
ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms

Patrick Jattke† Max Wipfli† Flavien Solt Michele Marazzi Matej Bölcskei Kaveh Razavi

ETH Zurich

†Equal contribution first authors

Abstract
AMD has gained a significant market share in recent years
with the introduction of the Zen microarchitecture. While
there are many recent Rowhammer attacks launched from
Intel CPUs, they are completely absent on these newer AMD
CPUs due to three non-trivial challenges: 1) reverse engineer-
ing the unknown DRAM addressing functions, 2) synchroniz-
ing with refresh commands for evading in-DRAM mitigations,
and 3) achieving a sufficient row activation throughput. We
address these challenges in the design of ZENHAMMER, the
first Rowhammer attack on recent AMD CPUs. ZENHAM-
MER reverse engineers DRAM addressing functions despite
their non-linear nature, uses specially crafted access patterns
for proper synchronization, and carefully schedules flush and
fence instructions within a pattern to increase the activation
throughput while preserving the access order necessary to
bypass in-DRAM mitigations. Our evaluation with ten DDR4
devices shows that ZENHAMMER finds bit flips on seven and
six devices on AMD Zen 2 and Zen 3, respectively, enabling
Rowhammer exploitation on current AMD platforms. Fur-
thermore, ZENHAMMER triggers Rowhammer bit flips on a
DDR5 device for the first time.

1 Introduction
Recent Rowhammer attacks that require the circumvention
of in-DRAM mitigations have mostly been investigated on
Intel platforms [6, 8–10, 13, 17, 19, 29, 30, 38, 39, 41, 44].
The success of these attacks is crucially dependent on the
intimate architectural and microarchitectural details of Intel
CPUs, such as how the memory controller maps physical
addresses to DRAM chips, the observability of certain DRAM
commands, and the behavior of memory flushing and ordering
instructions. Lacking this information, Rowhammer attacks
are currently absent on modern AMD CPUs based on the
Zen microarchitecture. We conduct experiments to uncover
this information, which we then use in the construction of
ZENHAMMER, the first successful Rowhammer attack on
Zen-based AMD platforms.

DRAM Addressing. Previous work that reverse engineered
the DRAM addressing functions on Intel and ARM platforms
assumes that these functions are constructed by XOR-ing
certain physical address bits with each other [32]. We find
that on AMD platforms, this assumption leads to an incom-
plete recovery of address functions. Our experiments show
that AMD’s memory controllers require offsets for certain
physical address ranges before applying the XOR functions.
Adjusting for these offsets, better handling of noisy measure-
ments, and considering higher physical address bits lead to
the recovery of correct and complete DRAM addressing func-
tions for these CPUs. Yet, this initial version of ZENHAMMER
only triggers bit flips on five (Zen 2) and none (Zen 3) of our
ten DDR4 DRAM modules, while an Intel-based fuzzer [17]
triggers bit flips on eight of them. We track down the reason to
inadequate synchronization with DRAM refresh commands
and the low throughput of activations sent to DRAM.

Refresh Synchronization. Modern DRAM devices employ
in-DRAM Target Row Refresh (TRR) mitigations that de-
tect potential victims of a Rowhammer attack and internally
refresh these victims before bits can flip. These preventive
refreshes happen transparently inside DRAM during the stan-
dard refresh commands issued by the memory controller. To
bypass these mitigations, state-of-the-art Rowhammer pat-
terns executed on Intel CPUs synchronize with refresh com-
mands by repeatedly measuring the time it takes to access
two rows inside DRAM [17]. Memory controllers’ refresh
commands delay these accesses, allowing the patterns to de-
tect and synchronize with these commands. We find that the
required flushing and ordering instructions introduce signif-
icant inaccuracies in the detection of refresh commands on
AMD’s Zen-based CPUs. To address this issue, we rely on
synchronization using many uncached addresses that are only
flushed after a refresh is detected.

Activation Throughput. To bypass TRR during a Rowham-
mer attack, maximizing the number of activations on both
decoy and target DRAM locations is favorable and often nec-
essary. We noticed that, unlike Intel CPUs, it is not trivial to

saturate the activation throughput on Zen-based AMD CPUs
due to the behavior of cache flushing and fencing instructions.
To find the best hammering strategy, we systematically ex-
plore different memory access instructions and scheduling
policies for flushing and fencing instructions. We discover
that on AMD Zen 3, the CPU does not require a fence to order
the cache flush with the memory access, allowing ZENHAM-
MER to achieve a higher activation throughput by omitting
unnecessary fence instructions. Furthermore, we learn that
on all AMD Zen CPUs, the number of necessary fence in-
structions to order different memory accesses can be tuned
to a given DRAM vendor based on the sensitivity of its TRR
mitigation to this ordering.

Equipped with better refresh synchronization and schedul-
ing of flushing and fencing instructions, ZENHAMMER can
trigger bit flips on seven of our ten sample devices (compared
to eight on an Intel CPU). Our evaluation further shows that
these bit flips can be used to build the page table [36], RSA
public key corruption [34], and sudo [11] exploits on 7/6/4
of these devices, taking on average 164/267/209 seconds. To
verify the attack’s practicality, we implement and evaluate the
page table exploit by Seaborn et al. [36] on a Zen 3 system.
We also show that ZENHAMMER can trigger bit flips on a
DDR5 device for the first time.

Contributions. We make the following contributions:
• We reverse engineer the confidential DRAM addressing

functions on various AMD Zen-based CPUs in different
configurations, and we present a coloring technique en-
abling system exploitation despite higher physical address
bits involved in the DRAM functions.

• We show how to synchronize effectively with refresh com-
mands and increase the activation throughput with new
fence scheduling strategies on AMD Zen-based CPUs.

• We build ZENHAMMER using the reverse engineered
DRAM addressing functions, the new synchronization,
and fencing strategies. Our evaluation shows that ZEN-
HAMMER is effective on seven out of ten sample DDR4
devices, enabling Rowhammer exploitation on AMD Zen-
based systems for the first time.

• Using ZENHAMMER, we show Rowhammer bit flips on a
DDR5 device for the first time.

Responsible Disclosure and Open Sourcing. While
Rowhammer is a known problem in industry, we nonethe-
less informed AMD about our findings and agreed to an
embargo expiring on March 25, 2024. More information in-
cluding the source code of ZENHAMMER can be found at:
https://comsec.ethz.ch/research/dram/zenhammer

2 Background

We provide a high-level overview of DRAM (Section 2.1),
how physical memory is mapped to it (Section 2.2), and dis-
cuss Rowhammer exploitation (Section 2.3).

2.1 DRAM
In desktop and server systems, dual in-line memory modules
(DIMMs) are connected to the CPU’s memory channels to
equip systems with DRAM. Each of these DIMMs consists of
multiple DRAM chips, which operate in a lockstep mode.
Each chip contains several banks, a grid-like structure of
DRAM cells organized in rows and columns. Each cell stores
a single-bit value and consists of a capacitor and an access
transistor. Further, each DRAM bank is connected to a row
buffer that acts as a buffer for the whole DRAM row during
read and write operations.

DDRx Protocol. The DDRx protocol is used to communicate
between the DRAM device and the memory controller. The
protocol dictates timing requirements and permitted command
orders that the memory controller should respect to ensure the
DRAM device’s proper functioning. For example, in DDR4,
a refresh command (REF) has to be sent to the DRAM devices
every 7.8 µs (tREFI) on average. Before any data can be read
from (RD) or written to (WR) a DRAM row, it must first be
opened with an activate command (ACT), which brings its data
into the row buffer. Before any other row in the same bank
can be opened, the row must be closed, i.e., precharged (PRE).

Row Buffer Side Channel. Row buffer conflicts have been
exploited as a timing side-channel to detect same-bank
rows [32, 42, 43]. For this, two randomly picked addresses
are repeatedly accessed in succession and their access time is
measured. If the addresses map to different banks, the rows
will stay open in their respective bank’s row buffer and can
directly be read. This means, row buffer hits happen, which
leads to faster (lower latency) access times. However, if the
rows map to the same bank, successive accesses evict each
other from the row buffer, thus requiring a PRE and ACT before
data can be read or written. This row buffer conflict yields
slower (higher latency) access times.

2.2 DRAM Addressing
The memory controller uses an addressing scheme to map
the physical address space to DRAM locations. For this, ven-
dors employ confidential address mappings that are optimized
for performance. As correctly addressing DRAM rows is es-
sential for Rowhammer attacks, reverse engineering these
proprietary functions is often a preliminary step. Unlike Intel,
AMD published address mappings for their pre-Zen CPUs
in the BIOS and Kernel Developer’s Guide [2], but stopped
publishing this information for its newer CPUs since 2017.

Linearity of Functions. Previous work [5, 14, 15, 32, 35, 42,
43] assumed the DRAM functions are linear. That is, a func-
tion f j is the exclusive-OR (XOR) of a set S j of physical ad-
dress bits: f j(a) =

⊕
k∈S j

ak. We will show later (Section 4.2)
that this assumption does not hold on our target systems.

2.3 Rowhammer
The DRAM vulnerability “Rowhammer” [22] allows attack-
ers to induce memory disturbance errors. By rapidly accessing

https://comsec.ethz.ch/research/dram/zenhammer

aggressor rows, an attacker can leak charge from adjacent
victim rows, eventually causing bit flips in them. The effect is
caused by the weak physical isolation of memory rows, and
it is expected to worsen in future devices due to the ongoing
miniaturization of DRAM cells [28]. In response to the wors-
ening Rowhammer effect, DRAM vendors have deployed
in-DRAM mitigations, known as Target Row Refresh (TRR),
that preemptively refresh victim rows before bits flip [10, 12].

Hammering Patterns. The originally proposed single-
sided [22, 40] and double-sided [36] patterns were later gen-
eralized by n-sided patterns with n aggressors, which helped
to bypass some of the in-DRAM TRR mitigations [10]. The
state-of-the-art non-uniform Rowhammer patterns showed
how to bypass all existing mitigations on DDR4 devices [17].
These patterns are composed of double-sided aggressor pairs
that are hammered with different frequencies, phases, and am-
plitudes to find blind spots in the deployed mitigations more
effectively. Furthermore, a new Rowhammer effect known as
Half-Double [24, 26] can bypass certain in-DRAM mitiga-
tions using near and far aggressors.

Synchronization. A key ingredient of recent Rowhammer
patterns is the synchronization with the REF commands that
trigger TRRs [9, 17]. Earlier work [9] showed that soft syn-
chronization can be achieved by introducing a carefully cho-
sen number of NOPs into the pattern. In this way, the memory
controller is more likely to schedule REFs in these gaps of less
DRAM activity, thus helping to keep the pattern in sync with
the REF. Blacksmith [17], however, uses hard synchronization
by tailoring the pattern to the length of multiple refresh inter-
vals and exploiting the increased access latency during REFs
to detect them.

Discussion. Existing research on Rowhammer mostly fo-
cused on Intel systems [7, 10, 17], where DRAM address
functions [32, 42] and the effects of the hammering instruc-
tion sequence [8, 13] are well known. However, AMD has
gained a significant market share in the last years and held
around 36 % of the market for x86 CPUs in 2024 [1]. Yet,
it is unclear if Rowhammer is similarly exploitable on these
AMD systems.

3 Overview
Our goal is to trigger bit flips on AMD Zen-based platforms,
particularly the systems listed in Table 1. These make use of
DDR4 memory technology, allowing us to compare their vul-
nerability with a baseline on well-studied Intel systems [17].

A requirement for most Rowhammer attacks is the knowl-
edge of the DRAM address mapping, i.e., how physical
addresses map to the DRAM locations. This allows pre-
cisely selecting the location of aggressors around a vic-
tim row, as needed by most effective Rowhammer tech-
niques [10, 24, 26, 36]. As the memory controllers of Intel
and AMD systems use different DRAM address mappings,
determining them poses our first challenge:

Table 1. Details about the Ryzen-based test systems (Z+++, Z2, Z3)
used in this work.

