
(eset):research

WHITEPAPER

Marc-Etienne M.Léveillé
May 2024

Ebury is alive but unseen:
400k Linux servers compromised for cryptocurrency
theft and financial gain

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 2

Contents
Propagation 7

Credential stuffing 8

Hypervisor or container host 9

Compromise of hosting providers 9

Exploitation of vulnerabilities 9

SSH adversary-in-the-middle 10

Victimology 11

Notable compromises 13

An Update to Ebury 15

Ebury basics 16

Persistence 17

IPC mechanisms 18

libcurl hooking for HTTP request exfiltration 19

Userland rootkit 19

Typical post-exploitation usage 22

Credential exfiltration 22

Monetization: Multiple New Components 23

Malicious Apache and nginx modules 24

KernelRedirect 29

FrizzySteal 31

Hiding traffic from system administrators 31

Performing AitM attacks 32

Attribution 34

Remediation 36

Detection 37

Payment details 37

Cleaning 37

Conclusion 38

Acknowledgments 40

MITRE ATT&CK Techniques 42

IoCs 46

Host-based indicators 47

Network 48

YARA rules 48

Files 49

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 3

Figure 1. Different methods used by the Ebury gang to compromise new servers . 8

Figure 2. Perl script run on OpenVZ hosts to install Ebury in all containers . 9

Figure 3. Control Web Panel exploitation attempt . 9

Figure 4. Disassembly of the Dirty COW exploit payload . 10

Figure 5. Ebury deployments per month using two different scales on the Y axis, according
to the database of compromised servers maintained by the perpetrators . 12

Figure 6. HelimodSteal installation script with detection of the string
BigBadW0lf in libcurl.so.4 highlighted . 13

Figure 7. Hex-Rays decompilation of curl_easy_perform function modified
by SmallCuteCat, highlighting User agent set to BigBadW0lf . 13

Figure 8. Only logs remaining from the visit to install Ebury (redacted) . 14

Figure 9. Month each major Ebury version was first seen since the publication of Operation Windigo . . .16

Figure 10. File listing showing the malicious libkeyutils.so with the Ebury v1.8.2 payload 17

Figure 11. Hex-Rays decompilation of constructor function calling dlopen(“libkeyctl.so”, …) to load
Ebury .17

Figure 12. Flow of stolen credentials, from the victim using an Ebury-compromised SSH client
to the Ebury process, and later fetched by the operators . 18

Figure 13. curl_easy_perform hooked by Ebury to exfiltrate HTTP POST data, decompiled
with the Hex-Rays Decompiler . 19

Figure 14. Processes where Ebury is injected . 19

Figure 15. File listing with (above), and without (below), the Ebury userland rootkit activated 20

Figure 16. Difference between ps auxw being executed under a trusted and a compromised shell 20

Figure 17. Difference between /proc/net/unix seen under a program compromised with Ebury
and one that is not .20

Figure 18. recvmsg as hooked by Ebury, decompiled with the Hex-Rays Decompiler . 21

Figure 19. Differences in OpenSSH server and Bash maps files when under the Ebury userland rootkit . . .21

Figure 20. Timeline of usage of Ebury over a one-month span . 22

Figure 21. Multiple malware families deployed on Ebury-infested servers and the impact
for potential victims .24

Figure 22. Module information exported by mod_dir.so as seen in IDA Pro
with the proper structure definition . 25

Figure 23. Hex-Rays Decompiler output for HelimodProxy’s register_hooks . 25

Figure 24. Hex-Rays Decompiler output of the Apache connection hook function of HelimodProxy 26

Figure 25. Hex-Rays Decompiler output of Apache output filter of HelimodRedirect 26

Figure 26. Hex-Rays Decompiler output of HelimodSteal input filter, exfiltrating data
using an HTTP request . 27

Figure 27. Generation of the resource path used to control HelimodProxy (earlier version) 27

List of figures

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 4

Figure 28. Generation of the resource path used to control the Helimod malware
family (latest version) . 27

Figure 29. Example HTTP reply from HelimodRedirect configuration URL .28

Figure 30. A Mastodon thread on floss.social showing a user complaining about web redirection.
The screenshot they provide (bottom) shows a redirection target matching the HelimodRedirect
signature (source: https://floss.social/@9to5linux/109500305664911924). .28

Figure 31. Location of servers compromised by HelimodSteal .28

Figure 32. Example HTTP reply from HelimodSteal configuration URL .28

Figure 33. C reimplementation of the function adding an IP address to a list, present
in the Helimod malware family .29

Figure 34. Hook behavior configuration .29

Figure 35. Structure of the hardcoded configuration .29

Figure 36. Decompiled code of the PRNG used by the malicious Netfilter module .30

Figure 37. replacer_info values in KernelRedirect sample showing the decimal-formatted
IP address used as redirection target .30

Figure 38. Malicious dependency added to libz . 31

Figure 39. Decrypted strings from FrizzySteal sample . 31

Figure 40. Flow of credit card details on transactional website compromised by Ebury 31

Figure 41. IDA Pro flow graph showing an IP address being compared with the embedded,
hardcoded list to determine whether to display it in the command output . 32

Figure 42. IDA Pro disassembly showing injection of rules after iptables-restore finishes
its legitimate duties . 32

Figure 43. Overview of the AitM attacks perpetrated by the Ebury gang . 32

Figure 44. Perl script run on target system after SSH credentials are stolen (redacted) 33

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 5

Ebury is alive but unseen:
400k Linux servers compromised
for crypto theft and financial gain
One of the most advanced server-side malware campaigns is still growing, with hundreds of
thousands of compromised servers, and it has diversified to credit card and cryptocurrency
theft.

Ten years ago, ESET published Operation Windigo, a white paper about multiple malware families working
together, with the Ebury malware family at its core. Then, in late 2021, the Dutch National High Tech Crime Unit
(NHTCU), part of the Netherlands national police, reached out to ESET regarding servers in the Netherlands
suspected of being compromised with Ebury malware. Those suspicions happened to be well-founded and together
we gained considerable visibility into operations run by the Ebury threat actors. The current white paper is the result
of that collaboration between ESET and Netherlands law enforcement, exposing the activities of the Ebury group
over the past years. It is a deep dive into the underground world of server-side Linux malware revealing the largely
unseen activities of these criminal groups.

Following the release of our paper in early 2014, one of the perpetrators was arrested at the Finland-Russia border
in 2015, and later extradited to the United States. While he initially claimed innocence, he eventually pleaded guilty
to the charges in 2017, a few weeks before his trial at the U.S. District Court in Minneapolis was set to proceed, and
where ESET researchers were scheduled to testify.

While some of the monetization techniques disappeared, the arrest did not stop Ebury botnet activity and the gang
continued to develop new malware, update existing malicious programs, and find new ways to monetize its access
to a plethora of servers.

Ebury, active since at least 2009, is an OpenSSH backdoor and credential stealer. It is a shared library that, when
loaded, alters the behavior of the OpenSSH client and server, injects itself into programs that use the curl library so as
to exfiltrate HTTP requests made by the system, and tampers with terminal sessions spawned over SSH to hide itself.
It is used to deploy additional malware to: monetize the botnet (such as modules for web traffic redirection), proxy
traffic for spam, perform adversary-in-the-middle attacks (AitM), and host supporting malicious infrastructure. Its
operators have used the Ebury botnet to steal cryptocurrency wallets, credentials, and credit card details.

Our paper on Operation Windigo covered many aspects of the operation, from the malware the Ebury group
used to how it monetized the botnet. This paper is no different: our collaboration has given us great visibility into
many aspects of the group’s operations that helped us uncover new malware families it uses and updates to Ebury,
provided a better understanding of how it propagates, and revealed new monetization techniques deployed to
compromised servers. We can draw a big picture using different sources: the honeypots we operate; information
shared with us by victims; and the servers seized by law enforcement, which included malware samples, the tools
used by attackers, records of their activities, and a lengthy list of victims.

https://web-assets.esetstatic.com/wls/2014/03/operation_windigo.pdf
https://www.politie.nl/
https://www.justice.gov/opa/pr/russian-citizen-sentenced-46-months-prison-involvement-global-botnet-conspiracy

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 6

Key findings:
• Ebury actors have been pursuing monetization activities subsequent to our 2014 publication on Operation

Windigo, including the spread of spam, web traffic redirections, and credential stealing.

• Additionally, we have confirmed that operators are also involved in cryptocurrency heists by using AitM and
credit card stealing via network traffic eavesdropping, commonly known as server-side web skimming.

• Over the years, Ebury has been deployed to backdoor almost 400,000 Linux, FreeBSD, and OpenBSD servers,
and more than 100,000 were still compromised as of late 2023.

• We uncovered new malware families authored and deployed by the gang for financial gain, including Apache
modules and a kernel module to perform web traffic redirection.

• In many cases, Ebury operators were able to gain full access to large ISPs and well-known hosting providers.
They used that access to deploy Ebury on the partial or complete server infrastructure hosted by that provider.

• Ebury also compromised the infrastructure of other threat actors, including Vidar Stealer and many others,
to steal data stolen by those other groups and copycat competing operations to blur attribution attempts.

• Ebury operators also used zero-day vulnerabilities in administrator software to compromise servers in bulk.

• The data we obtained confirmed a number of suspected victims, including the compromise
of kernel.org from 2009 to 2011.

• We provide a set of tools and indicators to help system administrators determine whether their systems are
compromised by Ebury.

In this paper, we first look at how Ebury propagates and who the victims are, including notable cases we have
uncovered. This is followed by an updated analysis of Ebury, which focuses on changes in the more recent versions.
Next, we analyze the other malware families the Ebury group deploys and how they are monetized. Finally,
we describe how system administrators can identify whether they are compromised and discuss how to avoid
becoming a victim of Ebury.

WHITEPAPER | 7

Propagation

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 8

Propagation
A recurrent question when we talk about Ebury is: How does Ebury get installed in the first place? Deploying Ebury
on a server requires administrator (root) privileges, so those must be gained somehow. Ten years ago, we only had
one answer, because this was what we could witness: Via credential stealing, where the SSH clients compromised
by Ebury leaked everything required for the operators to authenticate to that other system. The current
investigation has uncovered more methods used by the perpetrators to maximize their pool of compromised
servers. Figure 1 shows five new methods we have identified, which are described below.

Credential stuffing
After a system is compromised, a number of details are exfiltrated, including a list of previous outbound and inbound
SSH sessions using OpenSSH’s known_hosts files and records from wtmp, respectively. Using the known passwords and
keys obtained on that system, credentials are reused to try logging into related systems.

When the known_hosts file contains hashed information (see the HashKnownHosts OpenSSH option), the
perpetrators try to brute force its content. Out of 4.8 million known_hosts entries collected by Ebury operators,
about two million had their hostname hashed. 40% (about 800,000) of those hashed hostnames were guessed or
brute forced.

Related server

Server running
vulnerable software

Related server
sharing credentials

Server hosted by
compromised provider

...

Server hosted by
compromised provider

Server compromised
with Ebury

Web hosting
control panel

Server in the same
network segment

Server compromised
with Ebury

OpenVZ or
container host

uses credential stu�ng

uses stolen creds

uses exploit

uses stolen credentials

AitM

provisions

uses hypervisor
privileges

uses password set when provisioned

connects using compromised SSH client

in
file and uses the

same password or key

Container

Container

Container

Server compromised with Ebury

Potential target

Figure 1. Different methods used by the Ebury gang to compromise new servers

https://man7.org/linux/man-pages/man5/wtmp.5.html
https://man7.org/linux/man-pages/man5/ssh_config.5.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 9

Hypervisor or container host
In cases where the perpetrators gain access to a hypervisor or a system that runs containers, they may try to use
their privileges to deploy Ebury on all the subsystems. They will do this in an unobtrusive way that won’t require
a shutdown or reboot of the contained systems. This is done in an automated way on servers running OpenVZ,
where all containers are compromised by running a malicious Perl script using vzctl exec from the host. Figure 2
shows the Perl script run from an OpenVZ host to run a Perl script inside each container, previously obtained using
vzlist. The Perl script run inside the containers installs Ebury.

Figure 2. Perl script run on OpenVZ hosts to install Ebury in all containers

Compromise of hosting providers
We have documented cases where the infrastructure of hosting providers was compromised by Ebury. In these
cases, we have seen Ebury being deployed on servers rented out by those providers, with no warning to the lessees.
This resulted in cases where the Ebury actors were able to compromise thousands of servers at once (see Notable

compromises).

Exploitation of vulnerabilities
We also know now that the perpetrators exploit vulnerabilities to compromise systems or elevate their privileges.
We have two examples where the exploitation was automated.

Exploitation of a zero day in a web control panel

In November 2020, the Ebury operators exploited software used to manage servers via a web interface known as
Control Web Panel (CWP, previously known as CentOS Web Panel). A remote code execution vulnerability was
used to deliver and execute a Perl script that resulted in the installation of Ebury on the target system. Figure 3
shows the HTTP request sent to the server to trigger the vulnerability.

