

Python ransomware script targets ESXi
server for encryption
Configuration errors rapidly escalated to a ransomware attack inside a virtual machine
hypervisor
Written by Andrew Brandt
OCTOBER 05, 2021
SOPHOSLABS UNCUT ESXI FCKER PYTHON RANSOMWARE VMWARE
A recently-concluded investigation into a ransomware attack revealed that
the attackers executed a custom Python script on the target’s virtual
machine hypervisor to encrypt all the virtual disks, taking the organization’s
VMs offline.

In what was one of the quickest attacks Sophos has investigated, from the
time of the initial compromise until the deployment of the ransomware
script, the attackers only spent just over three hours on the target’s network
before encrypting the virtual disks in a VMware ESXi server.

The Python script embeds the text of the ransom note.

The attackers initially accessed their foothold by logging in to a TeamViewer
account (one which didn’t have multi-factor authentication set up), running
in the background on a computer that belongs to a user with Domain
Administrator credentials in the target’s network. The attackers logged on at
30 minutes past midnight in the target organization’s time zone, and ten
minutes later downloaded and ran a tool called Advanced IP Scanner to
identify targets on the network.

Just before 2 am, the attackers downloaded an SSH client called Bitvise, and
used it to log into a VMware ESXi server they identified using Advanced IP
Scanner. ESXi servers have a built-in SSH service called the ESXi Shell that
administrators can enable, but is normally disabled by default.

This organization’s IT staff was accustomed to using the ESXi Shell to
manage the server, and had enabled and disabled the shell multiple times in
the month prior to the attack. However, the last time they enabled the shell,
they failed to disable it afterwards. The criminals took advantage of this
fortuitous situation when they found the shell was active.

Python ransomware

Three hours after the attackers scanned the network, they used their
credentials to log into the ESXi Shell, and copied a file named fcker.py to
the ESXi datastore, which houses the virtual disk images used by the VMs
that run on the hypervisor.

The Python script uses the vim-cmd command functions of the ESXi Shell
to produce a list of the names of all virtual machines installed on the server,
then shuts them all down.

One by one, the attackers executed the Python script, passing the path to
datastore disk volumes as an argument to the script. Each individual volume
contained the virtual disk and VM settings files for multiple virtual
machines.

Thanks to some solid forensics work, the Rapid Response team recovered a
copy of the Python script, even though the attackers appeared to have
overwritten it with other data before deleting the file.

Only 6kb long, the small size of the script belies its abilities. The script
contains variables that the attacker can configure with multiple encryption
keys, email addresses, and where they can customize the file suffix that gets
appended to encrypted files.

The script embeds the file suffix it appends to encrypted files (ext), and
email addresses (mail, mail2) to be used to contact the attacker for
payment of the ransom as variables.

Initially, the script “walks” the filesystem of a datastore and creates a
directory map of the drive, and inventories the names of every virtual
machine on the hypervisor, writing them to a file called vms.txt. It then
executes the ESXi Shell command vim-cmd vmsvc/power.off, one time for
each VM, passing the VM names to the command as a variable, one at a
time. Only when the VMs have powered off will the script begin encrypting
the datastore volumes.

Using a single instruction for each file it encrypts, the script invokes the
open-source tool openssl to encrypt the files with the following command:

openssl rsautil -encrypt -inkey pubkey.txt -pubin -out
[filename].txt

The file encryption function within the Python script

The script then overwrites the contents of the original file with just the
word fuck then deletes the original file. Finally, it deletes the files that
contain the directory listings, the names of the VMs, and itself by
overwriting those files before deleting them.

Encryption keys generated on-the-fly
One thing that we noticed while walking through the code was the presence
of multiple, hardcoded encryption keys, as well as a routine for generating
even more encryption key pairs. Normally, an attacker would only need to
embed the “public key” that the attacker generated on their own machine
and would be used to encrypt files on the targeted computer(s). But this
ransomware appears to create a unique key every time it is run.

Embedded public keys in the Python ransomware

So what’s going on with that?

Apparently, every time the malware is executed – and it appears the
attackers executed the script once for each ESXi datastore they wanted to
encrypt – the ransomware generates a unique key pair that will be used for
encrypting files during that particular execution.In the case of the attack we
investigated, there were three datastores the attackers targeted with
individual executions of the script, so the script created three unique key
pairs, one for each datastore.

For each execution targeting a different ESXi datastore (greyed out paths)
the script generated a unique encryption key

The script has no ability to transmit these keys anywhere, and there’s no
way for the attacker to predict what the keys will be, so the script has to
leave behind a copy of the secret key (the key the attacker would need in
order to decrypt the files) on the filesystem of the targeted computer. But it
would be a gigantic mistake to just leave that key lying around (whoever
possesses the secret key could, theoretically, use it to decrypt everything
without having to pay a ransom), so the script writes out a copy of that
secret key, and then encrypts the secret key using the embedded,
hardcoded public key.

The script runs a routine that lists all the files in the path that’s provided to
the script during execution. For each file, the script generates a unique, 32-
byte random code it calls the aeskey, and then encrypts the file using the
aeskey as a salt into the /tmp path.

Finally, it prepends the aeskey value to the encrypted file and appends a
new file suffix to the name, overwrites the contents of the original file with
the word fuck then deletes the original file, and moves the encrypted
version from /tmp to the datastore location where the original file was
stored.

Hypervisors are valuable targets

Malware that runs under a Linux-like operating system such as ESXi uses is
still relatively uncommon, but it is even less common for IT staff to install
endpoint protection on servers like these. Hypervisors in general are often
quite attractive targets for this kind of attack, since the VMs they host may
run business-critical services or functions.

ESXi management tools can enable or disable the ESXi Shell either from
within the tool, or locally on the console connected to the server. The shell
defaults to “Stopped.”

Administrators who operate ESXi or other hypervisors on their networks
should follow security best practices, avoiding password reuse, and using
complex, difficult to brute-force passwords of adequate length. Wherever
possible, enable the use of multi-factor authentication and enforce the use
of MFA for accounts with high permissions, such as domain administrators.

In the case of ESXi, use of the ESXi Shell is something that can be toggled
on or off from either a physical console at the machine itself, or through the

normal management tools provided by VMware. Administrators should only
allow the Shell to be active during use by staff, and should disable it as soon
as maintenance (such as the installation of patches) is complete.

VMware has also published a list of best practices for administrators of their
ESXi hypervisors on how to secure them and limit the attack surface on the
hypervisor itself.

Python scripts of this type are detected by Sophos endpoint products
as Troj/Ransom-GJR.

Acknowledgments
SophosLabs wishes to acknowledge the work of Rajesh Nataraj, Andrew
O’Donnell, and Mauricio Valdivieso for their assistance