Micro-
architecture

Release
Date

Our Test Systems
System CPU

Zen 3 11-2020 Z3 Ryzen 5 5600G
Zen 2 07-2019 Z2 Ryzen 5 3600X
Zen+ 04-2018 Z+++ Ryzen 5 2600X

Challenge 1. Reverse engineering the undocumented
DRAM address mappings on AMD Zen-based systems.

We show in Section 4 that the state-of-the-art DRAMA [32]
technique fails to recover the address functions on our AMD
systems. Instead, a modified timing primitive and a relaxation
of the common linearity assumption are required to obtain the
full physical-to-DRAM address mappings. We then use these
mappings to build ZENHAMMER and perform Rowhammer
on our AMD systems with a sample of ten DRAM devices.
However, even when hammering devices known to be ex-
ploitable on Intel systems, we find very few bit flips with
ZENHAMMER, with many devices not showing any bit flips
at all. Based on these results, we conclude that additional
(micro-)architectural considerations are necessary for effec-
tive Rowhammer attacks on AMD Zen-based systems.

Earlier work [9, 17] shows that synchronizing a Rowham-
mer pattern with DRAM refresh commands is key for by-
passing TRR mitigations. State-of-the-art non-uniform pat-
terns [17], for example, rely on a timing side channel to detect
spikes in the memory access latency caused by refresh com-
mands [6, 9, 10]. Our analysis shows that this mechanism
produces inaccurate results on AMD Zen-based CPUs, even
failing completely on the newer Zen 3 platform. This leads us
to our second challenge:

Challenge 2. Understanding and overcoming the short-
comings of timing-based refresh synchronization.

In Section 5, we design and implement modified versions
of timing-based refresh synchronization. We experimentally
evaluate the various implementations to achieve more reli-
able synchronization on AMD platforms. Additionally, we
notice that the activation throughput is only about half when
compared to the Intel baseline. This severely reduces the
budget of activations that can be used to “trick” TRR mitiga-
tions, substantially increasing the difficulty of finding effec-
tive Rowhammer patterns. This introduces our last challenge:

Challenge 3. Increasing activation rate during hammering
while preserving the order of memory accesses.

In Section 6, we systematically evaluate the activation
throughput achieved by different memory access, flushing,
and fencing instructions to find optimal access patterns tuned
to the underlying DRAM device. Finally, after solving these
challenges, Section 7 evaluates the effectiveness of ZENHAM-

Figure 1. Histogram of access latencies measured on Z+++ when using
DRAMA or DARE. Measurements are partitioned based on whether
the address pair should produce a row conflict or not.

MER in triggering bit flips on the AMD Zen 2 and Zen 3
platforms and the ability of these bit flips for building success-
ful Rowhammer exploits. We further show that ZENHAMMER
can trigger bit flips on one of our DDR5 devices on the latest
AMD Zen 4 platform.

4 DRAM Addressing
DRAMA [32] is currently the standard approach for reverse
engineering DRAM address mappings. We briefly describe
the two main steps of this technique.

Step 1: Clustering. DRAMA measures the access latency
of two randomly picked addresses. If the measured value
exceeds the row conflict threshold, the addresses map to dif-
ferent rows in the same bank and otherwise to distinct banks.
Using this method, DRAMA creates clusters of addresses in
the same bank. DRAMA repeats this process until it finds a
cluster for each bank.

Step 2: Function Brute Forcing. DRAMA then generates
XOR-function candidates and tests them on the clustered
addresses exhaustively. A valid function must (i) be constant
for all addresses in each cluster and (ii) not produce the same
result over all clusters. After removing linearly dependent
functions, the resulting set of log2 N functions, on a system
with N unique banks, can uniquely index every DRAM bank.

We verified that DRAMA, originally designed for Intel CPUs,
does not produce valid results on recent AMD CPUs.1 Ei-
ther it does not find any address functions at all or functions
that are incomplete. We describe how improvements to tim-
ing (Section 4.1) and taking system-specific address offsets
into account (Section 4.2) enable our new DRAM reverse-
engineering tool, called DRAM Address Mapping Reverse-
Engineering (DARE), to successfully recover the address map-
pings on AMD Zen-based platforms (Section 4.3).

4.1 Timing Routine
The access time difference between addresses that produce
row conflict and those that do not is very small. Thus, existing
reverse-engineering tools use specially crafted timing routines
to amplify the timing difference while eliminating unwanted
noise (e.g., from unrelated system activity).

1https://github.com/IAIK/drama

In DARE, we perform 32 iterations of accesses to both ad-
dresses while measuring the entire loop. In contrast, DRAMA
also measures accesses to two additional addresses that are
shifted during measurement repetitions. We then perform
16 measurements and use the minimum value. However, we
only do 16× 32 = 512 accesses instead of 4× 5K = 20K
(DRAMA) accesses, making our method significantly faster.

Evaluation Setup. We evaluate the accuracy of both timing
routines, DRAMA and DARE, on Z+++. For each routine, we
generate 100 K random address pairs and measure their ac-
cess times. We expect the access latencies for bank hits and
conflicts to be clearly distinguishable to allow reliable dif-
ferentiation. The address pairs are then partitioned based on
whether they map to the same bank or not using the ground
truth obtained with an oscilloscope (see Section 4.3).

Results. The results, which are shown in Figure 1, clearly
show that the DRAMA routine significantly overlaps the two
cases, whereas our method shows a clearer separation. This
means that it is less susceptible to noise than DRAMA, thus
reducing the number of misclassified addresses. We further
enhance DARE by cluster cleaning (i.e., intra-cluster pairwise
testing of addresses) to ensure that we can reliably find the
address functions despite system noise.

4.2 Address Offsets
We notice that DARE fails to find sufficient address function
candidates (i.e., at least log2 N for N banks) but succeeds
when restricted to smaller memory ranges such as 256 MiB-
aligned blocks. In other words, some functions are valid over
a limited area only and cease to work across larger areas.

We investigate this anomaly by applying the obtained func-
tions on smaller windows over the entire memory range, as
shown in Figure 2a. We note that the sections where the func-
tion result is 0 and where it is 1 have different sizes. However,
if the address mapping was linear, the result would have to
be either constant 0 or 1 (if the function is correct) or evenly
split between the two (for any other linear function). We refer
to Appendix A for a proof of this fact. Based on this observa-
tion, the correct functions cannot be linear, which contradicts
assumptions made by previous work (see Section 2.2).

We find that removing this nonlinearity is possible by sub-
tracting a particular constant offset to all physical addresses
in the clusters before brute forcing the functions. This lin-
earization is demonstrated in Figure 2b, where, after removing
the offset, it is possible to find the correct function as shown
in Figure 2c. Finally, the correctly identified function gener-
ates a constant value for all addresses in the same cluster.

Observation 1. DRAM address functions may be non-
linear due to physical address space remapping, in which
case a constant offset needs to be subtracted from physical
addresses before applying an XOR function.

https://github.com/IAIK/drama

(a) using original (unshifted) phy. addresses

8 9 10 11 12
physical address [GiB]

0

1

f(
x)

(b) using physical addresses shifted by 768 MiB

8 9 10 11 12
offset physical address [GiB]

0

1

f(
x)

(c) after finding the correct function g(x)

8 9 10 11 12
offset physical address [GiB]

0

1

g(
x)

Figure 2. (a) Function values for f (x) given by 0x64440100 for same-cluster addresses over the full address range on Z3, showing a uneven
distribution between “0” and “1”. (b) After offsetting the physical addresses by 768 MiB before applying the function, the same function’s
output looks evenly distributed. (c) This allows us to find the function g(x) defined by 0x44440100 that is constant for the cluster’s addresses
across all memory. We color the addresses whose function value changes when applying the offset in green (0 → 1) or blue (1 → 0).

DRAM3

DRAM2

PCI

DRAM1

DRAM2

DRAM3

DRAM1

DRAM3

DRAM2

DRAM1

TOM

4 GiB

0 GiB

CPU
(Phys. Addr. Space)

Intel
OS Invisible

Reclaim

AMD
Shifting by
Offsetting

Figure 3. Remapping of higher address ranges to unused parts
of physical memory on Intel and AMD CPUs. The Top of Mem-
ory (TOM) is the system’s highest addressable memory location.

System Address Map. We now provide an explanation and
supporting evidence for the existence of this offset.

The physical address space is divided into ranges backed by
main memory (i.e., DRAM) and ranges for memory-mapped
I/O (MMIO) devices. In particular, PCI(e) devices are com-
monly mapped just below the 4 GiB boundary to keep 32-bit
compatibility, thus masking parts of main memory. Due to
DRAM sizes in the order of gigabytes, CPU vendors intro-
duced mechanisms to remap the otherwise inaccessible part
of DRAM to a higher address range, as shown in Figure 3. In-
tel still employs this “OS Invisible Reclaim” mechanism [16,
p. 19], but AMD stopped documenting “Memory Hoisting” [2,
§2.9.12] with the Zen microarchitecture. Our findings suggest
that newer AMD processors shift all physical addresses above
4 GiB by a fixed, system-specific offset. This offset depends
on the system’s hardware configuration, e.g., mainboard, in-
stalled PCI(e) devices.

Automation. To avoid having to brute force the physical
address offset, we analyze the system memory map of our
target systems to find the location of the primary PCI memory
mapping.2 For example, as we show in Table 2, the PCI mem-
ory range on Z2 starts at 3584 MiB and ends at 3968 MiB.
This allows us to precisely calculate the system’s address
offset by determining the difference between the PCI map-
ping’s start address and the 4 GiB boundary, for example,
4096− 3584 = 512MiB for Z2. We apply the offset to our
physical addresses before brute forcing the address functions
to produce valid functions on all our systems.

2In Linux, the “PCI Bus 0000:00” in the (privileged) /proc/iomem file.

System PCI Range
[MiB]

Offset
[MiB]

Z+++ 3072 – 4048 1024
Z2 3584 – 3968 512
Z3 3328 – 4076 768

Table 2. Primary PCI memory
mappings and detected physi-
cal address offsets, i.e., differ-
ence between 4GiB and the
PCI mapping’s start address.

4.3 Recovered Address Mappings
We run DARE on all our systems using single and dual-rank
DIMMs. DARE successfully reverse engineers the address
functions for all memory configurations on all three systems.
For simplicity, we limit our analysis to single-channel, single-
DIMM systems with default UEFI settings, as this is sufficient
for performing Rowhammer.

To validate our results, we verify the functions’ correct-
ness using a high-bandwidth oscilloscope similar to previous
work [32]. This also allows us to obtain the function labels
(i.e., assign functions to the DRAM address components) and
clarify the cases where our tool found linear combinations of
the actual address functions. We note that this manual step is
not required for Rowhammer attacks.

Results. We provide a list of all our reverse engineered and
oscilloscope-validated address functions for three AMD Zen
microarchitectures and different memory configurations in
Table 3. Note that some physical address bits are above the
1 GiB mark, which explains why DARE uses as many 1 GiB
superpages as possible while building same-bank address
clusters.

Observation 2. We need access to a memory block larger
than 1 GiB to entirely recover all DRAM address mappings.

Discussion. To the best of our knowledge, we are the first
to reverse engineer and provide physically validated DRAM
address mappings on recent AMD Zen-based systems with
consideration of the address offsets. Further, we provide an
improved reverse-engineering tool to reproduce and extend
our results with more memory configurations as needed.

Row Mapping. DARE, just like DRAMA, does not allow the
detection of physical address bits used for DRAM row and
column indices. Therefore, before we can experimentally
evaluate our address mappings using a Rowhammer attack, we
need to extract the row mapping. Based on previous results [9,
42], we assume that the highest available address bits are used

Table 3. Reverse engineered address mappings and offsets for different DRAM configurations. All memory configurations are single-channel,
single-DIMM, with the tuple indicating the DIMM’s geometry (#ranks, #bank groups, #banks per bank group, #rows).