Figure 3. Control Web Panel exploitation attempt

This pre-authentication file inclusion vulnerability is known as CVE-2021-45467, and was first documented publicly
more than one year after its usage by the Ebury gang. The usage of inc_index.php to trigger remote code
execution is not documented. It is difficult for us to explain the vulnerability in more detail because CWP is packed
and is not open source, but the service_start parameter suggests that the next step is to download and execute
a Perl script, which we assume will be run as the root user. This was our first proof that the group has used zero-day
vulnerabilities to expand its network.

https://openvz.org/
https://control-webpanel.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-45467
https://octagon.net/blog/2022/01/22/cve-2021-45467-cwp-centos-web-panel-preauth-rce/
http://forum.centos-webpanel.com/index.php?topic=4130.0
http://forum.centos-webpanel.com/index.php?topic=4130.0

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 10

Privilege escalation with Dirty COW

Another exploit Ebury operators use is Dirty COW (CVE-2016-5195), which
they use to elevate their privileges when the credentials they have do not
provide root access. We have no reason to believe it was used before the
disclosure. They use the existing exploit with a custom payload that issues
a chmod system call to add the setuid bit to the Perl executable. Figure 4
shows the disassembled shellcode of the exploit payload. With the setuid
bit set, Perl can be used to run commands as the root user.

SSH adversary-in-the-middle
This technique is used when the Ebury operators have specific targets,
possibly because the perpetrators might consider them valuable. For
example, if the server could hold a wallet from which they could steal
cryptocurrency. It requires them to have access to a server in the same
network segment as their target. Over the years, hundreds of servers
have been the targets of AitM and Ebury operators successfully stole SSH
credentials, enabling them to gain access and install Ebury on these servers.
See the Performing AitM attacks section for more details about how this is
accomplished. Figure 4. Disassembly of the Dirty COW exploit payload

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://en.wikipedia.org/wiki/Setuid

WHITEPAPER | 11

Victimology

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 12

As of mid-2023, Ebury had been installed on almost 400,000 Linux servers worldwide since at least 2009, and
perhaps earlier. Note that there is no geographical boundary to Ebury, meaning that any outstanding variance is
mostly due to where popular data centers are located. There are servers compromised with Ebury in almost all
countries of the world. Whenever a hosting provider was compromised, this led to a vast number of compromised
servers in the same data centers.

Besides Linux, Ebury was also installed on approximately 400 FreeBSD servers, about a dozen OpenBSD and SunOS
servers, and at least one Mac. Ebury operators also gained access to an SCO OpenServer 5 system, but never
deployed Ebury on that machine.

While 400,000 is a massive number, it’s important to mention that this is the number of compromises over the
course of almost 15 years. Not all of those machines were compromised at the same time. There is a constant churn
of new servers being compromised while others are being cleaned up or decommissioned. The data at our disposal
doesn’t indicate when the attackers lost access to the systems, so it’s difficult to know the size of the botnet at any
specific point in time. However, each time we were able to measure the number of servers currently compromised
with Ebury, whether that was 10 years ago or in the past few years, we ended up with more or less 40,000 IP
addresses. In 2023, that number ballooned to 110,000, mostly due to the compromise of a large hosting provider, as
described below.

While this might seem less than some of the massive malware campaigns targeting Windows, let’s remind
ourselves that almost all compromised systems are servers, not end user devices. Servers help run the internet by
hosting web pages, acting as authoritative name servers, performing financial transactions, etc.

Figure 5 shows a timeline of when Ebury was installed on each victimized server. The data is presented using
two linear scales. The one on the left shows data from 0 to 4,000. It shows an average Ebury deployment rate

that is slowly increasing. If we exclude days with more than 2,000 Ebury installations, we get an average of 207
installations per month before 2012, 1,331 between 2012 and 2020, and 1,654 after 2020. We believe the accesses to
new servers were mostly gained using credentials stolen from existing Ebury-compromised servers.

The scale on the right goes up to 70,000, showing months where the number of new installations was as high as
63,000. Those peaks are the result of larger incidents, where Ebury was installed by other means, such as accessing
critical servers of hosting providers or using exploits.

Figure 5. Ebury deployments per month using two different scales on the Y axis, according to the database of compromised servers maintained
by the perpetrators

Victimology

0

10000

20000

30000

40000

50000

60000

70000

0

500

1000

1500

2000

2500

3000

3500

4000

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

https://en.wikipedia.org/wiki/OpenServer

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 13

Notable compromises
It’s worth noting that no verticals appear more targeted than others.
Victims include universities, small and large enterprises, internet service
providers, cryptocurrency traders, Tor exit nodes, shared hosting providers,
and dedicated server providers, to name a few. Any kind of server running
an SSH service may be a target of Ebury and the perpetrators have found
numerous ways to monetize their various accesses, as we highlight later.

This section provides a few examples to showcase where the compromise
had a very significant impact on the security of those systems.

Shared hosting, but not shared with whom you think

In late 2019, the infrastructure of a large and popular US-based domain
registrar and web hosting provider was compromised. The perpetrators
were able to gain access to the system provisioning the servers.
Consequently, they had access to source code and credentials used in the
deployment of the servers.

In total, approximately 2,500 physical and 60,000 virtual servers were
compromised by the attackers. A very large portion, if not all, of these
servers are shared between multiple users to host the websites of more
than 1.5 million accounts.

Since their infrastructure was mostly homogeneous (same Linux kernel
version, same HTTP server, etc.), it was possible to deploy the same
malware at scale to monetize this cluster of victims. The analyzed data has
shown the following newly discovered malware families were installed on
the victims’ servers:

1. HelimodSteal, an Apache module that exfiltrates all HTTP POST
requests sent to the server. This module can be leveraged to steal credit
card information from e-commerce websites.

2. HelimodRedirect, an Apache module that redirects a small percentage
of HTTP traffic to advertisements.

A complete description and analysis of both malware families are available
later in this paper.

It’s interesting to note that during deployment of HelimodSteal, the Perl
script used by the attackers contained a check for malware that replaces
libcurl.so.4 with a malicious version. Figure 6 shows the installation script
of HelimodSteal, with that detection highlighted.

Figure 6. HelimodSteal installation script with detection of the string BigBadW0lf in libcurl.so.4
highlighted

The script notifies the operators by reporting bad_curl if the malicious
libcurl is found and resumes the installation. We found samples of this
malware that contain the BigBadW0lf string and named it SmallCuteCat.
Figure 7 shows that the purpose of SmallCuteCat is to exfiltrate credit card

details, by checking whether a CVV or card number is present in the HTTP
requests performed to a payment processor and sending the full details to
an attacker-operated server if present.

Figure 7. Hex-Rays decompilation of curl_easy_perform function modified by SmallCuteCat,
highlighting User agent set to BigBadW0lf

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 14

We do not attribute this malware to the Ebury gang. We think that
SmallCuteCat was a competitor in the credit card stealing business that
was already present in a small part of the victim infrastructure. We do not
know if the Ebury gang tried to disrupt the competing operation, because
the script only warns about the presence of SmallCuteCat and goes on with
installing HelimodSteal. This is not the first time that the Ebury gang has
made scripts to detect competing groups. We have already detailed many
competing OpenSSH backdoors we found, based on Ebury’s detection
script, in our 2018 paper The Dark Side of the ForSSHe.

All your VM are belong to us

In 2023, we saw an unusually large number of victims located in the same
autonomous system (AS) in the US. This AS is used by a limited number of
dedicated and virtual server rental brands. We suspected one of them was
breached and Ebury was installed at large, on all the servers deployed by
that organization.

We made an experiment and rented a virtual server from the hosting provider
we thought was compromised, with the intention of using it as a honeypot.
To ensure that the system couldn’t be compromised in any other way, we
logged into the server using SSH only once, using the provided root password
and a trusted SSH client. We did not change the password, as we suspected
Ebury operators may use this credential to log into the system. The server
was not running any other services except for OpenSSH. We monitored the
system, and seven days later, Ebury version 1.8.2 was installed on our server.

There were no traces of the compromise in the system logs. When Ebury
operators successfully connect to a system using credentials, they remove
log entries that show the creation of a new session from their IP address.
Logs created by systemd’s journald are trickier to tamper with because of
its binary storage format and Forward Secure Sealing (FSS), if enabled. The

currently active journal file was simply deleted. The only traces we could
find in our honeypot (without FSS) are shown in Figure 8.

Figure 8. Only logs remaining from the visit to install Ebury (redacted)

After Ebury was installed, the operators connected daily using the Ebury
backdoor to collect stolen credentials and install additional malware to
attempt monetization.

A total of 70,000 servers from that hosting provider were compromised
with Ebury in 2023.

The Linux Foundation’s kernel.org

In our 2014 paper, we mentioned that there was evidence that kernel.org,
hosting the source code of the Linux kernel, had been a victim of Ebury.

Data now at our disposal reveals additional details about the incident.
Ebury had been installed on at least four servers belonging to the Linux
Foundation between 2009 and 2011. It seems these servers acted as mail
servers, name servers, mirrors, and source code repositories at the time of
the compromise. We cannot tell for sure when Ebury was removed from
each of the servers, but since it was discovered in 2011 it is likely that two of
the servers were compromised for as long as two years, one for one year
and the other for six months.

The perpetrator also had copies of the /etc/shadow files, which overall
contained 551 unique username and hashed password pairs. The cleartext

passwords for 275 of those users (50%) are in possession of the attackers.
We believe that the cleartext passwords were obtained by using the
installed Ebury credential stealer, and by brute force.

C&C infrastructure of other malware families

In our 2018 publication, The Dark Side of the ForSSHe, we mention a
reconnaissance Perl script used by Ebury uoperators to detect other OpenSSH
credential stealers, and collect credentials from them. In some cases, efforts
by the Ebury gang were put into reverse engineering the competitors’
malware to decrypt already stolen credentials left on disk. We were surprised
to see that it didn’t stop there: infrastructure used by the other perpetrators
was also compromised with Ebury. To our knowledge, it is the first public
example of a criminal actor doing fourth-party collection at scale.

An example is the compromise of servers responsible for collecting data
from Vidar Stealer. As discussed in the Attribution section, Ebury actors
used the stolen identities obtained through Vidar Stealer for renting server
infrastructure and in their activities, sending law enforcement bodies in the
wrong directions.

They use knowledge they gain about other criminal groups to blur
attribution based on indicators, too. A competing server-side web skimmer
related to SmallCuteCat used pbarsec[.]ru as an exfiltration server, and
the Ebury gang registered and used pbarsec[.]com for similar purposes.

We also found that one of the Mirai botnet author’s systems was
compromised with Ebury, and source code was stolen by the gang long
before it was made public.

There are more examples, to the point where when looking at seized data
owned by the Ebury gang, it’s difficult to draw a line between what was
gained from their activities versus what they stole from other criminal groups.

https://www.welivesecurity.com/2018/12/05/dark-side-of-the-forsshe/
https://systemd.io/interfaces/JOURNAL_FILE_FORMAT.html
https://www.welivesecurity.com/2018/12/05/dark-side-of-the-forsshe/
https://malpedia.caad.fkie.fraunhofer.de/details/win.vidar

WHITEPAPER | 15

An Update
to Ebury

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 16

An update to Ebury
Ebury is the malware family at the core of all the
operations described in Operation Windigo and
this paper. Acting as a backdoor inside the OpenSSH
daemon and as a powerful credential stealer, it
provides the attackers the access they need to
deploy other malware (such as HelimodSteal and
HelimodRedirect), and expand their network of
compromised hosts.

Ebury basics
Ebury has been thoroughly described in three articles
published on our WeLiveSecurity blog. The first two
articles were published in 2014 and the third one in 2017.

All Ebury samples contain a version number, which
can be queried remotely by using the Xver backdoor
command. The versions that the previously published
articles describe are 1.3.4, 1.3.5, and 1.6.2, respectively. At
the time of publication of this paper, the latest version
that we have analyzed is 1.8.2. Let’s look at the timeline
of when each version was first seen in the wild –
Figure 9 – and the changes since our last publication.

Each new major version introduces some important
change to Ebury and new features and obfuscation
techniques. For example, in version 1.8 the samples
don’t have a section header table (SHT). While not
required by the Linux loader, its removal is clearly done
to make analysis harder by not exposing sections.

Ebury is activated remotely by sending a carefully
crafted SSH client version string to the compromised
SSH server. This version string is the very first sequence
of bytes sent by an SSH client when connecting to a
remote server, so is sent in the clear, as an encrypted
channel has not been established yet. A typical version
string looks like this:

SSH-2.0-OpenSSH_9.4

The three hyphen-separated fields are, respectively:

• SSH, always, to identify the protocol.

• SSH protocol version, typically 2.0, adopted in 2006.

• A string to identify the client program. Here
OpenSSH version 9.4.

