sector averages 

for each available technology (column) in the network of observed technology co-occurrences for each country-year (row). Positive values (in 

blue) indicate a more central position of the technology in the manufacturing sector compared to the overall network, while negative values (in 

red) represent a less central position. Greyed out cells correspond to technologies either not surveyed or not available in a given country-year. 

Networks with blanked co-occurrences due to confidentiality or a low number of available technologies are excluded.  

Source: Elaborations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on 

the different sources. 
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Figure A C.4. Adoption regression age class coefficients 
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Note: This figure reports the coefficients of age class dummies for Belgium, Canada, Denmark, France, Germany, Israel, Italy, Japan, Korea, 

the Netherlands, Portugal, and Switzerland. The adoption regression includes size classes and year dummies, when available. Each regression 

includes 2-digit NACE rev. 2 sector dummies. All estimated regressions are weighted except for Canada, Germany and Korea. See Annex B for 

the sample coverage years of each technology adoption regression. Statistical significance is denoted as follows: *** p < 0.01, ** p < 0.05, * p < 

0.1. 

Source: Estimations based on country-specific firm-level surveys. See section 3 for details on the methodology and the Annex for details on the 

different sources. 

 