Sys. Geometry
(RK, BG, BA, R)

Size
[GiB]

Offt.
[MiB]

DRAM Address Functions Row
BitsRank (RK) Bank Group (BG) Bank Address (BA)

Z+++ (1, 4, 4, 216) 8 1024 n/a 0x088883fc0, 0x111104000 0x022228000, 0x044450000 32 – 17
(2, 4, 4, 216) 16 1024 0x3fffe0000 0x111103fc0, 0x222204000 0x044448000, 0x088890000 33 – 18
(2, 4, 4, 217) 32 1024 0x7fffe0000 0x111103fc0, 0x222204000 0x444448000, 0x088890000 34 – 18

Z2 (1, 4, 4, 216) 8 512 n/a 0x088883fc0, 0x111104000 0x022228000, 0x044450000 32 – 17
(2, 4, 4, 216) 16 512 0x3fffe0000 0x111103fc0, 0x222204000 0x044448000, 0x088890000 33 – 18
(2, 4, 4, 217) 32 512 0x7fffe0000 0x111103fc0, 0x222204000 0x444448000, 0x088890000 34 – 18

Z3 (1, 4, 4, 216) 8 768 n/a 0x022220100, 0x044440200 0x088880400, 0x111100800 32 – 17
(2, 4, 4, 216) 16 768 0x3fffe0000 0x044440100, 0x088880200 0x111100400, 0x222200800 33 – 18
(2, 4, 4, 217) 32 768 0x7fffe0000 0x444440100, 0x088880200 0x111100400, 0x222200800 34 – 18

for row indexing, which we verified with our oscilloscope.
For example, a 16 GiB device (with 216 rows) consists of 234

individually addressable bytes, and a row index is described
by the bits (a33,a32, . . . ,a18).

4.4 Enabling Exploitation
On our Intel Coffee Lake system the bank, bank group, and
rank bits all fall within the lower 21 bits, i.e., within a transpar-
ent huge page (THP). However, we noticed that the address
functions on AMD Zen 2 and Zen 3 systems can cover up to
bit 34 (see Table 3). This makes exploitation without knowing
these bits challenging. Previous methods assume DRAM func-
tions with all addressing bits falling in the lower 21 bits [24],
do not take advantage of THPs [25], or color THPs for other
purposes such as cache eviction [9]. We now describe how the
bank conflict side channel and the reverse-engineered DRAM
mappings can be combined to detect consecutive same-bank
rows, which is crucial for Rowhammer attacks.

Coloring THPs. We allocate 256 MiB of 2 MiB-aligned
memory and turn it into 2 MiB THPs by using madvise. We
then iterate in steps of 2 MiB over the allocated memory such
that the 21 lower bits are always the same. As the upper phys-
ical address bits are unknown, we cannot directly apply our
recovered address functions. Instead, we use the bank conflict
side channel to measure if the current THP conflicts with any
other THP we found before. If two THPs conflict, we assign
them the same color; otherwise, we assign a new color to the
current THP. This approach allows us to assign a color to
each THP based on the unknown upper physical address bits.

Detecting same-bank rows. Given that THPs are 2 MiB con-
tiguous memory regions, we know that the lower 21 physical
and virtual address bits are the same. Thus, we can group
the THPs of the same color and use our recovered address
functions on the lower bits to address consecutive same-bank
rows. For that, we iterate over the row index bits that fall into
the lower 21 bits. As they may overlap with bank address bits,
it may require flipping lower (non-overlapping) bits to stay
within the same bank. As the values of the DRAM functions

for all THPs with the same color are identical, we can use
the same THP row offsets for all THPs of the same color.
Finally, we validate the row addresses using our bank conflict
side channel and discard all THPs where any two rows do not
cause bank conflicts.

Results. We measured how long the coloring and detecting
same-bank rows take on our Zen 3 system with a dual-rank
DIMM (S2 in Table 4). The THP coloring took on overage
39.23 s and must be repeated for each attack as the THP al-
location in physical memory changes. Detecting same-bank
rows for each THP color is a one-time cost that can be pre-
computed for each system memory configuration and took on
average 18 ms.

4.5 Evaluation
In addition to the physical validation of our mappings, we
use Rowhammer on our AMD systems with non-uniform
hammering patterns [17] to see if we can trigger bit flips, as
this requires precise DRAM addressing. Further, we evaluate
the recent Half-Double patterns [24].

Threat Model. In our evaluation, we assume that the CPU
model of the target machine is known to the attacker and that
they have obtained the correct DRAM address mappings, for
example, using DARE. We further assume that an unprivi-
leged attacker can execute programs on the victim’s machine
but does not know anything more specific about the DRAM
devices (e.g., DRAM chip manufacturer).

Setup. We modify the reference implementation of Black-
smith [17].3 Our changes include adding the address map-
pings we found previously and other necessary platform
changes, such as timing thresholds, as the fuzzer was orig-
inally designed for an Intel Coffee Lake system. However,
we do not apply any microarchitecture-specific optimizations.
For the evaluation, we do six-hour fuzzing runs on both Z2
and Z3 with the ten DDR4 DIMMs listed in Table 4 that we or-
dered randomly from an online retailer. These DIMMs cover

3https://github.com/comsec-group/blacksmith

https://github.com/comsec-group/blacksmith

Table 4. DDR4 UDIMMs used in the evaluation of our AMD Zen-
optimized Rowhammer fuzzer. We abbreviate the DRAM vendors
Samsung (S), SK Hynix (H), and Micron (M). For each device, we
report the number of ranks (RK), bank groups (BG), banks per bank
group (BA), and rows (R).

ID Production
Date

Freq.
[MHz]

Size
[GiB]

DIMM Geometry
(RK,BG,BA,R)

S0 Q3-2020† 2132 8 (1, 4, 4, 216)
S1 Q3-2020† 2132 16 (2, 4, 4, 216)
S2 Q2-2020 2666 32 (2, 4, 4, 217)
S3 Q4-2017 2400 8 (1, 4, 4, 216)
S4 Q3-2020† 2666 8 (1, 4, 4, 216)
S5 Q2-2020 2666 16 (2, 4, 4, 216)
H0 Q3-2020† 2132 16 (2, 4, 4, 216)
H1 Q4-2020 2400 8 (1, 4, 4, 216)
M0 Q1-2020 2666 8 (1, 4, 4, 216)
M1 Q1-2020 2400 8 (1, 4, 4, 216)

† Purchase date used as production date unavailable.

Table 5. Result of running Blacksmith with our address mappings
and platform fixes (e.g., thresholds) on AMD Zen 2 and Zen 3 sys-
tems, compared to our Intel Coffee Lake baseline. We report for each
device the number of patterns found (|P+|) and the number of bit
flips over all patterns (|Ffuzz|). We omit devices without any bit flips.

ID Zen 2 Zen 3 Coffee Lake
|P+| |Ffuzz| |P+| |Ffuzz| |P+| |Ffuzz|

S0 14 19 0 0 122 3,502
S1 4 4 0 0 102 1,374
S2 14 28 0 0 782 22,339
S3 0 0 0 0 3 3
S4 4 5 0 0 47 654
S5 6 7 0 0 155 4,131
H1 0 0 0 0 24 35
M1 0 0 0 0 16 23

the three major DRAM manufacturers. To allow comparison
with Intel, we further run the same code on the same DIMMs
on a Coffee Lake (Core i7-8700K) machine.

Results. The result of our evaluation is presented in Table 5.
It shows that with our minimal changes, we can trigger bit
flips on our Zen 2 system; however, only on 5 of 10 modules.
We could not find any patterns on Zen 3. This is much lower
than compared to 8 of 10 modules on the Intel Coffee Lake
platform. We further note that the number of patterns found
in the worst case (S2) is roughly 50x smaller on Zen 2 (14
patterns) than on Coffee Lake (782 patterns).

We also tested Half-Double [24] patterns on all DDR4
devices with our address mappings and the reference imple-
mentation.4 As we did not find any bit flips on our devices
using these patterns, and Half-Double has not been shown to
be exploitable on x86-64 machines, we disregard these pat-

4https://github.com/IAIK/halfdouble

Listing 1. Refresh synchronization routine as used by Blacksmith.

void ref_sync_original(volatile char* rows[2]) {
while (true) {
uint64_t start = rdtscp(); /* START TIMER */
lfence();

*rows[0]; *rows[1];
clflushopt(rows[0]); clflushopt(rows[1]);
uint64_t stop = rdtscp(); /* STOP TIMER */
lfence();
if ((stop - start) > THRESHOLD) break;

}
}

terns in the remainder of this work, and base ZENHAMMER
on non-uniform Rowhammer patterns.

Based on our results, we conclude that the common ham-
mering instruction sequence as used by Blacksmith [17] and
others [10] encodes implicit assumptions about the underly-
ing Intel microarchitecture. Our results show that this signifi-
cantly affects Rowhammer’s effectiveness on other platforms,
such as the AMD systems targeted in this work. Motivated
by this, we investigate the two crucial aspects of hammering,
namely, refresh synchronization (Section 5) and the activation
rate (Section 6) on AMD systems, and show how ZENHAM-
MER can improve them.

5 Refresh Synchronization
As shown by previous work [9, 10, 12, 17], it is essential to
synchronize Rowhammer patterns with refresh commands.
This is necessary as in-DRAM mitigations (i.e., TRR) have
been shown to act during REFs. Synchronization is commonly
done by detecting spikes in memory access latency, which
correspond to when DRAM is briefly unavailable during re-
freshes [9, 10]. In this section, we investigate whether the
refresh synchronization mechanism used by Blacksmith is
effective on AMD Zen-based systems.

5.1 Blacksmith Synchronization
In Listing 1, we present Blacksmith’s synchronization rou-
tine, which uses two same-bank rows. This method relies on
RDTSCP to capture timestamps, LFENCE to serialize the execu-
tion stream, and CLFLUSHOPT to immediately flush accessed
rows. It assumes a REF has been detected whenever the timing
measurements exceed a predefined threshold.

Evaluation. To detect whether synchronization works prop-
erly, we evaluate the time between detected refreshes, both on
Z+++ and Z3. When refresh commands are correctly detected,
we expect the time between them to be around 7.8 µs, i.e.,
tREFI as specified by the DDR4 standard [18].

Results. The experiment results, each with 10 K iterations,
are presented in Figure 4. The median latencies are 7.62 µs for
Z+++ and 5.37 µs for Z3.5 While the data for the Zen+ system

5For a fair comparison with Blacksmith, which uses AsmJit [23] to just-in-
time (JIT) compile hammering patterns and their synchronization from x86-

https://github.com/IAIK/halfdouble

0 5 10 15 20
100

102

104

0 5 10 15 20

7.8µs7.8µs

Measured REF-to-REF interval [µs]

#
Sa

m
pl

es +Z Z3

Figure 4. Measured time between successive REFs using the refresh
synchronization routine ref_sync_original(), for both Z+++ and
Z3. The number of samples (y-axis) are logarithmically scaled.

suggests that this method works quite reliably, REFs are often
detected too early on Zen 3. This could be because of two
reasons: either the refresh detection fails most of the time,
or the memory controller schedules REFs opportunistically.
The latter is possible because the DDR4 standard [18] only
specifies the average time between refresh commands and
allows for some flexibility. In the following section, we will
show that it is possible to detect the majority of refreshes
reliably, as the original refresh synchronization method is
inadequate on our AMD platforms.

5.2 Precise and Reliable Synchronization
We analyzed Blacksmith’s refresh synchronization routine
as used by ZENHAMMER to identify possible measurement
errors. By looking at the source code (Listing 1), we identi-
fied a brief time window, where fencing (lfence) happens,
that is not measured between the stop timestamp and the
next iteration’s start timestamp. As the memory controller
has some flexibility for scheduling refresh commands, it can
happen that a REF sometimes remains undetected if it falls
into this untimed gap. Furthermore, the memory controller
may schedule the REF commands opportunistically during
flush instructions, reducing the accuracy of detecting the REF
commands.