The Ebury-supporting SSH client used by the operators
replaces the last field with a string that is decoded
and decrypted by the Ebury malware. Encrypted data
is encoded using base64 since Ebury version 1.7, and
hexadecimal encoding in previous versions. Version
1.8 also ignores spaces in the encoded data. Here are
examples of the SSH client version string used to
trigger the Ebury malicious backdoor:

SSH-2.0-b479ec723a2ba590d6c4a0bf40f4ba

SSH-2.0-XDbxdCP/G9Dcd1qDCE+t

SSH-2.0-FcZpUkMuIY 2MfBBDvOJdFBTFUw==

The data encoded in the client software version is
encrypted using a custom cipher and uses the source IP
address of the TCP connection as the key, which would
be the origin of the backdoor usage as seen on the
compromised server. It contains:

1. A fixed-length password. Earlier versions use an
11-character password, which grew to 15 characters
in version 1.8. The Ebury samples contain a SHA-1
hash of that password (or 32,768 SHA-1 iterations
in the case of version 1.8). The operators keep track
of which sample is installed on each compromised
server so they can use the right password to log in.

2. An optional command. The command is not a
system command but is interpreted by Ebury to
control its behavior. If no command is given, regular

authentication is simply bypassed and authorized
keys are replaced with Ebury-owned keys.

3. An optional argument. Some commands allow an
argument to be passed to configure Ebury.

Table 1 shows the list of commands that can be
leveraged to control Ebury.

Using the Ebury backdoor also requires a private SSH
key: no channel can be opened until key authentication
is completed with the Ebury-owned keys.

Command Description

Xver Print Ebury version and exit

Xcat Print stolen credentials (lightly encrypted)

Xbnd
Bind the OpenSSH server listening
socket to another address

Xpsw
Set or remove an additional 4 bytes
key to Ebury password

Xxsh Start a shell as root

Xcsh
Like Xcat, but also open a shell instead
of quitting

Xcrl Set the libcurl hooking exfiltration server

Xcls
Like Xcrl, but also open a shell instead
of quitting

Table 1. List of Ebury-specific commands

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

1.8.2
2024-011.8

2023-11

1.7
2019-05

1.6
2017-02

1.5
2014-06

1.4
2014-02

Figure 9. Month each major Ebury version was first seen since the publication of Operation Windigo

https://web-assets.esetstatic.com/wls/2014/03/operation_windigo.pdf
https://www.welivesecurity.com/2014/02/21/an-in-depth-analysis-of-linuxebury/
https://www.welivesecurity.com/2014/04/10/windigo-not-windigone-linux-ebury-updated/
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/
https://refspecs.linuxbase.org/elf/gabi4+/ch4.sheader.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 17

Persistence
There are many ways in which Ebury can persist on disk. Apart from
rare exceptions (see the Replaced OpenSSH executables section), the Ebury
payload is present in a shared library. The library hijacked to trigger the
execution of Ebury is libkeyutils.so.1. This library is a dependency of
libkrb5.so that allows Kerberos authentication and is loaded by both the
OpenSSH client and server when launched. There are many techniques
used to tamper with libkeyutils.so.1.

Replaced keyutils shared library

The current and most popular way is dropping a malicious libkeyutils.
so file next to the legitime one and modifying the symbolic link to point
to the malicious one. It contains both the legitimate functionalities of
keyutils and the Ebury payload. Figure 10 shows a file listing from
a compromised server. Its libkeyutils.so.1 symbolic link has been
modified to point to a malicious version, which is postfixed with .2. Notice
the file size is much bigger to allow space for the Ebury malware. Be aware
that if the shell you are using to list the file is injected with the Ebury
userland rootkit, the malicious file and symbolic link won’t be shown, and
everything will appear normal. See the Userland rootkit section for details
about the rootkit’s functionalities.

Figure 10. File listing showing the malicious libkeyutils.so with the Ebury v1.8.2 payload

Sharp eyes may have noticed the setuid bit is set on the malicious
libkeyutils.so file in Figure 10. Since this is a shared library, and the
executable flag isn’t set, this setuid flag shouldn’t have any effect and just

make the file more suspicious. This flag is used by Ebury’s userland rootkit
to identify the malicious file when stat is called.

Side library

Another popular method we’ve seen in the past few years is a very lightly
modified libkeyutils.so that loads the Ebury payload from another file.
The only change to the legitimate libkeyutils is an initialization function
that uses dlopen to load an additional shared library. Figure 11 shows the
only added code.

Figure 11. Hex-Rays decompilation of constructor function calling dlopen(“libkeyctl.so”, …) to load Ebury

We have seen three variants using the following legitimate-looking
filenames to hide the Ebury payload:

• libkeystats.so

• libkeyctl.so

• librwctl.so

The malicious .so file contains the Ebury initialization function, which is
executed when dlopen is called.

This technique was probably used to evade the IoCs suggesting to check
the size of the libkeyutils.so.1 file. The size of added code in this case is
negligible to the total file size of the legitimate libkeyutils.so.1 library,
and all the Ebury code is in another file.

Other methods

We have talked about other techniques before in our last Ebury blogpost,
from 2017. They might still be used so let’s summarize them here for
completeness.

Adding a DT_NEEDED entry

This is used to load Ebury from an external shared library. A DT_NEEDED
entry is added to the dynamic section of libkeyutils.so, which points
to the malicious .so file. When the modified library is loaded, the linker
resolves the dependency and loads the malicious library, while the file size
of the legitimate library remains unchanged.

Overridden in tls directory

Adding a libkeyutils.so.1 in the tls subdirectory will override the
legitimate one. The loader will use this file instead on systems with Thread
Local Storage support (pretty much all systems).

Self-signed RPM

On RPM-based systems, we also saw self-signed keyutils-libs RPM
packages installed on the compromised system.

Replaced OpenSSH executables

Although we haven’t seen this technique being used recently, another
method is to replace the original OpenSSH client and server binaries with
backdoored versions. As far as we know, this method is the only way Ebury
can be installed on non-Linux systems.

https://web.archive.org/web/20181129192547/https:/www.cert-bund.de/ebury-faq
https://web.archive.org/web/20181129192547/https:/www.cert-bund.de/ebury-faq
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 18

IPC mechanisms
Ebury keeps its state information, configuration, and
stolen credentials in memory only. In versions prior to
1.5, Ebury used a fixed size shared memory segment
to store this information. In more recent versions,
Ebury spawns a new process when it is first loaded.
This process creates an abstract UNIX socket and
listens on it. Ebury uses that socket to communicate
stolen credentials, and set and get configurable
variables such as the exfiltration server IP address.

Abstract UNIX sockets work like regular UNIX sockets,
except they do not create a file on the filesystem. lsof
and procfs’ /proc/net/unix display abstract sockets
with an at sign (@) prepended to their socket addresses.
Ebury uses socket addresses like popular Linux services
such as /run/systemd/log-wuO3nuFBHN or /tmp/
dbus-ZP7tFO4xsL. The process that hosts the listening
socket also looks legitimate, because it uses the
executable of a real service present on the system.
However, they are started with the Ebury library
injected using LD_PRELOAD. When the library is loaded,
execution flow is hijacked to serve the Ebury service
instead.

A list of known socket addresses and host process
executable paths used by Ebury can be found in the
Remediation subsections.

Figure 12 shows the flow taken by the SSH credentials,

from the victim using a compromised client to the
Ebury operators.

1. The unsuspecting victim uses the SSH client
compromised with Ebury and types the server host,
TCP port, username, and gives its authentication
credentials, such as a password, a key, or a key and
a passphrase.

2. All the information is communicated via the UNIX
socket to the “Ebury process”, a process created
when Ebury is first loaded.

3. Later, the Ebury operators connect to the Ebury-
compromised OpenSSH server and issue an Xcat
command. Ebury connects to the Ebury process’s
UNIX socket and fetches the credentials, which
are encrypted and sent back to the attackers. The
credentials are erased from memory at this point.

4. If, for whatever reason, the credentials aren’t
collected for two weeks, Ebury encrypts the
credentials using a public key and sends them
via UDP to an exfiltration server. That server’s IP
address is decrypted from the DNS TXT record of an
algorithmically generated domain.

The underlying communication in the UNIX socket is a
custom binary protocol. Table 2 shows a summary of
the commands understood by the Ebury service.

Figure 12. Flow of stolen credentials, from the victim using an Ebury-compromised SSH client to the Ebury process, and later fetched by the operators

Table 2. Summary of the binary protocol of the Ebury service, as of v1.8.0

ssh

sshd

Exfiltration server

uses a compromised
SSH client

Abstract
UNIX socket

connect using Ebury
backdoor Xcat

command

receive
encrypted
credentials

Victim

Operators

Ebury process
(or else)

Stolen credentials,
State, Configuration

UDP/53

First byte
value Description Next byte value

0x01 Add credentials .

0x02 Get list of stolen credentials .

0x03 Set configuration value .

0x01 Exfiltration server .

0x02 Additional password for using the Ebury backdoor
(no longer used) .

0x04 Get configuration value .

0x03 Flags .

0x04 Server for libcurl hook exfiltration .

0x05 “Ebury process” info (such as its PID) .

https://man7.org/linux/man-pages/man2/shmget.2.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 19

As discussed in the Monetization section, we think this feature is used as
a server-side web skimmer, to steal credit card details from transactional
websites. This hook in libcurl is called when the web application queries the
payment processor API to validate and perform the transaction using the
details typed by the victim.

libkeyutils.so is a dependency of libcurl, so the injection of the malicious
code is possible just like with OpenSSH executables.

libcurl hooking for HTTP request
exfiltration
A feature that was added in version 1.7 is a way to
exfiltrate HTTP POST requests made by applications
using libcurl. This is done by hooking functions into
libcurl and performing an additional HTTP POST
request to an external server set by the attackers
whenever curl_easy_perform is used. Figure 13
shows that additional request performed in the hook.

The only configurable element is the domain name or
IP address to which the information is exfiltrated. By
default, Ebury does not contain an exfiltration server,
so this feature is disabled until the operator sets the
value. No filtering is done, meaning that all HTTP POST
requests are exfiltrated.

This feature is controlled by the Xcrl command, which
enables the operators to set the exfiltration server
to which the data is sent via HTTP POST requests.
A POST request is sent to that server’s /xpost.php
resource over HTTPS. Thus, the final URL looks like
https://<exfiltration-server>/xpost.php.

We have seen one domain name used to exfiltrate
the data – www.pbarsec[.]com – which is served by
Cloudflare.

The code was borrowed from FrizzySteal, described
below. The same obfuscation techniques, function
hooking, and even exfiltration server are shared
between the two malware families.

Userland rootkit
Over the years, more and more functionalities were added to Ebury to make it more and
more difficult to realize, from a system administrator perspective, that a server has been
compromised. Since version 1.6, Ebury is injected in all shells spawned when connected via
the compromised OpenSSH server. Figure 14 shows processes where Ebury is injected, and its
purposes in those processes.

Figure 13. curl_easy_perform hooked by Ebury to exfiltrate HTTP POST data, decompiled with
the Hex-Rays Decompiler

Figure 14. Processes where Ebury is injected

Sub processes (ls, lsof, ...)

Hide Ebury and its resources

Software using libcurl (php-fpm, ...)

Exfiltrate HTTP POST requests

Injected via LD_PRELOAD

UNIX socket

Injected via LD_NEEDED dependency

Ebury
(libkeyutils.so.1)

OpenSSH server (sshd)

Enable Ebury backdoor

OpenSSH client (ssh)

Steal credentials

Ebury process (/sbin/rsyslogd or else)

- Create abstract UNIX socket

- Keep state, such as stolen credentials and configuration

- Exfiltrate credentials via DNS

Shell (bash or other)

Hide Ebury and its resources

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 20

As you can see, all subprocesses spawned by the OpenSSH server are
injected with Ebury. This method allows the malware to lie to the user
about the presence of certain resources related to Ebury. To inject into
subprocesses, Ebury hooks the following functions from libc:

• system

• popen

• execve, execvpe, execv, execvp, and execl

In all cases, the LD_PRELOAD environment variable is injected, either by
temporarily modifying the environ global variable or by changing the
parameter to the function.

Here are the traces of Ebury an admin could be looking for when inspecting
a running server:

• the modified libkeyutils.so shared library on the file system,

• the Ebury process,

• the abstract UNIX socket created by the Ebury process, and

• the presence of the malicious libkeyutils.so in the memory mapped
by processes injected with Ebury.

All of those are difficult to reveal when using a compromised shell.

File and symbolic link

The malicious shared library with Ebury, whether it’s libkeyutils.so.1 or
another (see Persistence), as well as the modified symbolic link, are hidden
from the user. System functions such as readdir are hooked to prevent
tools from seeing the malicious file in the library directory. Additionally,
realpath and readlink (and its variants readlinkat, freadlink, etc.)
are hooked so that the libkeyutils.so.1 symbolic link will appear to be

pointing to the legitimate file. stat, open, and all their variants (xstat,
lxstat, statx, fopen, etc.) are also hooked to make it appear that the
malicious file doesn’t exist, and that the system only has the legitimate
libkeyutils.so file.

Figure 15 shows file listings with ls -l under a shell compromised with
the Ebury rootkit, and under a trusted shell where the Ebury rootkit isn’t
activated.