Continuous Measurements. To mitigate this issue, we pro-
pose a modified refresh synchronization routine with con-
tinuous, non-repeating timing measurements: each recorded
timestamp serves as both the end time of the current measure-
ment round and the start time of the next. This ensures that
all the instructions are included in the timing measurement.
To ensure that the memory controller does not opportunisti-
cally schedule REF commands during the flush instructions,
we avoid flushing during the synchronization phase. We solve
this by designing a new method that allows a flexible number
of rows and measures the latency of each memory access
individually.

Avoiding Cache Hits. To avoid CLFLUSHOPT during synchro-
nization, our code can only access different rows not to incur
cache hits. To evict the cache lines for the subsequent synchro-
nization phase, we flush the accessed rows after the REF is
detected. Our continuous, non-repeating timing measurement

64 assembly, we implement all routines using AsmJit. We show equivalent C
representations throughout this paper.

Listing 2. Our continuous, non-repeating refresh synchronization.

void ref_sync_nonrep(volatile char* rows[64]) {
uint64_t prev = rdtscp();
for (size_t i = 0; i < 64; i++) {

*rows[i];
uint64_t curr = rdtscp();
if ((curr - prev) > THRESHOLD) break;
prev = curr;

}
// REF detected here (or ran out of rows)
for (size_t i = 0; i < 64; i++) clflushopt(rows[i]);

}

#Rows
Median [µs] Outliers [%]

Z+++ Z3 Z+++ Z3

16 2.01 2.62 7.3 24.7
32 1.19 4.41 43.4 71.4
64 7.81 7.77 0.3 0.6

128 7.93 7.85 0.3 0.7
256 7.80 7.71 0.2 0.7

Orig.† 7.62 5.37 1.1 93.4
† The original refresh sync. routine

with 2 rows (see Figure 4).

Table 6. REF-to-REF inter-
val when using the con-
tinuous, non-repeating tim-
ing measurement routine
(ref_sync_nonrep) for dif-
ferent numbers of rows on
Z+++ and Z3. We identify as
outliers all the values that
differ more than 10 % from
the median.

routine is presented in Listing 2.

Evaluation. We evaluate our new routine using the same ex-
periment as before. We show the obtained distribution of mea-
sured REF-to-REF intervals in Table 6. The results demonstrate
that when more than 32 rows are employed in the synchroniza-
tion, we correctly identify refreshes on all our systems. This
means that a sufficient number of unique rows is necessary
to cover an entire refresh interval (i.e., 7.8µs) before falling
through the end of the detection loop.

Observation 3. Continuous, non-repeating time measure-
ments strongly improve the reliability of our refresh com-
mand detection.

6 Activation Rate
We noticed that the number of tested patterns on the AMD sys-
tems is significantly lower than on the Intel Coffee Lake base-
line during fuzzing, on average by 45 % (Z2) and 52 % (Z3).
As we fuzz for a fixed period (6 h) while hammering each pat-
tern for 5 M activations, this suggests that each individual pat-
tern takes significantly longer to hammer. To investigate this,
we measure hammering execution times to compute the aver-
age number of activations per refresh interval (ACTs/tREFI)
for each pattern. We present the comparison between Z+++, Z3,
and Coffee Lake in Figure 5. The data shows that the average
number of ACTs/tREFI achieved on Z+++ (41.9) and Z3 (37.2)
are only about half when compared to Coffee Lake (76.8).
The lower activation rate on the AMD systems have a direct
impact on Rowhammer as discussed next.

Hammer Count Estimation. We now approximate the ham-
mer count (HC) that a victim row is subjected to given these

30 40 50 60 70 80 90 100
#ACTs/tREFI

R
el

.f
re

qu
en

cy

Z3

Z+

CL

Figure 5. Distribution of the activation rates of non-uniform ham-
mering patterns on Z+++, Z3, and Intel Coffee Lake (CL). The whiskers
indicate the minimum and maximum values.

activation rates. The estimation is made on a refresh window,
as the bit flip needs to happen before the refresh of the victim
row. In a refresh window, there are 8192 refresh intervals
(tREFI). For an activation rate of 40 ACTs/tREFI, this results
in a maximum of 328 K row activations before the victim
row is refreshed. We consider a device with a Rowhammer
mitigation that keeps track of 16 aggressors at a time [12].
To perform an effective double-sided Rowhammer on such
a device, we need to hammer 18 rows, two aggressors and
16 dummy rows [10]. Assuming that we hammer the rows uni-
formly, this results in a cumulative HC of 36 K for the victim
row. This is smaller than the minimum hammer count (HCmin)
reported for many DDR4 devices by previous work [21, 26].
Therefore, based on these estimates, activation rates are insuf-
ficient to induce Rowhammer bit flips on many devices from
AMD Zen-based CPUs. Thus, we aim to improve activation
rates to enable more effective hammering. To this end, we first
analyze possible hammering instruction sequences to find the
optimal way to hammer.

6.1 Instruction Sequences
Existing studies [8, 9, 13, 33] proposed and evaluated differ-
ent hammering sequences. For example, Cojocar et al. [8]
showed that the sequence of machine instructions used for
hammering affects the rate of activations. As they performed
their experiments on Intel CPUs, it is unlikely that their results
transfer to our AMD processors. Therefore, we perform our
own analysis of possible instruction sequences.

We start by analyzing the standard instruction sequences
used by ZENHAMMER. They flush the cache directly after
each access (“scatter” [9]) and fence (MFENCE) after each flush
(“fence each”). However, this instruction sequence might not
be optimal on AMD systems, as our earlier results suggest.
In the following (a–e), we present the fundamental building
blocks of possible hammering instruction sequences.

a. Cache Flushing. Because a hammered aggressor is
cached, we need to ensure that subsequent hammering ac-
cesses are fetched from DRAM again. For flushing aggres-
sors from the cache, we can use CLFLUSH or the optimized
CLFLUSHOPT. The latter avoids serialization, which improves
concurrency when used back-to-back [8, 13]. Depending
on the Rowhammer pattern, we might have some flexibil-
ity in deciding when to issue the flushing instructions: either
batched together for all aggressors at the end of the pattern

Table 7. Heatmap of memory access rates (in ACTs/tREFI) for
different instruction sequences and varying the number of accessed
rows on the Z3 system. We omit unsuitable sequences with a low
throughput (≤ 100 ACTs/tREFI) and sequences indicating cache
hits with a very high throughput (≥ 1000 ACTs/tREFI), and provide
the complete table in Appendix B.

Access
Type

Flushing
Strategy

Fence
Type

#Rows

1 2 4 8 16 32 256

MOV (load) gather M 24 49 71 91 100 110 114
MOV (load) gather L 24 49 80 113 134 147 121
MOV (load) gather S 24 49 80 113 133 146 125
MOV (load) gather — 24 49 80 113 133 146 125
MOV (load) scatter M 24 49 79 107 126 143 157
MOV (load) scatter L 24 49 95 137 149 153 159
MOV (load) scatter S 24 48 97 154 159 159 159
MOV (load) scatter — 24 49 97 154 159 159 159
PREFETCHNTA scatter — 80 132 191 208 253 309 273
PREFETCHNTA scatter M 24 49 80 108 131 170 284
VGATHERDD scatter — 24 49 79 112 159 159 159

(i.e., “gather”), or directly after each memory accesses (i.e.,
“scatter”) [9].

b. Memory Barriers. To ensure that aggressors are flushed
from the cache before they are accessed again, existing ap-
proaches rely on memory barriers. For example, MFENCE se-
rializes all preceding loads and stores, LFENCE serializes all
preceding loads, and SFENCE serializes all preceding stores.
Given our “scattered” flushing, fences can either be placed af-
ter every flush (“fence each”) or only once at the end (“fence
once”). Lastly, we may omit fences to sacrifice some accesses
(hitting the cache) for a higher activation rate [8].

c. Access Types. Typically, load instructions are used to
execute Rowhammer patterns on regular x86-64 machines.
This is necessary because the DRAM activate command that
triggers the Rowhammer effect cannot be directly issued.
Instead of loads, Rowhammer is also possible using store
operations, as they also induce row activations [8].

d. Non-Temporal Instructions. The x86 ISA specifies non-
temporal instructions that bypass CPU caches entirely, thus
avoiding cache flushing [33]. However, they either require
non-standard write-combining (WC) memory (MOVNTDQA),
may prefetch data from L3 cache instead of accessing DRAM
(PREFETCHNTA), or can be cached in WC buffers (MOVNTI).

e. Vector Instructions. The gather family of AVX2 load
instructions can be used to load data from a non-contiguous
address list. As an example, VPGATHERDD loads up to eight
32-bit values simultaneously [3]. This method still requires
cache-flush instructions and possibly memory barriers.

Evaluation. We implement an experiment to evaluate the per-
formance of various instruction sequences. For this, we pick
N random row addresses and access them in a loop for 10 M
memory accesses while recording the elapsed time. Later, we
use the measured time to compute the activation rate. Note
that N also corresponds to the distance between consecutive

accesses to the same row, which we sweep between 1 and 256
to cover the various distances in non-uniform patterns. The
result from Z3 is visualized in Table 7 (similar results on Z+++).
From these, we derive the following six observations (O1-O6)
and three concrete recommendations (R1-R3):

(O1) Non-temporal instructions hit caches: Non-temporal
instructions such as PREFETCHNTA have access rates ex-
ceeding the available bandwidth, thus suggesting cache
hits. Therefore, we disregard such instructions.

(O2) More rows increase the ACT rate: Using more rows al-
most always increases the rate of memory accesses,
except for “fence each” sequences.

(O3) CLFLUSHOPT is slightly faster than CLFLUSH: In most
cases, there is no measurable difference between them.
In a few cases, CLFLUSHOPT produces up to 5% higher
activation rates.

R1. Always use CLFLUSHOPT over CLFLUSH to max-
imize the activation rates.

(O4) “scatter” is always faster than “gather”: The “scatter”-
style cache flushing always produces higher access
rates than the equivalent “gather” sequence. Further, as
our non-uniform frequency-based patterns may ham-
mer the same aggressors multiple times consecutively,
we consider only “scattered” flushes.

R2. Schedule cache flushes in a “scatter”-style, i.e.,
flush immediately after accessing an aggressor.

(O5) Loads are always faster than stores: All sequences us-
ing store instructions result in low memory access rates
(up to 76 ACTs/tREFI), with reductions between 5 %
and 56 % compared to equivalent load sequences.

R3. Always prefer load instructions to hammer over
store instructions to optimize activation rates.

(O6) AVX instructions are fast but complex to implement:
The AVX VPGATHERDD instruction produces memory
access rates comparably to regular loads (i.e., MOV).
However, it is more complex to implement than regular
loads. This is especially the case for non-uniform
patterns that hammer aggressors with different
frequencies and with flushes in between.

Based on these results, we exclude CLFLUSH, “gather”-style
flushing, stores, non-temporal accesses, and AVX2 vector in-
structions in the remaining experiments. Thus, we will focus
on CLFLUSHOPT, “scatter”-style flushing, and the different
types of fences for loads (M/LFENCE and “no fence”).

We further run this experiment on Intel Coffee Lake to
allow comparison with the results of our AMD systems. We
provide the full results in Appendix B. The results show that
the activation rates on Coffee Lake are generally higher for all
tested configurations.

Table 8. Overview of our proposed fence scheduling policies. We
indicate which policies are pattern-aware by taking the pattern’s
structure into account and which are cache-avoiding.