Figure 15. File listing with (above), and without (below), the Ebury userland rootkit activated

Process

We mentioned that Ebury’s state is kept in memory, in a process we call the
“Ebury process”. This persistent process is hidden from the list of running
processes when listing processes with tools such as ps: readdir and
readdir64 are hooked to remove the process from /proc, which is how ps
and other tools list running processes.

Figure 16 shows the difference when running ps under a trusted shell and
one compromised by Ebury. It is presented in the unified format (diff -u),
meaning that lines prefixed with +, in green, are shown only when the shell
is safe from Ebury. Inversely, lines starting with -, in red (if there were any,
but in this case there are none), are shown when the shell is compromised
by Ebury, but not from a trusted shell.

Figure 16. Difference between ps auxw being executed under a trusted and a compromised shell

It’s worth noting that /proc/$PID_OF_EBURY_PROCESS/ is still accessible:
Ebury actually uses /proc/$PID_OF_EBURY_PROCESS/fd/3 to get the inode
of the UNIX socket it creates.

UNIX socket

The easiest way to list UNIX sockets on a Linux system is using procfs’
/proc/net/unix. Some tools such as lsof use this file to get the list. The
way Ebury hides the socket from the list is by hooking open and fopen
and returning a file descriptor to a temporary file instead. This temporary
file holds the same content as the original file, with all lines that contain
the Ebury-created UNIX socket removed. Figure 17 shows that the Ebury-
created UNIX socket is visible in /proc/net/unix when read from a trusted
shell, but invisible when read from a compromised shell.

Figure 17. Difference between /proc/net/unix seen under a program compromised with Ebury
and one that is not

https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 21

In the same way, Ebury tampers all /proc/<pid>/net/
unix files, which have the same format as /proc/net/
unix but contain sockets opened by the process.

There is another way UNIX sockets can be listed, and
that is by sending a NETLINK_SOCK_DIAG message
over a socket using the SOCK_DIAG_BY_FAMILY
protocol. This is how ss first tries to enumerate
sockets and falls back to using procfs if it fails. Hiding
the UNIX socket listed that way is a bit more complex.
To understand how to use NETLINK_SOCK_DIAG, we
can refer to the sock_diag(7) manual page. Figure 18
shows the hook to the recvmsg function, where Ebury
looks for the reply to a NETLINK_SOCK_DIAG request.
If any one of the sockets listed has the name of the
UNIX socket created by Ebury, it is removed from the
buffer.

Mapped memory

How about looking at the memory mapped into
processes to find some trace of the userland rootkit?
Well, this might not work either as Ebury carefully
hides itself from /proc/<pid>/maps and
/proc/<pid>/task/<tid>/maps, in a similar way that
its UNIX socket is hidden. The fopen hook also handles
the maps file. It removes lines with references to the
malicious shared library and adds lines referencing
the legitimate libkeyutils.so if the process should
normally require it. Both the path and inode are

Figure 19. Differences in OpenSSH server and Bash maps files when under the Ebury userland rootkit

Figure 18. recvmsg as hooked by Ebury, decompiled with the Hex-Rays Decompiler

replaced from the original lines. Figure 19 shows the differences when looking at the maps file to
try to find the injected library.

https://man7.org/linux/man-pages/man8/ss.8.html
https://man7.org/linux/man-pages/man7/sock_diag.7.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 22

Typical post-exploitation usage
Starting in early 2024, we have been monitoring a server newly
compromised with Ebury to see how the operator would interact with it.

This revealed that once a system is compromised, the operators connect
back regularly and use the Xcat command to exfiltrate any credentials
captured since they last connected. On a less regular basis, a script is
used to search for and fetch any new SSH private keys, updates to the
known_hosts files, a list of running services, etc. This is all via automated
processes.

The libcurl hooking functionality was also enabled one week after the
server was compromised by setting an exfiltration server. It was disabled
after three weeks.

Figure 20 shows a timeline of 57 connections over the course of a month.
There are a number of proxies used between the Ebury controller and
the compromised servers. Those proxies are a mix of Ebury-compromised
servers and infrastructure rented by the perpetrators. The bottom line is
that the servers having IP addresses seen controlling Ebury don’t have the
controlling software, but are just proxies. They are, however, usually used
for a long period of time. See the Network IoCs section for a list of recently
used IP addresses.

This honeypot did not run services other than SSH, so there was no obvious
way to monetize it and no other malware was deployed.

Credential exfiltration
There are two ways that the stolen SSH credentials can be exfiltrated from
the compromised server:

1. Fetched by the operator using the Xcat command.

2. Sent to an exfiltration server using a specially crafted UDP packet that
looks like a DNS request.

Ebury does not include a hardcoded exfiltration server address. It can be
set by the operators using an argument to the Xver or Xcat command (see
Ebury basics).

If the operators have not reached out to the server for two weeks (no
Xcat command), Ebury uses an algorithm to generate domain names and
then uses them to find out where to send the credentials. Credentials are
then sent via UDP. This enables Ebury operators to regain access if, for
example, the server’s IP address changes. This fallback mechanism uses
the DNS TXT record of the generated domain. The record is decrypted
using a public RSA key hardcoded in the Ebury sample. The decrypted data
contains the IP address of the exfiltration server and an expiry timestamp.

Records are usually set to last for about three months, after which they are
rotated. This mechanism has already been well documented in previous
publications. Here are the first three domains of the latest (sixth) iteration
of the DGA:

1. qimpj6kkofzf[.]biz

2. 4wsrsznmdb[.]biz

3. kezt2tqpy5ug[.]info

The first domain was registered by the perpetrators in September 2023. As
of May 2024, the domain contained a valid TXT record that, once decrypted,
points the exfiltration server to 185.145.245[.]167.

qimpj6kkofzf[.]biz. 1800 IN TXT “IIjjfXI2BxYkou85HeMHH4LA5E
CW4IzYWjGOkMLF5yrjvpUqE+P6oOR70amiHxKM6RLoYsp36yDX6tnc7tUP
cl9OdbObMtVLpAx36KmvrsvqioVb2xitDsBHp/m2m8x8Vn6v5LFh0oZ20mE
Dobcyb7Tvg+f5E5q1lFbzC3Oz7ek=”

Decrypted: qimpj6kkofzf[.]biz:3113350567:1725148800
Exfiltration IP address: 185.145.245[.]167
Expiration: 2024-09-01 00:00:00 UTC

Figure 20. Timeline of usage of Ebury over a one-month span

0 7 14 21 28

Credential exfiltration (Xcat) Credential exfiltration and gather system information (Xcsh) Spawn shell (no Ebury command specified)

Set HTTP POST exfiltration server (Xcrl <hostname>) Unset HTTP POST exfiltration server (Xcrl)

Day

https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2

WHITEPAPER | 23

Monetization:
Multiple New
Components

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 24

Monetization:
Multiple New Components
Recent activities have shown that their tactics have changed, and a
plethora of new tools were discovered from kernel modules to Perl
scripts. Those tools have the common goal of monetizing, through
various methods, the servers they compromise. The way servers are
monetized range from credit card information theft and cryptocurrency
stealing to traffic redirection, spam sending, and credential stealing.
The new malware families used by the group includes:

• A set of Apache modules used for different purposes such as
proxying raw traffic, exfiltrating sensitive information from HTTP
requests, and redirecting visitors to an attacker-controlled website.

• A kernel module that modifies HTTP traffic to perform redirection.

• Tools to hide and allow malicious traffic through the firewall.

• Scripts used to carry out AitM within hosting providers’ data
centers, aiming to compromise specific targets.

Figure 21 depicts the various strategies employed by the operation to
monetize the servers compromised by Ebury, along with the resulting
consequences for internet users who browse websites hosted on
compromised servers or engage in online server management.

Malicious Apache and nginx modules
One of the activities documented in Operation Windigo involved the
redirection of web traffic by compromised servers. Ebury’s operators
installed malware, known as Cdorked, on web servers. This malware
was designed to redirect a limited number of visitor requests to
advertisements, generating profit for the attackers. Cdorked was
installed by replacing the HTTP server executables with patched
versions. We observed incidents where Apache, nginx, or Lighthttpd
were replaced with the Cdorked payload. Activities related to Cdorked
stopped around August 2015.

Recent observations indicate a shift in tactics, as the attackers
have ceased patching the HTTP server binaries. Instead, they have
employed a combination of Apache and nginx modules for various
objectives, including the proxying of raw traffic, exfiltration of sensitive
information from HTTP requests, and the redirection of visitors to
websites under the control of the attackers. Table 3 summarizes the list
of modules we attribute to Ebury.

HTTP server

VictimEbury operators

SPAM

Payment
processor

HTTP server

HTTP server

HTTP server

HelimodRedirect

is redirected to
advertisement

Credit card
detailslibcurl (php, …)

Wallet

performs ARP spoofing

SSH credentials

Credit card
details

Credit card details
or other secrets

HTTP POST
exfiltration server

Bitcoin node

FrizzySteal
or Ebury

HelimodSteal

HelimodProxy

arpspoof, iptables

intercepts credit
card details

proxies spam
campaigns

HTTP server

KernelRedirect

Figure 21. Multiple malware families deployed on Ebury-infested servers and the impact for potential victims

https://isc.sans.edu/diary/A+recent+decline+in+traffic+associated+with+Operation+Windigo/20065

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 25

Upon deployment on a compromised server, the malicious Apache modules
do not function as new modules; rather, they replace existing legitimate
modules with trojanized versions. While mod_dir.so is the most commonly
targeted module for modification, other legitimate modules have also been
observed to be trojanized, as outlined in Table 3. Despite the addition of
hooks to enable malicious functionalities, the trojanized modules retain
their original legitimate behavior. We have not encountered any servers
with more than one variant of the malicious Helimod payload (Proxy,
Redirect, or Steal) simultaneously.

Unlike Apache, malicious modules for nginx are standalone and
do not contain legitimate code. We have seen only one sample of
HelimodRedirect for nginx. We have, however, seen nginx servers running
HelimodRedirect and HelimodSteal during our internet scanning, using a
fingerprint based on a specially crafted request (see Finding compromised
servers using the management URL). We believe that a HelimodProxy module
does not exist for nginx.

Overview of changes to Apache modules

Apache modules are shared libraries that export a symbol pointing to a
structure that describes the module and that contains callbacks. The content
of this structure, as shown in Figure 22, includes information such as the
version of Apache this module is compatible with, the source filename, and
the defined callbacks responsible for executing the module’s tasks.

Figure 22. Module information exported by mod_dir.so as seen in IDA Pro with the proper
structure definition

There are commonalities between the three malicious Apache modules,
even if their purpose is different. The authors added code in the

register_hooks callback. It allows registering hook functions in the
request handler, which allows executing an action when a request arrives.
Hooks are added, while preserving the legitimate behavior. Figure 23 shows
the HelimodProxy’s register_hooks function. The legitimate mod_dir
module only registers the last function, dir_fixups; all the others were
added by the authors of HelimodProxy.

Figure 23. Hex-Rays Decompiler output for HelimodProxy’s register_hooks

First, we examine the payload from the three modules, followed by an
exploration of their shared functionalities.

HelimodProxy

In early 2021, a victim of HelimodProxy reached out to ESET researchers
about a compromised server used to relay spam. They found both
HelimodProxy and Ebury in their infrastructure, but not on the same servers.

HelimodProxy, which is present on disk as mod_dir.so, is a modified version
of the genuine mod_dir Apache module. The malicious module keeps
the legitimate functionalities working, while the evil part permits running
arbitrary commands and using the web server to proxy raw TCP traffic.

As noted above, we believe this proxying functionality is used to relay spam.
The typical scenario works like this: a system first makes an HTTP request
to a specific URL (refer to the Management URL section for details). Following

Name Purpose First seen Known compromised
Apache module nginx module name

HelimodProxy Proxy traffic to send spam . 2021 mod_dir.so N/A

HelimodRedirect Redirect HTTP request
to advertisement . 2022 mod_dir.so

mod_auth_basic.so

mod_authn_file.so

mod_authz_host.so

mod_authz_user.so

mod_env.so

ngx_http_redir_module

HelimodSteal Exfiltrate HTTP POST
request mode to the server . 2019 Unknown, but variant exists

according to internet scan .

Table 3. HTTP server modules

https://httpd.apache.org/docs/2.4/mod/mod_dir.html
https://httpd.apache.org/docs/2.4/mod/mod_dir.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 26

this, the source IP address of the request is added to a list stored in memory.
Subsequent TCP connections made from the same IP address are redirected
into a subprocess initiated from /usr/lib64/pmtad. Figure 24 illustrates the
function responsible for starting the subprocess and redirecting the socket
into its standard input using dup2. Note that at this point, Apache no longer
serves HTTP responses for that particular IP address.