Policy Fencing Frequency Pattern- Cache-
Example Aware Avoiding

SPnone no fences within pattern ✘ ✘

SPBP between base periods ✔ ✘

SPBP/2 every half base period ✔ ✘

SPpair between different aggr. pairs† ✔ ✘

Ex.: | a1 a2 a1 a2 | a3 a4 |
SPrep between aggr. pair repetitions ✔ ✔

Ex.: | a1 a2 | a1 a2 | a3 a4 |
SPfull after every access ✘ ✔

Ex.: | a1 | a2 | a1 | a2 | a3 | a4 |
† In Blacksmith’s terminology [17]: rows that are 2 rows apart and

have the same frequency, phase, and amplitude.

Ordering of Loads and Cache-Flushes. We notice that the
sequences without memory barriers (“no fence”) do not ex-
ceed the activation rate of sequences with fences. This sug-
gests that memory loads are served by DRAM, and conse-
quently, load-flush-load sequences to the same address are
strongly ordered. This is surprising, as AMD documents loads
only to be ordered with same-cacheline stores [4].

To confirm our observation that all load requests are served
by DRAM, we use the CPU’s performance counters to mea-
sure the number of data cache fills by DRAM. On Z3, we
find that the number of measured cache fills does not differ
between sequences with and without memory barriers. More-
over, this value is equal to the number of loads issued while
hammering. Instead, on Z+++ and Z2, this is not the case, and
we observe up to 70 % cache hits in some cases.

Observation 4. Memory load requests following a
CLFLUSH(OPT) to the same cache line never incur cache
hits on Zen 3, but do incur cache hits on Zen+ and Zen 2.

As omitting all fences leads to very high activation rates
without incurring cache hits (on Z3), it seems like the opti-
mal choice for efficient Rowhammering. However, omitting
memory barriers allows reordering the accesses of different
aggressors. The reason is that both load and flush instructions
are not ordered between different cache blocks [4], and thus
may be rearranged by the processor. This can hinder us in
effectively bypassing some TRR mitigations, which are sensi-
tive to the order of row activations [12]. Therefore, we need to
determine the optimal balance between high activation rates
and strict ordering.

6.2 Fence Scheduling Policies
Based on Observation 4, we hypothesize that we may omit
some fences to speed up pattern execution, while keeping oth-
ers to preserve sufficient ordering. To explore this trade-off
between high activation rates and strict ordering of mem-
ory accesses, we propose six different fence scheduling poli-

0

25

50

75

100

D
IM

M
s

[%
]

Zen 2 Zen 3

SPrep SPfull

Samsung
SPnone

SK Hynix
 SPpair

Micron Samsung SK Hynix Micron

Figure 6. Comparison of the four effective scheduling policies
(SPnone, SPpair, SPopt, SPfull) grouped by vendors, normalized by
#devices per vendor. The dashed areas indicate how often each pol-
icy was the best in the no. of effective patterns. The percentages per
vendor sum up to the total percentage of devices with bit flips.

cies (SPs), which are summarized in Table 8. Besides the
two simple polices, no fences (SPnone) and fencing after ev-
ery access (SPfull), we propose four policies that take the
pattern’s structure into account, fencing every (SPBP) or
every half base period (SPBP/2), fencing between aggres-
sor pairs (SPpair), and fencing between repetitions of the
same aggressors (SPrep). Some scheduling policies are cache-
avoiding, i.e., they strongly order all consecutive accesses to
the same aggressor. However, we still consider all policies
on all our systems, as previous work has shown that omitting
fences can lead to both higher activation rates [8] and more
bit flips [43] despite possibly incurring cache hits.

Evaluation. We evaluate the effectiveness of our fence
scheduling policies in two ways. To begin with, we build
a theoretical model for the amount of ordering provided by
different scheduling policies, and contrast this with the ham-
mering speeds obtained with the respective policies on our
systems, as described in Appendix C. The results show that
SPpair and SPrep can provide significantly higher activation
rates when compared to SPfull without allowing significant
reordering. To validate our theoretical model against the real
world, we perform 6 h fuzzing for each of our ten DIMMs (Ta-
ble 4. We employ the two proposed policies SPpair and SPrep,
and for comparison SPnone and SPfull. As the activation rate
experiment (Section 6.1) was inconclusive in defining which
memory barrier is optimal, we randomize the fence type be-
tween MFENCE and LFENCE.

In Figure 6, we show the results of our experiments. We
present how many configurations generated at least one effec-
tive hammering pattern per vendor, normalized by the number
of DIMMs from that vendor. These results describe which
configuration is most widely effective for each DRAM vendor.
From the data, we observe that fencing is not strictly required,
as SPnone found bit flips on all devices from Samsung on both
Zen 2 and Zen 3. However, SPpair is the most effective pol-
icy on Zen 2 across most devices (75%). The same, but less
significantly, applies to Zen 3.

Observation 5. For Samsung devices, the scheduling pol-
icy SPpair is the most widely applicable (across devices)
and most effective (across patterns).

For SK Hynix devices, we can see that SPpair works on all
tested devices. We have also found effective patterns with
SPnone and SPrep on half of all devices.

Observation 6. For SK Hynix devices, choosing SPpair
works best across different devices.

Lastly, we have not found any effective hammering pattern
for Micron devices using SPnone, which indicates that ordering
is essential for these chips. This behavior could be explained
by the type of deployed in-DRAM mitigation. Rowhammer
mitigations that sample rows with non-uniform probabili-
ties are harder to evade if the accesses are uncontrollably
reordered.

Observation 7. Preserving ordering in hammer patterns is
essential on Micron devices.

As the results show that the best scheduling policy may
vary for different devices from the same vendor, we do not
incorporate vendor-specific policies in ZENHAMMER.

7 Evaluation

In this section, we compare ZENHAMMER, especially de-
signed for Rowhammer on Zen-based systems, to the baseline
established on Intel in Section 4.5. In addition, we assess
the impact of our optimizations on the effectiveness of ZEN-
HAMMER and evaluate the exploitability of the discovered
bit flips. We first describe our evaluation setup and methodol-
ogy (Section 7.1) and then present and discuss the results (Sec-
tion 7.2). We conclude by applying ZENHAMMER on DDR5
devices (Section 7.3).

7.1 Setup and Methodology
For our evaluation, we pick the same previously used DDR4
devices (Sections 4 and 6), covering DRAM chips from
all three major DRAM manufacturers, Samsung (S), SK
Hynix (H), and Micron (M). For establishing the Intel base-
line, we used an Intel Core i7-8700K. The AMD Zen 2 and
Zen 3 machines are equipped with the CPUs listed in Table 1.
All machines use default UEFI settings and device timings.

In line with previous work [10, 17], we evaluate ZENHAM-
MER in three stages: (i) fuzzing for 6 h using ZENHAMMER
for each configuration (i.e., fence scheduling policy), (ii) de-
termining the best pattern using a minisweep over all effective
patterns by moving the pattern over a physically contiguous
4 MiB of memory, and (iii) sweeping the best pattern found
over a physically contiguous 256 MiB memory range to as-
sess the device’s vulnerability level and assess the bit flips’
exploitability. We note that our approach does not rely on
any DRAM device-specific knowledge as we tested all fence
scheduling policies and fence types on each device to deter-
mine the optimal per-device configuration (see Section 6).

ID
Zen 2 Zen 3 Coffee Lake

SPopt |P+| |Ffuzz| |Fswp| SPopt |P+| |Ffuzz| |Fswp| SPopt |P+| |Ffuzz| |Fswp|

S0 SPrep 51 151 6,945 SPnone 31 124 17,775 SPfull 122 3,502 6,782
S1 SPrep 26 97 1,758 SPpair 25 144 15,613 SPfull 102 1,374 10,106
S2 SPnone 97 1,685 12,893 SPnone 45 471 79,306 SPfull 782 22,339 1,708
S3 SPnone 8 15 2,020 SPpair 1 1 667 SPfull 3 3 0
S4 SPnone 60 182 1,183 SPpair 43 297 13 SPfull 47 654 18,357
S5 SPnone 25 83 1,911 SPpair 26 87 10,741 SPfull 155 4,131 5,860
H0 SPnone 6 13 182 – 0 0 0 – 0 0 0
H1 – 0 0 0 – 0 0 0 SPfull 24 35 0
M0 – 0 0 0 – 0 0 0 – 0 0 0
M1 – 0 0 0 – 0 0 0 SPfull 16 23 2

Table 9. ZENHAMMER results on AMD
Zen 2 and Zen 3 as well as Intel
Coffee Lake. For each of our ten de-
vices, we report the best scheduling pol-
icy (SPopt) and the number of effec-
tive patterns (|P+|) and bit flips (|Ffuzz|)
found while fuzzing with the best pol-
icy. We also show the number of bit flips
found when sweeping the best patterns
over a 256 MiB range (|Fswp|).

Table 10. Analysis of the bit flip exploitability found during the sweep over 256 MiB on AMD Zen 2, Zen 3, and Intel Coffee Lake. For each
attack, we indicate the number of exploitable bit flips (#Ex.) and average time to find an exploitable bit flip (Time). We mark DIMMs with a
single exploitable bit flip by (*). We omit DIMMs without any exploitable bit flips.

PTE [36] RSA-2048 [34] sudo [11]

DIMM Zen 2 Zen 3 Coffee Lake Zen 2 Zen 3 Coffee Lake Zen 2 Zen 3 Coffee Lake

#Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex. T. #Ex. Time #Ex. Time

S0 7 6m 4s 7 2m 55s 3 4m 15s 17 2m 47s 37 46s 14 1m 36s – – 4 3m 13s 1 *23m 49s
S1 90 9s 1474 2s 846 2s 6 2m 2s 27 30s 21 26s – – 1 *6m 50s 1 *1m 20s
S2 641 21s 5326 1s 126 11s 30 2m 16s 170 6s 6 1m 59s – – 12 1m 17s – –
S3 142 9s 61 32s – – 7 2m 21s – – – – – – – – – –
S4 220 28s 3 23m 52s 2658 1s 7 12m 29s 1 *23m 52s 53 26s – – – – 4 5m 16s
S5 102 6s 625 2s 330 4s 6 1m 14s 28 33s 11 1m 5s – – 2 5m 58s 3 2m 34s
H0 11 53s – – – – – – – – – – – – – – – –

7.2 Effectiveness and Exploitability
The results of our evaluation are presented in Table 9. We
show for each tested platform (AMD Zen 2 and Zen 3, Intel
Coffee Lake) and each DDR4 device, the number of effec-
tive patterns found (|P+|) and the number of bit flips (|Ffuzz|)
found during fuzzing with the device’s best fence schedul-
ing policy (SPopt) that we used in all three stages. For Intel
Coffee Lake, we assumed the scheduling policy SPfull, which
corresponds to the one used by the original Blacksmith fuzzer.

We also show for the best pattern, the total number of
bit flips over the sweeped 256 MiB of physically contiguous
memory (|Fswp|), which we then use to assess exploitability
of three known Rowhammer end-to-end attacks in Table 10.

For the exploitability analysis, we follow prior work [7,
10, 17] and use the Rowhammer attack simulation framework
Hammertime [37] to estimate the required time for three pre-
viously proposed Rowhammer attacks targeting (i) page table
entries (PTE) to craft an arbitrary memory read/write prim-
itive [36], (ii) RSA-2048 keys to break the SSH public-key
authentication [34], and (iii) the sudo binary to elevate the
privilege to the root user [11]. We use the bit flips we found
during the sweep with the best pattern to perform the ex-
ploitability analysis.

Results. Our results in Table 9 show that our Zen-based plat-
form optimizations have strongly improved the number of de-
vices we can trigger bit flips on, from 5 and 0 devices before

any optimizations (see Table 5) to 7 and 6 devices afterward,
for Zen 2 and Zen 3, respectively. The number of effective
hammering patterns found further increased drastically, in the
best case (S2) by roughly six times (from 14 to 97). Moreover,
the results on Zen 3, where we had not found any bit flips
previously, stress the need for our optimizations to trigger
any bit flips on the AMD Zen 3 platform. This shows that
the hammering instruction sequence and fence scheduling
policy are important when adapting Rowhammer attacks to
new platforms.