Figure 24. Hex-Rays Decompiler output of the Apache connection hook function of HelimodProxy

Interestingly, argv[0] is being set to /usr/sbin/pmtad, rather than
/usr/lib64/pmtad. The latter is the path of the daemon for PowerMTA,
legitimate email sending software. This suggests that the servers targeted
by HelimodProxy are running PowerMTA for delivering emails, and
HelimodProxy attempts to conceal its malicious process by blending in with
existing processes. We were able to corroborate this hypothesis on some of
the victimized servers. Using an existing mail server is also a great way to
improve the probability of spam reaching its destination.

Now, what is this other pmtad executable in /usr/lib64? Its analysis
revealed a modified version of 3proxy, open-source proxy software. This
software enables the operators to use the compromised server as an open
proxy to relay various types of traffic. In practice, it was primarily exploited
to send spam from the IP addresses assigned to the compromised servers.

Additionally, HelimodProxy provides operators with the capability to
execute arbitrary commands. These commands are XOR encrypted, hex
encoded, and appended to the management URL. This functionality was
utilized, for instance, to run the ip addr command, which lists IP addresses
assigned to the server, enabling the operators to identify suitable addresses
for proxying traffic. It is possible that this functionality was also employed
to deploy or update the auxiliary pmtad executable.

HelimodRedirect

HelimodRedirect registers an output filter to redirect unsuspecting
visitors to another website. A small percentage of traffic is redirected by
responding with a 302 status code and adding a Location in the reply
headers. Figure 25 shows how HelimodRedirect adds the domain and the
resource of the original request as parameters (respectively DOM and URI)
to the redirection target. This allows redirecting the visitor back to the
legitimate website after the redirection is done if the Ebury gang doesn’t
consider that visitor to be interesting.

Figure 25. Hex-Rays Decompiler output of Apache output filter of HelimodRedirect

There are several conditions to be met before a redirection can happen. The
goal is to avoid suspicion and make it difficult to reproduce the redirection.
Here are the conditions that must be met for a redirection to occur:

• Request is made on port 80 or 443, the default ports for HTTP and
HTTPS. Web management interfaces sometimes run on other ports;
HelimodRedirect avoids redirecting system administrators this way.

• Request method is GET.

• Requested file extension is .html or .php. This is configurable but we
never saw it changed in practice.

• Request has an Accept-Language header and its value isn’t part
of a deny list. The module can avoid specific locales, based on its
configuration. The default deny list contains Russian and Ukrainian
locales only.

• Request has a User-Agent header, and it looks like a web browser and
not a crawler.

• Source IP address has not been redirected recently. “Recently” here
is variable and depends on the amount of traffic the server receives,
because the source IP address will be removed from the list once it’s
overwritten by another IP address (see the Weird storage of IP address list
section).

• Source IP address was not used to log in to the server recently via SSH
(using /var/log/wtmp).

If all conditions are met, then there’s a chance that the redirection is
performed. The default value is to redirect 10% of the traffic, so 1 chance
out of 10.

The target of the redirection seems to have been advertisement and
affiliate programs such as gambling sites.

https://3proxy.ru/
https://httpd.apache.org/docs/2.4/filter.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 27

HelimodSteal

This is perhaps the most damaging malware in this trio. HelimodSteal
intercepts all HTTP requests made to the web server and adds an input filter
for requests using the POST method. This is generally the HTTP method
used when submitting forms from a website, such as login and payment
forms. Figure 26 shows an HTTP request made to http://checklicence[.]
net/licence.php, an exfiltration server used by the perpetrators. The body
of the request contains potentially sensitive data that was sent with the
original request. The request is otherwise handled normally.

Figure 26. Hex-Rays Decompiler output of HelimodSteal input filter, exfiltrating data using an HTTP request

It is important to note that end-to-end encryption (HTTPS) does not
provide protection for the sensitive data in this case. This is because
HelimodSteal resides on the web server, allowing it access to the decrypted
request after it has been processed by the web server.

Shared functionalities

Management URL

Malicious HTTP server modules in the Helimod family are controlled
via an HTTP request to a resource that changes based on the current
date and time. The resource is prefixed by /sip (configurable in newer
versions) and then contains the MD5 hash of a formatted string. This
hashed string contains the word secret and digits based on the current
date and time. Older versions use an algorithm that changes the URL
approximately every 4.5 hours, while newer versions change the URL
every hour. These are displayed in Figure 27 and Figure 28. For example,
the resulting management URL for the latest version of the algorithm
on March 18th, 2014 at 13:37 is http://<compromised-server>/
sipa7d9badccf81e9b9832bbe3db6aa677c, where a7d9…677c is the MD5
hash of secret:2014:03:18:13, terminating with a new line.

Figure 27. Generation of the resource path used to control HelimodProxy (earlier version)

Figure 28. Generation of the resource path used to control the Helimod malware family (latest version)

Finding compromised servers using the management URL

Using the algorithms to generate the resource path, we have scanned the
internet to find potential compromised servers. First in 2021, using the first
algorithm, we found 60 IP addresses of systems running HelimodProxy.
The number of victims seems limited. There are two hypotheses to
explain the low number of compromised hosts. We know from the system
administrator of a victimized system that it wasn’t reachable from the
internet and HelimodProxy was accessed through an Ebury-compromised
machine, so it would be impossible to reach out to that system from our
internet scanner. It’s also possible the campaign was over, and the group
moved on to other monetization methods.

More recently, in late February 2024, we scanned the internet after we
found the newer algorithm in a sample of HelimodRedirect. An HTTP GET

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 28

request to the generated URL returns the configuration values, as shown in
Figure 29.

Figure 29. Example HTTP reply from HelimodRedirect configuration URL

There was a very limited number of HelimodRedirect instances detected
during our internet scan: only six! Furthermore, all of them had an empty
value in its REDIRECT_URL configuration, which is required for malicious
redirections to occur. We believe this campaign might be over. Based
on the URL patterns of the redirections and according to our telemetry,
HelimodRedirect was widely used in late 2022 and earlier and was installed
on servers hosting hundreds of domains. Like Cdorked, it redirects only a
small percentage of traffic and avoids redirecting the owner of the website
or the same visitor twice, which makes it hard to reproduce the malicious
redirect. However, we can find visitors of popular websites complaining
about redirections, which matches the pattern of the HelimodRedirect
redirection URL. Figure 30 shows a thread on Mastodon where a user
complains about being redirected to a gambling site after clicking the
URL to the posted article. The URL in the post is to a legitimate news
outlet, but the screenshot shared later in the thread reveals that the visitor

was redirected to 46.4.68[.]136, which was the redirection target of
HelimodRedirect during that timeframe. We can also recognize the DOM and
URI parameters in the URL, something specific to HelimodRedirect. The
parameters value shows it was redirected from the legitimate website.

Figure 30. A Mastodon thread on floss.social showing a user complaining about web
redirection. The screenshot they provide (bottom) shows a redirection target matching the
HelimodRedirect signature (source: https://floss.social/@9to5linux/109500305664911924).

To our surprise, we found that both HelimodRedirect and HelimodSteal
implemented the same algorithm to generate the management URL.
Before our internet scan, samples of HelimodSteal we analyzed were not
configurable: all values were hardcoded in the malware samples. The scan
revealed considerably more victims of HelimodSteal than HelimodRedirect:
a total 235 servers replied with their HelimodSteal configuration. Figure 31
shows a map of the location of HelimodSteal-compromised servers.

Figure 31. Location of servers compromised by HelimodSteal

Unlike HelimodRedirect, the malware is active and contained a valid
configuration (the default values). Figure 32 shows the configuration as seen
during our internet scan, which was the same for all servers. According to
the value of the Server header in the replies, 26 servers (11%) are running
nginx, one didn’t have the header, and the rest are running Apache.

Figure 32. Example HTTP reply from HelimodSteal configuration URL

Weird storage of IP address list

For HelimodProxy, the initial list is empty, and when requests are made
to the management URL, the source IP addresses are added to the list.
IP addresses on this list are permitted to use the open proxy. On the

https://floss.social/@9to5linux/109500305664911924

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 29

other hand, for HelimodRedirect, the list consists of IP addresses that
should not be redirected. This list is populated with the IP addresses of
system administrators who have recently connected via SSH (using /var/
log/wtmp). Additionally, IP addresses of visitors who have already been
redirected are also included on the list to prevent duplicate redirection.

The IP addresses are written in an array with a fixed size of 1,000 entries,
and their indexes are generated pseudo-randomly from the given
addresses. Figure 33 shows a reimplementation in C code, based on the
analysis of HelimodRedirect samples.

Figure 33. C reimplementation of the function adding an IP address to a list, present in the Helimod
malware family

This algorithm is a custom implementation of a hash table without buckets,
which enables fast addition and retrieval of entries. It provides a strong
code signature that establishes a clear connection between HelimodProxy
and HelimodRedirect. Since the array only contains 1,000 entries, the
likelihood of collisions is relatively high. However, this may not be a practical
issue, as the allowed list of HelimodProxy typically consists of a limited
number of IP addresses, possibly just one. While collisions may occur for
HelimodRedirect, the overwritten IP address in the array is likely to have
been redirected a long time ago, and the user associated with it is unlikely
to be attempting to reproduce the redirection at that moment.

KernelRedirect
KernelRedirect is a Linux kernel module implementing a Netfilter hook.
Netfilter is a framework for Linux that filters and modifies network traffic
at various stages of transmission; in the Linux kernel, Netfilter modules can
register callback functions to manipulate packets. The malicious Netfilter
kernel module installed by the attackers is a 64-bit ELF executable compiled
with symbols. The module being deployed is named nf_conntrack6.ko,
which is not part of Netfilter, or any legitimate software, but bears a name
similar to the legitimate nf_conntrack.ko module.

KernelRedirect is used to modify, under specific conditions, the value of
the Location header in HTTP replies, redirecting the visitors to a different
URL than the one originally expected. When a 301 Moved Permanently
response is received, the Location header conveys the URL to which the
web client application should navigate.

It’s worth noting that unlike HelimodRedirect, KernelRedirect cannot
modify end-to-end encrypted (HTTPS) traffic. When Netfilter processes
HTTPS traffic, the HTTP reply has already been encrypted by the web
server application. However, most web servers still receive unencrypted
HTTP traffic on port 80 and are likely to respond with a 301 Moved
Permanently status with the corresponding HTTPS URL in its Location
header. KernelRedirect abuses this scenario and modifies the reply
to redirect the browser to a URL provided in the kernel module’s
configuration.

Hook configuration

To replace the Location header, the malicious kernel module registers
a Netfilter hook using the nf_register_hook function to intercept all
outgoing TCP traffic, enabling inspection and modification. The hook’s

behavior is configured using the nf_hook_ops structure, as illustrated in
Figure 34.

Figure 34. Hook behavior configuration

This indicates that the hook function (pkt_mangle_begin) from the
malicious module will be invoked for all outbound IPv4 traffic.

Redirection configuration

KernelRedirect includes a hardcoded configuration, referred to by the
module authors, according to the symbols, as replacer_info, which is an
array of structures with the format seen in Figure 35.

Figure 35. Structure of the hardcoded configuration

As depicted in Figure, each structure within this array specifies the targeted
port, the probability (packet_handling_prob) of handling a packet,
the probability (packet_replacement_prob) of actually modifying the

https://netfilter.org/

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 30

packet, the length of the domain to redirect to, the original domain name
to be replaced (not specified in most analyzed samples), and the malicious
domain name to redirect to.

Outgoing packet handling

When a packet meets the requirements of the Netfilter hook, the module
first checks whether it is a TCP packet that matches the destination port
specified in the hardcoded configuration. In samples we analyzed, it
consistently is 80. Then, it checks whether the destination IP address is
included in a hardcoded list of IP address ranges that should never be
redirected or if it has already been served a malicious redirection. If not,
KernelRedirect verifies whether the packet is an HTTP reply and confirms
the presence of the Location header in the HTTP response. Table 4 shows
examples of a part of the hardcoded configuration.

Original legitimate
redirection

Malicious
redirection

shoppersgratification[.]com shoppesrgratification[.]com

fiesta-com[.]com feista-com[.]com

hostingfromvps[.]com hostingrfomvps[.]com

www .keysnotes[.]com www .keysnoles[.]com

www .trckrints6[.]com www .trckrlnts6 .com

Table 4. Examples of redirection modifications (highlighted in red) applied by the malicious Netfilter module

To avoid raising suspicion, the replacement of the Location header is not
carried out systematically. KernelRedirect uses the packet_handling_
prob and packet_replacement_prob values from the configuration to
decide if a redirection should occur. The former is the probability the reply
is modified at all, and the latter is the probability for that particular domain
in the list. Both are chances in a thousand. Typical values we have seen are
respectively 1,000 and 100, meaning all packets are handled and 10% of
them will be modified to include the redirection. HelimodRedirect’s default
configuration also redirects 10% of the traffic.

When all the conditions are met, the redirection occurs. Typically, the
configuration array contains multiple entries with both the original
domain to be replaced and the domain to redirect to. Domains used for
the malicious redirection are highly similar to the original domains, as
demonstrated in Table 4.

Some instances of malicious redirection involve subtle alterations, such
as the swapping of a pair of letters or the replacement of a single letter
with another, making them difficult for the eye to detect. These misspelled
domains were registered by the operators in 2020, suggesting that
KernelRedirect was active in this timeframe. It’s interesting to note that the
“legitimate” domains in the above examples never seemed to have hosted
legitimate websites and received traffic from spam campaigns. The Ebury
gang was piggybacking on existing traffic schemes.

In other variants of the module, the configuration array contains a single
replacer_info entry, with only a domain to redirect to. In such cases,
HTTP redirections are modified regardless of the original value of the
Location header.

KernelRedirect uses a pseudorandom number generator (PRNG) algorithm,
depicted in Figure 36, in the process of determining whether a packet

should be modified. The constants (1103515245 and 12345) are widely
used by Linear Congruential Generator (LCG) algorithms to generate
pseudorandom numbers. Interestingly, this PRNG also has been found in
Ebury since version 1.6, in HelimodRedirect, and in FrizzySteal, indicating
code sharing among these modules.

Figure 36. Decompiled code of the PRNG used by the malicious Netfilter module

The “decimal IP” connection

In March 2017, Malwarebytes published a blogpost that described an
intriguing redirection leading to the RIG exploit kit, resulting in the
compromise of users with SmokeLoader malware. This redirection was
to a URL with an IP address in a non-dotted decimal format: h[tt]
p://1760468715. It is worth noting that this URL is equivalent to the dot-
decimal notation http://104.238.158[.]235. Interestingly, during our
analysis of KernelRedirect samples, we encountered the same redirection
target, indicating that KernelRedirect likely facilitated the redirections
observed by Malwarebytes, as depicted in Figure 37.

Figure 37. replacer_info values in KernelRedirect sample showing the decimal-formatted IP
address used as redirection target

In their blogpost, Malwarebytes identified over 5,000 websites serving
these malicious redirections.

https://urlscan.io/result/e23ac16f-8f0b-41c2-a6d8-7f2f6fa09185/
https://urlscan.io/result/45724674-05af-44ed-b8ed-fbc9a08af8fb/
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://www.malwarebytes.com/blog/news/2017/03/websites-compromised-decimal-ip-campaign

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 31

FrizzySteal
FrizzySteal is a malicious shared library that injects itself into libcurl to
intercept and exfiltrate requests made by the compromised server to
external HTTP servers.

When stored on disk, FrizzySteal is named as the shared library file libz.
so.1. During its deployment, the legitimate libz.so.1 library is modified
to add a DT_NEEDED entry in its dynamic table, as shown in Figure 38. It is
worth noting that the libz compression library, which now loads FrizzySteal,
is a dependency of libcurl.

Figure 38. Malicious dependency added to libz

As discussed in the libcurl hooking for HTTP request exfiltration section,
capabilities of FrizzySteal were subsequently integrated into Ebury starting
with version 1.7. The standalone FrizzySteal may have been replaced with
Ebury for new deployments. There is significant code overlap between
Ebury and FrizzySteal, encompassing areas such as string obfuscation,
function resolution, hooking libraries, and the code responsible for the
exfiltration within the curl_easy_perform hook. Unlike Ebury, where
the exfiltration server can be configured using Ebury-specific commands,
the URL is hardcoded in the sample, as revealed in the decrypted contents
depicted in Figure 39.

Figure 39. Decrypted strings from FrizzySteal sample

Another distinguishing factor is the examination of the User-Agent for
BigBadW0lf in the request, which corresponds to the User-Agent utilized
by SmallCuteCat, a competing server-side web skimmer. HelimodSteal’s
deployment script also checks for the presence of SmallCuteCat, as
discussed in the Shared hosting, but not shared with whom you think section.

Server-side web skimmer

This method of infiltration is believed to be another avenue for extracting
financial details during transactions. When a customer submits credit card
information to an online store, the server is required to communicate with
its payment processor to validate and confirm the transaction’s success.

Figure 40 illustrates how credit card details can be pilfered from
unsuspecting individuals entering their information into an online payment
form. HelimodSteal can intercept these details as they are received by the
compromised web server. Alternatively, FrizzySteal or Ebury can obtain
them from the requests made by the compromised server to its payment

processor. Since both are operating within the web server or application,
end-to-end encryption (HTTPS) cannot protect against this threat.

Payment
processor

sends credit card
details via HTTP POST

sends credit card
details via HTTP POST

collects

Ebury-compromised server

HTTP POST
exfiltration server

HTTP server

Victim

Legitimate web
store application

HelimodSteal

FrizzySteal
or Ebury

Figure 40. Flow of credit card details on transactional website compromised by Ebury

Hiding traffic from system administrators
After analyzing malware discovered in the gang’s toolkit, we found
one designed to conceal malicious network traffic from the system
administrators of the compromised servers. This malware can evade
firewall protections by manipulating Netfilter rules. It is present on disk as
an altered iptables executable. On CentOS, the only distribution where this
malware was seen, the altered files are at the following locations:

• /sbin/iptables-multi-1.4.7 on CentOS 6

• /usr/sbin/iptables-multi on CentOS 7

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 32

These ELF executables are used to launch iptables-related commands such
as iptables, iptables-save, and iptables-restore. All are symbolic
links to iptables-multi.

The malicious files have an additional function the author called hide_me,
which serves two purposes:

• Hide rules from the output of iptables and iptables-save for a
specific set of IP addresses (Figure 41).

• Inject rules to accept incoming TCP connections from the same set of IP
addresses (Figure 42).

Figure 41. IDA Pro flow graph showing an IP address being compared with the embedded,
hardcoded list to determine whether to display it in the command output

Figure 42. IDA Pro disassembly showing injection of rules after iptables-restore finishes its
legitimate duties

The aforementioned set of IP addresses is hardcoded in the malicious files
and they are probably related to one of Ebury’s operations in 2020. They are:

217.163.23[.]173

140.82.34[.]55

194.36.191[.]108

94.140.120[.]163

Performing AitM attacks
Given the extensive network of servers compromised by Ebury, its operators
have established a significant presence in data centers worldwide. Leveraging
this extensive access, they can strategically target valuable servers. Ebury
operators have been conducting large-scale AitM attacks to gain access to
these valuable servers and exploit their intrusion for financial gain.

Implementation

Perl scripts are utilized to automate the execution of arpspoof and
the creation of iptables rules and redirecting incoming SSH traffic to a
honeypot where victims unwittingly enter their SSH credentials. Upon
identifying a target, the following steps are taken:

1. Identify a compromised machine with Ebury installed within the same
subnet as the targeted system.

2. Confirm network segmentation by examining the ARP cache after
pinging the target.

3. Install necessary tools such as arpspoof.

4. Execute arpspoof to intercept network traffic and establish iptables
rules to redirect network traffic to an operator-controlled system
designed to capture SSH credentials.

Figure 43 depicts the network interactions during the attacks.

Victim

installs Ebury and steals
SSH keys and Bitcoin wallets

Network segment

redirects SSH tra�c using
iptables DNAT rule

installs tools and
runs nmap, iptables

and arpspoof

scans for SSH port

tries to connect
to server but tra�c

is intercepted

Compromised
with Ebury

runs arpspoof and
iptables rules

Target
Bitcoin node or

interesting target

SSH AitM host
captures SSH
 credentials

Figure 43. Overview of the AitM attacks perpetrated by the Ebury gang

It is crucial to acknowledge that when victims attempt to connect to their
server via OpenSSH during an ongoing AitM attack, OpenSSH and other
popular SSH clients will issue a warning about a host key change if the
client was previously used to connect to the server. Despite this warning,
many victims still proceeded to enter their passwords. Here are several
reasons why capturing the credentials is successful:

• During the AitM attack, all other services on the host become
unreachable. From the victim’s perspective, the server appears to have
an issue, and only SSH remains accessible to “fix” the problem. In a state
of remediation or panic, system administrators may overlook security

https://github.com/alandau/arpspoof

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 33

warnings if they hinder their ability to restore services.

• Victims may have never connected through SSH using the client they
are currently employing. In such cases, no warning is issued because the
client does not possess any prior host key information.

• Victims may lack alternative methods to address the issue. While some
ISPs offer console or rescue modes, these are typically employed as a
last resort. Additionally, rescue mode may alter the host key, leading the
victims to believe that the server is already in rescue mode when they
attempt to connect.

• As a result of key authentication failure, system administrators revert to
password authentication.

The whole process has mostly been automated by Perl scripts, running on
both the Ebury-compromised server performing the ARP spoofing and
on the target. Figure 44 shows the Perl script automatically run on the
targeted system once credentials are gained. SSH keys, Bitcoin wallets, and
Bash history are exfiltrated right after Ebury is installed.

Figure 44. Perl script run on target system after SSH credentials are stolen (redacted)

Victimology

It is feasible to trace the targets of AitM attacks because all SSH traffic from
ongoing AitM attacks is directed to servers controlled by the operators. The
AitM SSH servers consistently utilize the same host keys, regardless of the
victim. By using tools like Censys to search for SSH servers reporting those
host keys, we can identify servers whose traffic was tampered with during
the scan.

In total, we have observed over 200 targets across more than 75
autonomous systems (AS) in 34 different countries between February
2022 and May 2023. It is surprising to note the vulnerability of many data
centers to ARP spoofing attacks, likely stemming from the continued use of
outdated hardware or insecure configurations.

Among the targets of such attacks are reachable Bitcoin nodes. It’s
reasonable to presume that servers running Bitcoin Core may also store
a wallet. Given that the list of approximately 6,500 nodes reachable via
IPv4 is publicly available, Ebury operators verify if they have compromised
machines in the same network segment and attempt to execute AitM
attacks to gain SSH access to the server.

This same approach is applied to the approximately 7,000 reachable
Ethereum nodes.

Ebury operators also target Tor exit nodes. We believe that, as several
Bitcoin and Ethereum nodes are accessible via a Tor hidden service, there is
a possibility that Tor exit nodes may also host a Bitcoin or Ethereum node.
Additionally, other targets include servers involved in cryptocurrency
research and those responsible for financial transactions.

Some other targets are servers related to cryptocurrency research or
servers responsible for financial transactions.

https://bitcoincore.org/
https://bitnodes.io/

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 34

Attribution
This section is authored by the Dutch National High Tech Crime Unit
(NHTCU) regarding their findings related to the attribution.

The Ebury actors use various anonymization techniques to hide their tracks.
When it comes to their true identities many of the online and offline traces
NHTCU finds prove to be fake, stolen or often leading to (seemingly) innocent
people. In addition, the actors try to put law enforcement on the wrong foot by
using monikers of known cybercriminal actors and by actually stealing and using
credentials from other cybercriminals. These deceptive actions are well illustrated
by data found on a seized backup server.

Among the troves of data present on the seized backup server, there is copy of
a server belonging to a Russian payment provider. This data contains mailboxes,
transaction details and other company information. Several deeply located folders
include scans of passports of citizens with various nationalities. One of those
passport contains a name and address that is used by Ebury actors to apply
for a customer account with a hosting provider. Additionally, they use a Yandex
mail account with a prefix similar to some that are created on several platforms
by the real passport user. At first glance this combination of real and online
identifiers from several sources and timeframes appears to lead to a true identity
of an Ebury actor. Nevertheless, further research shows that it is more likely this
person is a victim of identity theft.

The actors seem to be taking a pragmatic approach when it comes to stealing
these types of (real) identities. For example, the backup sever contains a full

copy, including the source code, of the illicit website my-vidar[.]com. It is likely
that the Ebury actors stumbled upon this goldmine of login credentials, which
are harvested by other criminals using Vidar Stealer, within their own Ebury
botnet. The website my-vidar[.]com serves as an admin panel where infected
devices can be controlled. Hence the Ebury group does not only benefit from the
theft of the already stolen login credentials, but is also in a position to use the
credentials of the cybercriminals stealing them. Consequently, they can create a
‘cybercriminal cover’ pointing in other directions than themselves.

Despite the numerous red herrings, NHTCU is currently actively pursuing several
promising digital identities. These are mainly derived from copies of virtual
machines that are found on the backup server. On those virtual machines web
browsing artifacts are present, including browsing history and saved logins. The
browsing history illustrates that the majority of logins are preceded by visiting
URLs of admin panels related to password stealing malware (i.e. ‘Pony Stealer’
and ‘AZORult’). However, in other instances a user account is newly created and
variations of that username are used on other platforms.

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 35

Remediation
Detection

Defusing the userland rootkit

To detect Ebury activity on a server, it is crucial to
ensure that you are using an untampered session.
As shown in the Userland rootkit section, Ebury
compromises all SSH sessions to conceal its presence.
Fortunately, there are several methods to prevent
Ebury from injecting itself into a subprocess, or to start
a new shell that remains free from the userland rootkit:

• Setting the H environment variable to any value
in the subprocess prevents the rootkit from
activating. This is specific to Ebury and can serve as
a debugging method on compromised machines.
Running the command H=1 "$SHELL" should
launch a shell without Ebury loaded.