Nevertheless, we note that there are still strong differences
in terms of hammering effectiveness between AMD and Intel.
On Intel, four of eight DIMMs have a higher bit flips count
in the sweep than the same devices on Zen 2. Interestingly,
there is one device (H0) where we could not find any bit
flip on Coffee Lake while ZENHAMMER is successful on
Zen 2. Generally, our optimizations seem to be more effective
on Zen 3, where the number of bit flips of the best pattern
during the sweep is in 5 out of 6 cases higher than on Coffee
Lake. In the best case (S2), we find 46x more bit flips on
Zen 3 (79,306) than on Coffee Lake (1,708). These results
suggest that the effectiveness of a Rowhammer attack does
not entirely depend on the activation rate, which is generally
higher on Coffee Lake than on Zen 3, but also on enforcing
the order of aggressor accesses (i.e., the fencing policy) and
CPU-specific memory controller optimizations.

Table 11. Reverse engineered address mappings and offsets for our Zen 4 (Ryzen 7 7700X) system. All memory configurations are single-
channel, single-DIMM, with the tuple indicating the DIMM’s geometry (#subchannels, #ranks, #bank groups, #banks per bank group, #rows).

Geometry
(SC,RK,BG,BA,R)

Size
[GiB]

Offt.
[MiB]

DRAM Address Functions Row
BitsSubchannel Rank Bank Group (BG) Bank Address (BA)

(2, 1, 4, 4, 216) 8 2048 0x1fffe0040 n/a 0x088880100, 0x111100200 0x022220400, 0x044440800 32 – 17
(2, 1, 8, 4, 216) 16 2048 0x3fffc0040 n/a 0x042100100, 0x084200200, 0x210840400, 0x021080800 33 – 18

0x108401000

(2, 2, 8, 4, 216) 32 2048 0x7fff80040 0x000040000 0x084200100, 0x108400200, 0x421080400, 0x042100800 34 – 19
0x210801000

Exploitability Analysis. The larger number of bit flips after
our optimizations strongly facilitates exploitation, as we show
in Table 10. The PTE attack by Seaborn [35] can be exploited
in the best case in around one second on both Zen 3 and Coffee
Lake. Due to the lower number of exploitable bit flips on Zen 2,
we need in the best case six times as long (6 s) as on the two
other systems. There is one device (S3) where exploitation is
not possible at all on Coffee Lake due to missing bit flips, but
on Zen 2 and Zen 3 we can find exploitable bit flips in 9 s and
32 s, respectively. We note that even if the number of bit flips
is very low (e.g., 3 bit flips on S4, Zen 3), we were still able
to exploit the system in a practical time (23 m 52 s).

The RSA-2048 key attack [34] is on 4 of 5 exploitable
devices on average 38 s faster on Zen 3 than on Coffee Lake.
Overall, the average time to find an exploitable bit flip is
3 m 52 s, 29 s, and 1 m 6 s for Zen 2, Zen 3, and Coffee Lake,
respectively. We note that the device H0 with bit flips only on
Zen 2 is not exploitable. Our data shows that even if we find a
very low number of patterns only (e.g., 7 pattern for S3), we
still are likely to find an exploitable bit flip (2 m 21 s).

Lastly, the sudo binary exploit [11] is the hardest attack
as it requires a precise set of bit flips. Given the low number
of bit flips on Zen 2, we cannot find any exploitable bit flips
for this attack. For the remaining platforms, Zen 3 and Coffee
Lake, we find an equal number of exploitable devices (4) and
a similar average time to find an exploitable bit flip, 3 m 29 s
and 3 m 55 s, respectively, when excluding devices with a
single bit flip only. The exploitable devices are those that
showed the highest number of bit flips while sweeping on
these platforms

End-to-End Attack’s Practicality. As our exploitability anal-
ysis is based on simulation results, we further verified the
practicality of the PTE attack by Seaborn and Dullien [36].
Our attack’s implementation is based on the THP coloring
technique described in Section 4.4. Moreover, we modified
our ZENHAMMER fuzzer to use THPs like it has been done
before for n-sided patterns [9]. This means we distribute ag-
gressors across THPs such that aggressor pairs are placed on
the same THP and the pattern is spread across multiple THPs.
We successfully verified the attack’s feasibility on device S2.
Over ten successful attack runs (i.e., obtaining root privileges),
we report an average time of 93 seconds for the end-to-end at-
tack once an exploitable bit flip has been found. This includes

the time for THP coloring as reported in Section 4.4.

Discussion. These results show that using the techniques
we discussed in this paper, ZENHAMMER enables practical
Rowhammer exploits on AMD Zen-based platforms for the
first time. We also believe that our insights will make it easier
to port Rowhammer attacks to newer platforms in the future,
such as DDR5 devices, as we will show next.

7.3 ZenHammer on DDR5
As part of our evaluation, we tested whether ZENHAMMER is
effective in triggering bit flips on more recent devices (DDR5).
We reverse engineered the DRAM address functions of our
Zen 4 system (Ryzen 7 7700X) and present the functions
in Table 11. As for DDR4, we randomly picked ten DDR5
devices (Table 16 in Appendix D) and repeated the experiment
described in Section 6.2 to find the best fence scheduling
policy for each device.

We found bit flips on only 1 of 10 tested devices (S1), sug-
gesting that the changes in DDR5 such as improved Rowham-
mer mitigations, on-die error correction code (ECC), and a
higher refresh rate (32 ms) make it harder to trigger bit flips.
On S1 with the policy SPnone, we found 109 patterns and
23,110 bit flips during fuzzing. The best pattern triggered
41,995 bit flips during the sweep over 256 MiB of memory.
Given the lack of bit flips on 9 of 10 DDR5 devices, more work
is needed to better understand the potentially new Rowham-
mer mitigations and their security guarantees.

8 Related Work
In this section, we discuss differences between DARE and
existing tools for reverse engineering DRAM address func-
tions (Section 8.1). Thereafter, we discuss similar and orthog-
onal approaches used to reverse engineer the DRAM address
functions (Section 8.2). Lastly, we summarize previous ef-
forts regarding Rowhammer on pre-Zen AMD systems (Sec-
tion 8.3).

8.1 Comparison to Existing Tools
In Table 12, we compare our new reverse engineering tool
DARE to the open-source tool DRAMA [32] and concurrent
work AMDRE [14]. DRAMA was not able to recover the cor-
rect DRAM address mappings on our Zen-based systems,

Table 12. Comparison of DARE with AMDRE and DRAMA. The
table shows features and changes made for correctness (Corr.), noise
handling (Noise), and performance improvement (Perf.).

Tool Goal
DARE AMDRE DRAMA Corr. Noise Perf.

Thresh. Detection
– Autom. Detection ✔ ✔ ✔
– Reliable Timing ✔ ✔ ✘

Clustering
– Superpages ✔ ✘ ✘
– Pairwise Testing ✔ ✔ ✘

Brute forcing
– Address Offsets ✔ ✘ ✘
– Strict Validation ✔ ✔ ✘

while AMDRE could only partially (up to bit 21) recover the
Zen 2 functions due to its limitation to 2 MiB THPs.

Our changes enabled us to recover the complete and correct
DRAM address mappings in a fast and reliable way. Like
DRAMA and AMDRE, our tool requires superuser privileges
for the virtual-to-physical address translation. However, an
attacker could recover the DRAM address mappings offline,
i.e., on another system with the same hardware configuration.
We now discuss our improvements to the existing work.

Reliable Timing. The timing routine used in DRAMA does
not reliably work on AMD Zen-based systems, leading to
many outliers. In AMDRE, the timing routine works mostly
reliably, except for the few occasions where the automatic
threshold detection fails. We designed an optimized and more
reliable timing routine in Section 4.1.

Superpages. During reverse engineering, we use all avail-
able 1 GiB superpages as higher physical address bits (above
1 GiB) are involved in some address mappings. Both DRAMA
and AMDRE can be configured to use more memory; however,
only with 4 KiB pages and 2 MiB THPs, respectively.

Pairwise Testing. We reduce false positives by measuring
pairwise latencies for cluster addresses and removing those
conflicting with less than 75% of the cluster, thus creating
perfect bank clusters. AMDRE uses a similar technique to
remove false positives.

Address Offsets. The functions found by DRAMA and AM-
DRE are not valid across the whole physical address space.
This is caused by the remapping of physical memory above
the 4 GiB mark, which introduces a nonlinearity. DARE is
the first tool to take this into account by applying a system-
specific offset prior to brute forcing the XOR functions.

Strict Validation. DRAMA only requires that candidate func-
tions do not produce the same result across the clusters. Our
and AMDRE’s condition is stronger, requiring that every func-
tion returns the same result on exactly half of all clusters.
This condition allows us to filter out many invalid address
functions early on during brute forcing the functions.

8.2 Comparison to Other Techniques
The approaches used by existing work to reverse engineer the
secret DRAM address mappings can be divided into software-
based and hardware-based approaches. Software-based ap-
proaches generally require side channels, such as bank con-
flicts. Instead, hardware-based techniques require specialized
equipment like a logic analyzer. We compare the existing
approaches in Table 13, which we now explain in more detail.

Our comparison considers three categories: requirements,
results, and features. For the Requirements, we compare the
monetary costs involved (Cst.), if any special hardware is
needed (HW), and if the method relies on a side channel (SC).
In the Results category, we look at how generic (Gen.) the
approach is (i.e., if it also works with different memory config-
urations), the result’s completeness (Cpl.) w.r.t. the different
DRAM address components, and the result’s precision (i.e.,
how reliable results are). Lastly, the Features category con-
siders whether the approach can obtain labels for the found
functions (Lbl.) and analyze the devices’ internal row remap-
ping (RR).

Table 13. Comparison of existing software-based (top) and hardware-
based (bottom) techniques for recovering DRAM address mappings.
Our work uses row buffer conflicts to find the functions and an
oscilloscope to verify their validity.

Technique
Requirements Results Features

Cst. HW SC Gen. Cpl. Prec. Lbl. RR

1 Row buffer conflict
[5, 14, 32, 40, 42, 43]

2 Rowhammer [35]

3 Perf. counters [15]

4 Oscilloscope [32]

5 Logic analyzer [31]

6 Retention
+ Temp. [20]

Requirements. Software-based approaches 1 – 3 are cost-
effective, essentially free. Oscilloscopes 4 are affordable ,
while logic analyzers 5 are more expensive . Approach 6
requires an FPGA and special heating equipment . Using
Rowhammer bit flips as side channel 2 requires a vulnerable
device , which might be hard to obtain. To the best of our
knowledge, only server platforms provide hardware-based
performance counters 3 with DRAM-related data . Be-
sides Rowhammer bit flips 2 , other side channels used are
row buffer conflicts 1 and DRAM retention time 6 .

Results. Oscilloscopes 4 , logic analyzers 5 , and Rowham-
mer 2 are purely generic and support any DRAM de-
vice configuration. Exploiting row buffer conflicts 1 may
require tweaking timing thresholds in multi-DIMM/-channel
setups . Only logic analyzers 5 can recover all DRAM ad-
dress components as the limited number of channels on os-
cilloscopes 4 may make data filtering for some address com-
ponent hard or impossible . The retention time approach 6

cannot recover DRAM address bits requiring multiple DRAM
devices . The hardware-based approaches 4 – 6 and per-
formance counters 3 provide high precision , whereas row
buffer conflicts 1 require a reliable timing function . Using
Rowhammer itself 2 might be imprecise as mitigations in
the memory controller or the devices themselves could disturb
the bit flip feedback channel .

Features. All hardware-based approaches 4 – 6 provide in-
formation to derive labels for DRAM address mappings .
Depending on the availability, performance counters 3 may
have separate counters per bank and/or rank, allowing to de-
rive some labels only . Rowhammer bit flips 2 and DRAM
retention 6 are the only techniques allowing to reverse the
DRAM-internal row remapping .

Relation to Our Work. Similar to previous work, we rely
on the row buffer conflict side channel 1 to reverse engineer
the DRAM address mappings. However, as the first work,
we take the address offset into account and collect addresses
from multiple superpages, enabling us to recover the correct
mappings on all Zen-based systems. Furthermore, we use
an oscilloscope 4 , with the same method as in previous
work [32], to physically validate our address mappings.

8.3 Rowhammer on AMD
Little attention has been paid to Rowhammer on AMD in the
past decade. The original Rowhammer study from 2014 by
Kim et al. [22] showed bit flips on Intel and AMD Piledriver.
In these older systems, using the same hammering instructions
on the two systems was still effective. We demonstrated that
this is not the case anymore for modern CPUs.

Later, in 2016, a comparative analysis looked into Rowham-
mer on Intel (Sandy Bridge, Ivy Bridge, and Haswell) and
AMD (Piledriver) platforms. They showed that not only the
access rate is much lower on AMD (6.1 M/s compared to
11.6 M/s–12.3 M/s), but also the number of bit flips observed
is roughly two orders of magnitude larger for Intel (16.1 k–
22.9 k) than on AMD (59) [27]. Our findings show a lower
number of bit flips on AMD Zen 2 compared to Intel systems,
even after our optimizations.

9 Conclusion
We presented ZENHAMMER, the first successful Rowhammer
attacks launched from AMD Zen-based CPUs. To build ZEN-
HAMMER, we needed to overcome a number of challenges
including the reverse engineering of the DRAM addressing
functions by taking physical address offsets into account, a
new mechanism for synchronization with refresh commands,
and careful scheduling of flushing and fencing instructions to
improve the activation throughput of Rowhammer patterns.
ZENHAMMER is capable of flipping bits on 7 and 6 out of
our ten DDR4 samples on AMD Zen 2 and 3 respectively,
enabling Rowhammer exploits on recent AMD platforms for
the first time. We further show Rowhammer bit flips on a

DDR5 device for the first time.

Acknowledgments
We thank the anonymous reviewers for their feedback.
This research was supported by the Swiss National Sci-
ence Foundation under NCCR Automation, grant agreement
51NF40_180545, by the Swiss State Secretariat for Education,
Research and Innovation under contract number MB22.00057
(ERC-StG PROMISE), and by a Microsoft Swiss JRC grant.

References
[1] PassMark CPU Benchmarks: AMD vs Intel Mar-

ket Share. URL https://www.cpubenchmark.net/
market_share.html.

[2] Advanced Micro Devices. BIOS and Kernel De-
veloper’s Guide (BKDG) for AMD Family 15h
Models 00h-0Fh Processors, January 2013. URL
https://www.amd.com/content/dam/amd/en/
documents/archived-tech-docs/programmer-
references/42301_15h_Mod_00h-0Fh_BKDG.pdf.

[3] Advanced Micro Devices. AMD64 Architecture
Programmer’s Manual Volume 4: 128-Bit and
256-Bit Media Instructions, November 2021. URL
https://www.amd.com/content/dam/amd/en/
documents/processor-tech-docs/programmer-
references/26568.pdf.

[4] Advanced Micro Devices. AMD64 Architecture Pro-
grammer’s Manual Volume 3: General-Purpose and Sys-
tem Instructions, June 2023. URL https://www.amd.
com/content/dam/amd/en/documents/processor-
tech-docs/programmer-references/24594.pdf.

[5] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo,
and Gerardo Pelosi. Software-only Reverse Engineering
of Physical DRAM Mappings for Rowhammer Attacks.
In IVSW ’18, pages 19–24, July 2018.

[6] Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel,
Daniel Genkin, Angelos D. Keromytis, Yossi Oren, and
Yuval Yarom. HammerScope: Observing DRAM Power
Consumption Using Rowhammer. In CCS ’22, pages
547–561, November 2022.

[7] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting Correcting Codes: On the Effec-
tiveness of ECC Memory Against Rowhammer Attacks.
In IEEE S&P ’19, pages 55–71, May 2019.

[8] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai,
Stefan Saroiu, Alec Wolman, and Onur Mutlu. Are We
Susceptible to Rowhammer? An End-to-End Method-
ology for Cloud Providers. In IEEE S&P ’20, pages
712–728, May 2020.

https://www.cpubenchmark.net/market_share.html
https://www.cpubenchmark.net/market_share.html
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/26568.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/26568.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/26568.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf

[9] Finn de Ridder, Pietro Frigo, Emanuele Vannacci,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
SMASH: Synchronized Many-sided Rowhammer At-
tacks from JavaScript. In USENIX Security ’21, pages
1001–1018, August 2021.

[10] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. TRRespass: Exploiting the
Many Sides of Target Row Refresh. In IEEE S&P ’20,
pages 747–762, May 2020.

[11] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In IEEE S&P ’18, pages
245–261, May 2018.

[12] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Vic-
tor van der Veen, Kaveh Razavi, and Onur Mutlu. Uncov-
ering In-DRAM RowHammer Protection Mechanisms:
A New Methodology, Custom RowHammer Patterns,
and Implications. In MICRO ’21, pages 1198–1213,
October 2021.

[13] Wei He, Zhi Zhang, Yueqiang Cheng, Wenhao Wang,
Wei Song, Yansong Gao, Qifei Zhang, Kang Li, Dongxi
Liu, and Surya Nepal. WhistleBlower: A System-level
Empirical Study on RowHammer. IEEE Transactions
on Computers, pages 1–15, January 2023.

[14] Martin Heckel and Florian Adamsky. Reverse-
Engineering Bank Addressing Functions on AMD
CPUs. In DRAMSec ’23, pages 1–6, June 2023.

[15] Christian Helm, Soramichi Akiyama, and Kenjiro Taura.
Reliable Reverse Engineering of Intel DRAM Address-
ing Using Performance Counters. In MASCOTS ’20,
pages 1–8, November 2020.

[16] Intel. 12th Generation Intel Core Processors, Datasheet
Volume 2 of 2, April 2022. URL https://cdrdv2.
intel.com/v1/dl/getContent/655259.

[17] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
Rowhammering in the Frequency Domain. In IEEE
S&P ’22, pages 716–734, May 2022.

[18] JEDEC Solid State Technology Association. DDR4
SDRAM, September 2012. URL https://www.jedec.
org/sites/default/files/docs/JESD79-4.pdf.

[19] Michael Fahr Jr, Thinh Dang, Hunter Kippen, Jacob
Lichtinger, Andrew Kwong, Dana Dachman-Soled,
Daniel Genkin, and Alexander Nelson. When Frodo
Flips: End-to-End Key Recovery on FrodoKEM via
Rowhammer. In CCS ’22, pages 979–993, November
2022.

[20] Matthias Jung, Carl C. Rheinländer, Christian Weis, and
Norbert Wehn. Reverse Engineering of DRAMs: Row
Hammer with Crosshair. In MEMSYS ’16, pages 471–
476, October 2016.

[21] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques. In
ISCA ’20, pages 638–651, May 2020.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM
Disturbance Errors. In ISCA ’14, pages 361–372, June
2014.

[23] Petr Kobalicek. AsmJit: Low-Latency Machine Code
Generation, 2023. URL https://asmjit.com/.

[24] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu
Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias
Nissler, and Daniel Gruss. Half-Double: Hammering
From the Next Row Over. In USENIX Security ’22,
pages 3807–3824, August 2022.

[25] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading Bits in Memory With-
out Accessing Them. In IEEE S&P ’20, pages 695–711,
May 2020.

[26] Zhenrong Lang, Patrick Jattke, Michele Marazzi, and
Kaveh Razavi. Blaster: Characterizing the Blast Radius
of Rowhammer. In DRAMSec ’23, pages 1–7, June
2023.

[27] Mark Lanteigne. A Tale of Two Hammers: A Brief
Rowhammer Analysis of AMD vs. Intel. Techni-
cal report, Third I/O, May 2016. URL http://www.
thirdio.com/rowhammera1.pdf.

[28] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo
Takashi, and Kaveh Razavi. REGA: Scalable Rowham-
mer Mitigation with Refresh-Generating Activations. In
IEEE S&P ’23, pages 1684–1701, May 2023.

[29] Koksal Mus, Yarkın Doröz, M. Caner Tol, Kristi Rah-
man, and Berk Sunar. Jolt: Recovering TLS Signing
Keys via Rowhammer Faults. In IEEE S&P ’23, pages
1719–1736, May 2023.

[30] Lois Orosa, Ulrich Rührmair, A. Giray Yaglikci, Hao-
cong Luo, Ataberk Olgun, Patrick Jattke, Minesh Patel,
Jeremie Kim, Kaveh Razavi, and Onur Mutlu. SpyHam-
mer: Using RowHammer to Remotely Spy on Temper-
ature, October 2022. URL https://arxiv.org/abs/
2210.04084.

https://cdrdv2.intel.com/v1/dl/getContent/655259
https://cdrdv2.intel.com/v1/dl/getContent/655259
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
https://asmjit.com/
http://www.thirdio.com/rowhammera1.pdf
http://www.thirdio.com/rowhammera1.pdf
https://arxiv.org/abs/2210.04084
https://arxiv.org/abs/2210.04084

[31] Minesh Patel, Jeremie S. Kim, and Onur Mutlu. The
Reach Profiler (REAPER): Enabling the Mitigation of
DRAM Retention Failures via Profiling at Aggressive
Conditions. In ISCA ’17, pages 255–268, June 2017.

[32] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In USENIX
Security ’16, pages 565–581, August 2016.

[33] Rui Qiao and Mark Seaborn. A New Approach For
Rowhammer Attacks. In HOST ’16, pages 161–166,
May 2016.

[34] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In USENIX
Security ’16, pages 1–18, August 2016.

[35] Mark Seaborn. How physical addresses map
to rows and banks in DRAM, May 2015. URL
https://lackingrhoticity.blogspot.com/2015/
05/how-physical-addresses-map-to-rows-and-
banks.html.

[36] Mark Seaborn and Thomas Dullien. Exploiting the
DRAM rowhammer bug to gain kernel privileges,
March 2015. URL https://googleprojectzero.
blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html.

[37] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating Software Mitigations Against
Rowhammer: A Surgical Precision Hammer. In RAID

’18, pages 48–66, September 2018.

[38] M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk
Sunar, and Ziming Zhang. Don’t Knock! Rowhammer
at the Backdoor of DNN Models. In DSN ’23, pages
109–122, June 2023.

[39] Chihiro Tomita, Makoto Takita, Kazuhide Fukushima,
Yuto Nakano, Yoshiaki Shiraishi, and Masakatu Morii.
Extracting the Secrets of OpenSSL with RAMBleed.
Sensors, 22(9):3586, January 2022.

[40] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clementine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mo-
bile Platforms. In CCS ’16, pages 1675–1689, October
2016.

[41] Hari Venugopalan, Kaustav Goswami, Zainul Abi Din,
Jason Lowe-Power, Samuel T. King, and Zubair Shafiq.
Centauri: Practical Rowhammer Fingerprinting, June
2023. URL https://arxiv.org/abs/2307.00143.

[42] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya
Nepal. DRAMDig: A Knowledge-assisted Tool to Un-
cover DRAM Address Mapping. In DAC ’20, July 2020.

[43] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation. In
USENIX Security ’16, pages 19–35, August 2016.

[44] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and
Y. Yarom. PThammer: Cross-User-Kernel-Boundary
Rowhammer through Implicit Accesses. In MICRO ’20,
pages 28–41, October 2020.

Appendices
A Equally-sized Bins in XOR Partition
In Section 4.2, we assumed that the result of any XOR func-
tion on a bin of addresses returns either a constant value (i.e.,
0 or 1) for all addresses or evenly splits the addresses. We
prove this assumption in the following.