• Another technique is to set LD_PRELOAD,
LD_DEBUG, or LD_TRACE_LOADED_OBJECTS to an
empty string or any value, which also prevents
the rootkit from being activated. This behavior
was probably implemented to avoid altering the
behavior of legitimate tools that rely on these Linux
loader variables, such as ldd, a tool used to list
library dependencies of an ELF file. Additionally, it

circumvents an indicator previously shared in 2017,
where we suggested using LD_DEBUG=symbols to
detect the injection of libkeyutils.so.

• If you have systemd version 240 or newer, utilizing
systemd-run -S allows you to start a shell
with the systemd daemon (the process having
PID 1) as its parent process. This shell will remain
uncompromised by Ebury since Ebury is not present
in systemd’s init daemon.

• Although not always possible to do remotely,
shells started from physical access or a console
that doesn’t rely on OpenSSH should be free from
the Ebury userland rootkit, because they are not
a subprocess of sshd. This is the case for both
the console (Ctrl-Alt-F1) or a terminal emulator
(GNOME Terminal, rxvt, etc.) started from the
graphical user interface.

From a trusted shell, it should now be possible to see
the indicators listed in the IoCs section.

Automated detection

We have created a detection script to identify
indicators up to Ebury version 1.8.2. However, please
note that newer versions of Ebury are likely to bypass

these indicators, rendering the detection script
ineffective. To address this, we have developed a more
generic program that can detect the presence of a
userland rootkit using various techniques. For the
source code, documentation, and compiled distribution
of this program, please refer to the ESET malware-
research GitHub repository.

Payment details
A way to prevent server-side web skimmers is to avoid
having the e-commerce website handle the credit card
details and transaction. This can be done by sending
the visitor to the payment service provider website to
perform the transaction, rather than forwarding the
credit card details to a payment provider to validate the
transaction. Such forwarding introduces unnecessary
risk. When the payment is performed outside the
merchant website, the visitor can be redirected back
to the website after the transaction is complete, and
the merchant can communicate with the payment
provider to confirm that the transaction went through.
A lot of transactional websites are already using this
approach.

Cleaning
To ensure that the system is completely free from
compromise, a complete reinstallation is necessary,
without reusing any of the keys or credentials from
the affected server. If your hosting provider supplies
you with a password during server provisioning, it
is imperative to change that password as soon as
possible.

All credentials present on the system, such as
passwords, SSH keys, and private keys utilized for
traffic encryption or code signing, must be regarded
as compromised, regardless of whether they are
encrypted. It is crucial not to employ the compromised
system for authenticating with any other systems
to avoid the risk of credentials being stolen and
subsequently exploited to propagate Ebury or other
forms of malware.

https://man7.org/linux/man-pages/man1/ldd.1.html
https://github.com/eset/malware-research
https://github.com/eset/malware-research

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 36

Conclusion
This paper exposes the Ebury group and its activities.
It shows the different methods used to propagate
and compromise additional servers. It also shows the
massive scale of the operation, with 400,000 servers
compromised by the group since 2009. It provides
an in-depth technical analysis of the Ebury software,
and many of the related malware families they use
to monetize their botnet. It demonstrates how AitM
is used to steal cryptocurrencies. With this paper,
we communicate ways for system administrators to
determine if their servers are compromised by Ebury.

Ebury poses a serious threat and a challenge to the
Linux security community. There is no simple fix
that would make Ebury ineffective, but a handful of
mitigations can be applied to minimize its spread and
impact. One thing to realize is that it doesn’t happen
only to organizations or individuals that care less about
security. A lot of very tech-savvy individuals and large
organizations are among the list of victims.

We talked about multi-factor authentication (MFA) for
SSH as a mitigation technique when we first published
about Ebury. Since Ebury still uses, among other

things, stolen credentials to spread, this is still a valid
mitigation to consider. However, MFA still isn’t widely
adopted for SSH. It relies on third-party PAM modules
such as the Google Authenticator PAM module
and needs manual configuration. It is not the default
security setting of any popular Linux distribution. As a
result, MFA is rarely deployed for the SSH service.

One striking realization is the number of hosting
providers being compromised by Ebury, and how
the perpetrators use their access to compromise
the accounts of that provider. Access to servers used
for shared hosting grants them access to a lot of
unencrypted web traffic, which they leverage for
stealthy redirection or capturing details submitted in
online forms. Compromised OpenVZ hosts are used
to install Ebury in all their containers. Compromised
control panels grant access to virtual and dedicated
servers being rented from that provider. The
compromise of virtual and dedicated servers would be
more difficult for the perpetrators if hosting providers
wouldn’t use passwords (generated, or not) when
provisioning servers. In that scenario, the plaintext

password must be communicated to the customer, and
it is usually sent via email. A better approach is to use
an SSH key pair, generated on the trusted endpoint of
the administrator renting the server. The public key can
safely be shared with the provider, who can deploy it
to the new server. This way, the secret is only available
to the administrator, and not even the hosting provider
has the credentials to connect via SSH.

Using AitM inside data centers to compromise
interesting targets with Ebury is also something that
hasn’t been documented before. This automated way
to go after servers that potentially have cryptocurrency
wallets enables the group to monetize its botnet
quickly.

We hope this publication raises awareness around
Ebury and the criminal activities being conducted
on servers currently running the internet. Botnets of
Linux servers are damaging and induce considerable
financial loss. By sharing indicators, providing tools,
and documenting the activities of this gang, we hope
to reduce their impact and make the internet a safer
place.

https://github.com/google/google-authenticator-libpam

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 37

Acknowledgments
This publication wouldn’t be possible without the help of the following
individuals and organizations.

• Fellow ESET researchers Jean-Ian Boutin, Thomas Dupuy, Matthieu
Faou, Zuzana Hromcová, Facundo Muñoz, Zoltán Rusnák and Mathieu
Tartare for their help and honest review, and to Nick FitzGerald, René
Holt, and Bruce P. Burrell for language review.

• The National High Tech Crime Unit (NHTCU) of the Dutch National
Investigations and Special Operations for their trust and partnering with
ESET in the investigation.

• The Shadowserver Foundation.

• A. Yeow from bitnodes.io for data about Bitcoin nodes.

• All victims who reached out to ESET researchers to share samples or
information about Ebury.

WHITEPAPER | 38

MITRE ATT&CK
Techniques

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 39

MITRE ATT&CK
Techniques
This table was produced using version 14 of the MITRE ATT&CK Enterprise table.

Tactic ID Name Description
Reconnaissance T1592.002 Gather Victim Host Information:

Software
Using stolen credentials or the Ebury backdoor, a Perl or Bash script is run to determine the version
of the operating system and what services are running, such as a web server .

T1592.004 Gather Victim Host Information:
Client Configurations

Using stolen credentials or the Ebury backdoor, a Perl or Bash script is run to determine the version
of the operating system and network configuration .

Resource
Development

T1583.001 Acquire Infrastructure: Domains Domains are used by Ebury, FrizzySteal, and HelimodSteal to find the exfiltration server .

T1583.003 Acquire Infrastructure: Virtual Private Server Ebury operators rent VPSes to proxy traffic to compromised hosts .

T1583.004 Acquire Infrastructure: Server Ebury operators rent dedicated servers to proxy traffic, host databases, and control the botnet .

T1583.006 Acquire Infrastructure: Web Services HelimodSteal and FrizzySteal exfiltration servers are hosted behind Cloudflare .

T1584.004 Compromise Infrastructure: Server Servers compromised with Ebury are used as part of their malicious infrastructure .

T1587.001 Develop Capabilities: Malware Ebury, KernelRedirect, the Helimod malware family, and more are authored by the perpetrators .

T1587.004 Develop Capabilities: Exploits An exploit for web administrator panel software was developed by the Ebury gang .

Initial Access T1190 Exploit Public-Facing Application An exploit for web administrator panel software was used by the Ebury gang .

T1078 Valid Accounts Ebury is installed by using stolen SSH credentials .

Execution T1059.004 Command and Scripting Interpreter: Unix Shell Attackers use Bash scripts to gather information about the compromised machines .

T1059 Command and Scripting Interpreter Attackers use Perl scripts to gather information about the compromised machines and install malware .

T1609 Container Administration Command vzctl is used to list OpenVZ containers and install Ebury on them .

T1129 Shared Modules Ebury is executed by hooking the keyutils shared library, loaded by OpenSSH and libcurl .

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v14/techniques/T1592/002
https://attack.mitre.org/versions/v14/techniques/T1592/004
https://attack.mitre.org/versions/v14/techniques/T1583/001
https://attack.mitre.org/versions/v14/techniques/T1583/003
https://attack.mitre.org/versions/v14/techniques/T1583/004
https://attack.mitre.org/versions/v14/techniques/T1583/006
https://attack.mitre.org/versions/v14/techniques/T1584/004
https://attack.mitre.org/versions/v14/techniques/T1587/001
https://attack.mitre.org/versions/v14/techniques/T1587/004
https://attack.mitre.org/versions/v14/techniques/T1190
https://attack.mitre.org/versions/v14/techniques/T1078
https://attack.mitre.org/versions/v14/techniques/T1059/004
https://attack.mitre.org/versions/v14/techniques/T1059
https://attack.mitre.org/versions/v14/techniques/T1609
https://attack.mitre.org/versions/v14/techniques/T1129

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 40

Persistence T1554 Compromise Client Software Binary The keyutils library is modified to add malicious behavior to the OpenSSH client and the curl library .

T1574.006 Hijack Execution Flow: Dynamic Linker Hijacking Ebury uses the LD_PRELOAD environment variable to inject itself in programs launched by SSH sessions .

T1078 Valid Accounts Attackers use credentials to reinstall Ebury if it is removed from the server .

Privilege
Escalation

T1068 Exploitation for Privilege Escalation Attackers use DirtyCOW to gain root privileges on compromised servers .

Defense Evasion T1562.001 Impair Defenses: Disable or Modify Tools Ebury injects into processes to modify tools reporting its presence . iptables tools can be modified to avoid reporting specific rules .

T1562.004 Impair Defenses: Disable or Modify System
Firewall

iptables rules may be injected to allow malicious traffic .

T1562.006 Impair Defenses: Indicator Blocking Ebury disables OpenSSH, system, and audit logs when the backdoor is used .

T1070.002 Indicator Removal: Clear Linux or Mac System
Logs

When using valid credentials rather than the Ebury backdoor via OpenSSH, logs are cleared to remove traces of the successful login .

T1070.006 Indicator Removal: Timestomp Timestamps of the files are modified when deploying malware .

T1036.005 Masquerading: Match Legitimate Name or
Location

HelimodProxy’s auxiliary executable file is named pmtad, like the legitimate PowerMTA daemon .

T1027.001 Obfuscated Files or Information: Binary Padding When installed, the value of the build id (NT_GNU_BUILD_ID) in the Ebury ELF file is replaced with a random value to change the hash of the file .

T1027.002 Obfuscated Files or Information: Software Packing Ebury and FrizzySteal strings are encrypted .

T1027.007 Obfuscated Files or Information: Dynamic API
Resolution

Ebury dynamically resolves the addresses of external functions .

T1014 Rootkit Ebury acts as a userland rootkit when injected inside the shell of SSH sessions .

T1622 Debugger Evasion Ebury will not inject into programs run inside a debugger, such as the GNU debugger, to avoid suspicion .

Credential Access T1556 Modify Authentication Process Ebury allows bypassing SSH authentication .

T1557.002 Adversary-in-the-Middle: ARP Cache Poisoning The attackers use Ebury-compromised servers to launch ARP cache poisoning to perform AitM in order to steal SSH credentials .

T1110.001 Brute Force: Password Guessing Ebury operators try to brute force SSH credentials .

T1110.004 Brute Force: Credential Stuffing Ebury operators use known valid credentials on systems related to where they are valid .

T1212 Exploitation for Credential Access Attackers use passwords collected in administration software for provisioning servers to deploy Ebury on the servers they manage .

T1040 Network Sniffing HelimodSteal and Ebury can capture credentials sent over HTTP or HTTPS .

T1003.008 OS Credential Dumping: /etc/passwd and /etc/
shadow

Ebury dumps the content of the shadow file and brute forces passwords .

T1552.001 Unsecured Credentials: Credentials In Files Ebury steals passwords from other SSH password stealers that store credentials on disk .