Claim. Consider an aligned power-of-two range of addresses
A = [m · 2n,(m+ 1) · 2n − 1] (m,n ∈ N), a XOR function f
which is non-constant on A, and the set of addresses B = {a ∈
A | f (a) = 0}. Partitioning the addresses in B using a different,
non-constant XOR function g results in two equally-sized bins
where g is constant 0 and constant 1, respectively.

Proof. First, we show that the claim holds for one function
g1 ̸= f . We construct g1 by extending f to include another
previously unused bit in the XOR computation.6 We note
that adding this new bit leads to a different function result
for exactly half of all addresses in B (namely, those where
that address bit is set). As the function result was previously
constant 0 for all b ∈ B, it must now be equally distributed
between 0 and 1, satisfying our claim.

Second, we show that we can successively modify g1 to
obtain an arbitrary function g without changing the size of
the two bins. To do this, we successively add (or remove) a
bit to (or from) the XOR computation in g1 until reaching g.
During each of these steps, the function result will flip for
half of all addresses. We note that the addresses where the
affected bit is set are always split evenly between the two bins.
Thus, the affected addresses are split evenly between the two
bins, keeping the size of the two bins equal after each step
and satisfying our claim for any function g.

B Heatmap of Memory Access Rates
Table 14 shows the same data as Table 7. However, we also
show the instruction sequences that were previously excluded
due to their throughput either being low (≤ 100 ACTs/tREFI)
or very high, indicating cache hits (≥ 1000 ACTs/tREFI).

In Table 15, we show the results of the same experiment
for the Intel Coffee Lake system.

6Alternatively, a bit could be removed from the XOR computation.

https://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://arxiv.org/abs/2307.00143

Table 14. Heatmap of memory access rates (in ACTs/tREFI) for all
tested instruction sequences and varying numbers of accessed rows on
the AMD Z3 system. We abbreviate scatter, fence each by “s.f.e.”

Access
Type

Flushing
Strategy

Fence
Type

#Rows

1 2 4 8 16 32 256

MOV (load) gather M 24 49 71 91 100 110 114
MOV (load) gather L 24 49 80 113 134 147 121
MOV (load) gather S 24 49 80 113 133 146 125
MOV (load) gather — 24 49 80 113 133 146 125
MOV (load) scatter M 24 49 79 107 126 143 157
MOV (load) scatter L 24 49 95 137 149 153 159
MOV (load) scatter S 24 48 97 154 159 159 159
MOV (load) scatter — 24 49 97 154 159 159 159
MOV (load) s.f.e. M 24 33 33 33 33 34 34
MOV (load) s.f.e. L 24 49 65 70 69 71 70
MOV (load) s.f.e. S 24 41 70 72 72 73 74
MOV (store) gather M 24 32 50 67 71 72 72
MOV (store) gather L 24 32 49 66 72 71 71
MOV (store) gather S 24 32 49 67 67 73 72
MOV (store) gather — 24 32 49 67 70 73 72
MOV (store) scatter M 24 32 54 72 73 73 72
MOV (store) scatter L 24 32 54 72 73 72 72
MOV (store) scatter S 24 32 52 73 72 73 72
MOV (store) scatter — 24 32 54 73 73 73 72
MOV (store) s.f.e. M 24 24 28 28 28 28 28
MOV (store) s.f.e. L 24 32 53 72 74 75 72
MOV (store) s.f.e. S 24 24 48 49 49 50 50
MOVNTDQA none — 15K 20K 24K 26K 28K 26K 12K
MOVNTI none — 15K 24K 29K 8K 618 367 131
PREFETCHNTA none — 15K 24K 29K 29K 30K 27K 19K
PREFETCHNTA scatter — 80 132 191 208 253 309 273
PREFETCHNTA scatter M 24 49 80 108 131 170 284
VGATHERDD scatter — 24 49 79 112 159 159 159

Table 15. Heatmap of memory access rates (in ACTs/tREFI) for all
tested instruction sequences and varying numbers of accessed rows on
the Intel CL system. We abbreviate scatter, fence each by “s.f.e.”

Access
Type

Flushing
Strategy

Fence
Type

#Rows

1 2 4 8 16 32 256

MOV (load) gather M 83 110 130 144 150 153 158
MOV (load) gather L 151 90 115 142 146 154 159
MOV (load) gather S 248 128 138 148 159 154 159
MOV (load) gather — 226 136 160 160 163 153 159
MOV (load) scatter M 83 110 130 144 152 156 160
MOV (load) scatter L 151 98 121 144 154 157 160
MOV (load) scatter S 186 121 142 156 160 160 160
MOV (load) scatter — 248 128 143 160 160 160 160
MOV (load) s.f.e. M 83 83 83 83 83 83 83
MOV (load) s.f.e. L 156 100 99 99 99 99 99
MOV (load) s.f.e. S 164 120 137 160 160 160 160
MOV (store) gather M 87 154 233 322 464 646 87
MOV (store) gather L 95 206 364 670 867 852 87
MOV (store) gather S 94 150 262 427 611 712 87
MOV (store) gather — 94 206 361 670 871 849 88
MOV (store) scatter M 89 93 82 101 103 98 86
MOV (store) scatter L 94 183 108 110 108 108 86
MOV (store) scatter S 95 116 92 101 106 106 86
MOV (store) scatter — 94 187 111 112 108 107 86
MOV (store) s.f.e. M 89 54 53 51 51 50 50
MOV (store) s.f.e. L 94 190 107 116 109 107 86
MOV (store) s.f.e. S 94 71 70 69 70 69 68
MOVNTDQA none — 12K 17K 14K 25K 17K 7K 6K
MOVNTI none — 12K 9K 14K 15K 950 721 107
PREFETCHNTA none — 13K 19K 14K 29K 32K 14K 221
PREFETCHNTA scatter — 253 314 261 271 160 160 160
PREFETCHNTA scatter M 83 110 130 144 152 156 160
VGATHERDD scatter — 156 219 228 143 152 160 160

Figure 7. Activation rates and possible pattern orderings for non-uniform hammering patterns when using different scheduling policies. The
data was collected on Z3 using the MFENCE barrier.

C Modelling Fence Scheduling Policies
In this appendix, we first present a theoretical model for the
amount of ordering enforced by a scheduling policy (as de-
scribed in Section 6.2) based on a simple CPU behavior model.
We then evaluate the trade-off provided by different schedul-
ing policies by contrasting the amount of ordering provided
with the patterns’ hammering speeds.

Computing Pattern Permutations To analyze the amount
of ordering provided by a scheduling policy, we use a model
for the processor’s memory subsystem which assumes that
(a) load requests cannot be reordered around memory barriers,
as guaranteed by M/LFENCE [4], and (b) all load requests are
served by DRAM, including consecutive ones to the same
cache line with flushing in between accesses (Obs. 4). Us-
ing this model, we can compute the number of theoretically
possible orderings of a hammering pattern.

We assume that patterns are always ordered at their be-
ginning and their end, and we compute the number of per-
mutations for each interval (delineated by memory barriers)
individually. For a multiset M, containing l different elements
with multiplicities m1,m2, . . . ,ml , the number of permuta-
tions is given by the multinomial coefficient

(m
m1,m2,...,ml

)
=

m!
m1! m2! ... ml !

. To obtain the total number of all permutations,
we multiply the numbers for the different intervals.

In practice, it is highly unlikely that memory accesses are
reordered over large distances, even if theoretically possible
based on ordering semantics. However, as the realistic extent
of reordering is unknown, we use this simpler model.

Example. To illustrate, we use an example non-uniform pat-
tern |a1 a2 a1 a2 a3 a4| where fences are shown using verti-
cal bars. The number of possible orderings is computed as(6

2,2,1,1

)
= 6!

2!2!1!1! = 180. When inserting another fence after
the fourth access (corresponding to SPpair), we get the pattern
|a1 a2 a1 a2|a3 a4| with

(4
2,2

)
·
(2

1,1

)
= 12 possible orderings.

By inserting a single memory barrier in the middle of the
patterns, the number of possible orderings has been reduced
drastically.

Ordering vs. Hammering Speed. To explore the trade-off
provided by our scheduling policies, we contrast the provided
ordering and hammering speeds of 15 K random non-uniform
patterns. We implement all proposed scheduling policies (see
Table 8) in our fuzzer, hammer the generated patterns using
the different policies, and record their activation rates. We
then compute the number of pattern permutations using the
theoretical model introduced above.7

We plot the results for Z3 in Figure 7, where we show,
for each policy and each generated pattern, the hammering
speed (x-axis) and the number of possible orderings (y-axis).
We omit the similar results from Z+++, where we also ran this
experiment.

7To account for different pattern lengths (L), we use the normalized
ordering metric Ñ := L√N, where N is the number of possible orderings.

Observations. As expected, the scheduling policies differ
significantly in the trade-off they provide. SPnone provides
very high activation rates, as it allows the most reordering.
On the contrary, SPfull allows zero reordering at the expense
of low activation rates (of 37 ACTs/tREFI on average). The
pattern-aware policies show two different types of distribu-
tions. For SPBP and SPBP/2, the distributions are somewhat
similar to SPnone, albeit without the very fast outliers. On the
other hand, SPpair and SPrep provide ordering that is nearly as
strict as SPfull, while allowing faster hammering when com-
pared to the latter, with average activation rates increased by
51 % (SPpair) and 39 % (SPfull) respectively.

Based on these results, we believe SPpair and SPrep could
be well suited to reduce the amount of fencing without signif-
icantly impacting a pattern’s ordering.

D Analyzed DDR5 Devices
In Table 16, we present the list of ten randomly chosen DDR5
UDIMMs covering all three major manufacturers, i.e., Sam-
sung, SK Hynix, and Micron. We report each device’s pro-
duction date, speed, size, and DRAM geometry.

Table 16. DDR5 UDIMMs used in the evaluation of our AMD Zen-
optimized Rowhammer fuzzer. We abbreviate the DRAM vendors
Samsung (S), SK Hynix (H), and Micron (M). We report for each de-
vice, the number of subchannels (SC), ranks (RK), bank groups (BG),
banks per bank group (BA), and rows (R).

ID Production
Date

Freq.
[MHz]

Size
[GiB]

DIMM Geometry
(SC,RK,BG,BA,R)

S0 Q4-2021 4800 8 (2, 1, 4, 4, 216)
S1 Q4-2021 4800 16 (2, 1, 8, 4, 216)
S2 Q4-2021 5600 8 (2, 1, 4, 4, 216)
S3 Q4-2021 4800 8 (2, 1, 4, 4, 216)
H0 Q4-2021 4800 8 (2, 1, 4, 4, 216)
M0 Q4-2021 4800 16 (2, 1, 8, 4, 216)
M1 Q4-2021 4800 16 (2, 1, 8, 4, 216)
M2 Q4-2021 4800 16 (2, 1, 8, 4, 216)
M3 Q4-2021 4800 16 (2, 1, 8, 4, 216)
M4 Q4-2021 4800 16 (2, 1, 8, 4, 216)

	Introduction
	Background
	DRAM
	DRAM Addressing
	Rowhammer

	Overview
	DRAM Addressing
	Timing Routine
	Address Offsets
	Recovered Address Mappings
	Enabling Exploitation
	Evaluation

	Refresh Synchronization
	Blacksmith Synchronization
	Precise and Reliable Synchronization

	Activation Rate
	Instruction Sequences
	Fence Scheduling Policies

	Evaluation
	Setup and Methodology
	Effectiveness and Exploitability
	ZenHammer on DDR5

	Related Work
	Comparison to Existing Tools
	Comparison to Other Techniques
	Rowhammer on AMD

	Conclusion
	Equally-sized Bins in XOR Partition
	Heatmap of Memory Access Rates
	Modelling Fence Scheduling Policies
	Analyzed DDR5 Devices