T1552.004 Unsecured Credentials: Private Keys Ebury operators dump SSH private keys from compromised systems .

https://attack.mitre.org/versions/v14/techniques/T1554
https://attack.mitre.org/versions/v14/techniques/T1574/006
https://attack.mitre.org/versions/v14/techniques/T1078
https://attack.mitre.org/versions/v14/techniques/T1068
https://attack.mitre.org/versions/v14/techniques/T1562/001
https://attack.mitre.org/versions/v14/techniques/T1562/004
https://attack.mitre.org/versions/v14/techniques/T1562/006
https://attack.mitre.org/versions/v14/techniques/T1070/002
https://attack.mitre.org/versions/v14/techniques/T1070/006
https://attack.mitre.org/versions/v14/techniques/T1036/005
https://attack.mitre.org/versions/v14/techniques/T1027/001
https://man7.org/linux/man-pages/man5/elf.5.html
https://attack.mitre.org/versions/v14/techniques/T1027/002
https://attack.mitre.org/versions/v14/techniques/T1027/007
https://attack.mitre.org/versions/v14/techniques/T1014
https://attack.mitre.org/versions/v14/techniques/T1622
https://attack.mitre.org/versions/v14/techniques/T1556
https://attack.mitre.org/versions/v14/techniques/T1557/002
https://attack.mitre.org/versions/v14/techniques/T1110/001
https://attack.mitre.org/versions/v14/techniques/T1110/004
https://attack.mitre.org/versions/v14/techniques/T1212
https://attack.mitre.org/versions/v14/techniques/T1040
https://attack.mitre.org/versions/v14/techniques/T1003/008
https://attack.mitre.org/versions/v14/techniques/T1552/001
https://attack.mitre.org/versions/v14/techniques/T1552/004

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 41

Discovery T1018 Remote System Discovery Using Ebury, attackers dump OpenSSH’s known_hosts files to find related servers .

T1082 System Information Discovery Using Ebury, attackers list mounted file systems and free space, operating system version, and more .

T1016.001 System Network Configuration Discovery:
Internet Connection Discovery

Using Ebury, attackers list IP addresses assigned to the system .

Lateral Movement T1021.004 Remote Services: SSH Attackers try to log into related systems via SSH using stolen credentials .

Collection T1056.004 Input Capture: Credential API Hooking Ebury hooks functions in the OpenSSH client to capture credentials .

T1560.001 Archive Collected Data: Archive via Utility Attackers use tar to exfiltrate wanted files from compromised systems .

Command and
Control

T1071.001 Application Layer Protocol: Web Protocols HelimodRedirect and HelimodSteal can be configured over HTTP .

T1568.002 Dynamic Resolution: Domain Generation
Algorithms

Ebury uses an algorithm to generate domain names used to find an exfiltration server .

T1568.003 Dynamic Resolution: DNS Calculation The IP address of Ebury’s exfiltration server is decrypted from the TXT record rather than the A record .

T1573.002 Encrypted Channel: Asymmetric Cryptography Ebury uses a public key to encrypt exfiltrated credentials and to decrypt information from a TXT record .

T1090.003 Proxy: Multi-hop Proxy When reaching out to an Ebury-compromised server, the attackers use multiple layers of proxies .

Exfiltration T1048.002 Exfiltration Over Alternative Protocol: Exfiltration
Over Asymmetric Encrypted Non-C2 Protocol

Ebury can encrypt credentials with an RSA-2048 public key and exfiltrate them via UDP .

T1041 Exfiltration Over C2 Channel Ebury can exfiltrate credentials as the result of a command (Xcat) over an SSH session .

Impact T1565.002 Data Manipulation: Transmitted Data
Manipulation

HelimodRedirect and KernelRedirect add or change the Location header of HTTP replies .

https://attack.mitre.org/versions/v14/techniques/T1018
https://attack.mitre.org/versions/v14/techniques/T1082
https://attack.mitre.org/versions/v14/techniques/T1016/001
https://attack.mitre.org/versions/v14/techniques/T1021/004
https://attack.mitre.org/versions/v14/techniques/T1056/004
https://attack.mitre.org/versions/v14/techniques/T1560/001
https://attack.mitre.org/versions/v14/techniques/T1071/001
https://attack.mitre.org/versions/v14/techniques/T1568/002
https://attack.mitre.org/versions/v14/techniques/T1568/003
https://attack.mitre.org/versions/v14/techniques/T1573/002
https://attack.mitre.org/versions/v14/techniques/T1090/003
https://attack.mitre.org/versions/v14/techniques/T1048/002
https://attack.mitre.org/versions/v14/techniques/T1041
https://attack.mitre.org/versions/v14/techniques/T1565/002

WHITEPAPER | 42

IoCs

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 43

IoCs
Host-based indicators
To determine whether a system is compromised by
Ebury, make sure you do so from a trusted shell. At the
time of writing, the following command starts a shell
free from the Ebury rootkit:

H=1 LD_DEBUG="" LD_PRELOAD="" "$SHELL"

While only one of the environment variables is enough,
using three is our attempt to make it more difficult to
circumvent in future versions of Ebury. Alternatively,
systemd can also provide a shell that’s not a subprocess
of the OpenSSH server using the command:

systemd-run -S

See the Detection section for more details about
evading the userland rootkit.

Since Ebury version 1.5, Ebury starts a process to keep
state information and perform credential exfiltration.
An abstract UNIX socket is used to communicate
between the compromised SSH client or server and
this permanently running process.

Abstract UNIX sockets are usually displayed by
prefixing them with @ to differentiate them from

filesystem pathname-bound sockets. lsof -U or
/proc/net/unix can be used to list UNIX sockets.
Here are examples of the commands with their
outputs showing abstract UNIX sockets created by
Ebury (first line of output, in red) and a legitimate
application (second line of output, in green):

lsof -U | grep @
systemd-u 1776 root 3u unix
0xffff9519b9931540 0t0 22471 @/dev/event-
E4LgEFWIcy
virtiofsd 381 root 4u unix
0xffff9151807a3000 0t0 20524 @9634c

or:

$ grep @ /proc/net/unix
ffff9519b9931540: 0000002 00000000 00010000
0001 01 22471 @/dev/event-E4LgEFWIcy
ffff9151807a3000: 0000002 00000000 00010000
0001 01 20524 @9634c

Abstract UNIX sockets with the following names are
known to be used by Ebury:

• /dev/event-E4LgEFWIcy

• /dev/event/loop0

• /dev/stats-MxPAxNpy3x

• /proc/udevd

• /proc/ulog

• /run/systemd/journal-YAjXO8luqOa

• /run/systemd/journal/dlog

• /run/systemd/log

• /run/systemd/log-90zMvYX7uL

• /run/systemd/log-wuO3nuFBHN

• /tmp/dbus-0m9eDQpdXZ

• /tmp/dbus-9XZXkmdfpN

• /tmp/dbus-VdyGBaqZws

• /tmp/dbus-Xrga2cOewg

• /tmp/dbus-ZP7tFO4xsL

• /tmp/dbus-kZ8VEtJDOJ

• /tmp/dbus-luzG4UqDt8

• /tmp/dbus-n3UUkeqEZG

• /tmp/dbus-vBWUDhHCHp

• event-CRbBwZlvXa

• ACPI-NYlT78Tj

• UDEV-4kAmkRW3

The permanently running process listening to this UNIX
socket is started by loading the Ebury payload into
a legitimate executable using LD_PRELOAD. Abused
legitimate processes include:

• /bin/hostname

• /bin/sync

• /sbin/auditd

• /sbin/rsyslogd

• /sbin/udevd

• /usr/lib/systemd/systemd-udevd

• /usr/sbin/acpid

• /usr/sbin/anacron

• /usr/sbin/arpd

• /usr/sbin/atd

• /usr/sbin/crond

https://man7.org/linux/man-pages/man7/unix.7.html

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 44

Finding Ebury on disk

The Ebury payload size is approximately between
28 kB (version 1.2.1) and 64 kB (version 1.8). It is typically
present in a shared library containing an initialization
function executed when the library is loaded.

There are multiple ways that Ebury can be installed on
a system.

• Replacing libkeyutils.so, a library loaded by
OpenSSH, with a trojanized version.

• Placing a trojanized version of libkeyutils.so in
[...]/lib/tls/. This file will be loaded instead of
the legitimate one, if present.

• Patching libkeyutils.so to load libXXX.so
instead of the libc.so.6 library. The libXXX.so
library contains the Ebury payload. XXX is a three
letter or digit string. Here are some examples of
filenames we have seen:

libns2.so

libns5.so

libpw3.so

libpw5.so

libsbr.so

libslr.so

libstz.so

libtsq.so

libtsr.so

• Replacing libkeyutils.so with a trojanized
version that will dynamically load another shared
library file containing the Ebury payload. Here are
some examples of filenames we have seen:

libkeystats.so

libkeyctl.so

librwctl.so

• On rare occasions, mostly on non-Linux systems,
Ebury is part of the OpenSSH executables
themselves (ssh, sshd, etc.). In those cases,
OpenSSH is patched, and sometimes recompiled on
the compromised system.

Network
Ebury operators are known to connect daily to
compromised systems using the Ebury backdoor to
retrieve stolen credentials and system information such
as known hosts and users who last connected to the
system. They have used the following IP addresses to
connect to compromised systems:

IP address First seen
45.59.120[.]146 2024-04-24

65.21.54[.]164 2023-03-24

141.255.166[.]187 2024-04-18

146.70.124[.]102 2024-04-24

185.59.103[.]8 2024-04-24

195.123.225[.]83 2024-02-14

213.232.235[.]104 2024-04-24

DNS

Under certain circumstances, Ebury tries to exfiltrate
intercepted credentials by sending an encrypted UDP
packet using port 53 (conventionally DNS) as the
destination port. To find the server to send this data
to, a DNS request is made for the TXT record of a
subdomain of one of the following domains:

Domain Registration
date

Details

qimpj6kkofzf[.]biz 2023-09-01 First domain
of the sixth
iteration of the
DGA .

op3f1libgh[.]biz 2019-01-30 First domain
of the fifth
iteration of the
DGA .

larfj7g1vaz3y[.]net 2016-09-19 First domain
of the fourth
iteration of the
DGA .

The A records of these domains are misleading and
ignored by Ebury. The IP address is decrypted from
the TXT record. Here are the IP addresses used for
exfiltration at the time of writing:

IP address First seen
185.145.245[.]167 2023-11-10

135.181.148[.]230 2022-05-07

141.164.52[.]243 2021-11-02

The following domains are used to exfiltrate HTTP
POST requests over HTTP or HTTPS.

Domain Hosting
provider

First seen

pbarsec[.]com Cloudflare 2020-05-12

checklicence[.]net Cloudflare 2020-08-25

In SSH traffic

The Ebury backdoor is activated by including specific
information in the SSH client identification string.
This string consists of the first bytes sent by an SSH
client. Since it is sent before the SSH handshake and
key exchange are performed, it is unencrypted. The
client identification string usually contains the client
application name and version. Here is an example client
identification string from OpenSSH:

SSH-2.0-OpenSSH 8.6

An SSH connection enabling the Ebury backdoor
contains hexadecimal-encoded data (for Ebury before
version 1.7) or base64-encoded data (for Ebury version
1.7 and later, first seen in 2019). Since version 1.8, spaces
are ignored. Here are three examples of malicious
client identification strings:

SSH-2.0-b479ec723a2ba590d6c4a0bf40f4ba

SSH-2.0-XDbxdCP/G9Dcd1qDCE+t

SSH-2.0-FcZpUkMuIY 2MfBBDvOJdFBTFUw==

YARA rules
YARA rules are available on ESET’s malware-ioc
GitHub repository.

https://github.com/eset/malware-ioc/tree/master/windigo
https://github.com/eset/malware-ioc/tree/master/windigo

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 45

Files
SHA-1 Filename Detection Description
98FBD545B5C1B1FE185730BA9B1CD4BEBFAE4476 libstz.so Linux/Ebury .J Ebury v1 .7 .0p .

44B04CFC095F93D17B1BD4F8820C16843FCBAC3E libkeyutils.so Linux/Ebury .H Ebury v1 .7 .3 .

013647E5AD347539EEF6C5933B16AD01B1806C3C libkeyutils.so Linux/Ebury .N Ebury v1 .8 .0 .

787A93F86E7F5FCF922E996B577DF532270C7184 libllz564 Linux/Ebury .N Ebury v1 .8 .1 .

E7DEBD6E453192AD8376DB5BAB03ED0D87566591 libllz564 Linux/Ebury .N Ebury v1 .8 .2 .

CD9A5B823906CC620B28D69DBDB11BD9FE6B3E03 libkeyutils.so Linux/Ebury .H Ebury v1 .6 .3 .

DDAE9417470F832DB550EFB716B5BAEAAAA35372 libsbr.so Linux/Ebury .I Ebury v1 .6 .2fp .

71CA9B7C418264C2C856D47483666D123861D476 libkeystats.so Linux/Ebury .J Ebury v1 .7 .0c .

4A7303DD8E7BBBF063463B3852245ABDD343F5B6 libkeystats.so Linux/Ebury .J Ebury v1 .7 .3c .

DFAECF7EBFC169CDF923AF421EDD537CCE536A64 librwctl.so Linux/Ebury .L Ebury v1 .7 .4c .

3137DCA3F6FBD566F4ED2F49076A63D84869E13C libkeyutils.so Linux/Ebury .K Ebury v1 .7 .4d .

96FD9B3064F04EE3063B2B103F856BB729B58749 ibz.so Linux/FrizzySteal .A FrizzySteal .

53829463A7DE8C4BACE97B1F6925728F3421DF53 pmtad Linux/HackTool .Proxy .D Modified 3proxy .

947EEE633E9347F72625FB652F94488A4B2B37F0 pmtad Linux/HackTool .Proxy .D Modified 3proxy .

E39667AA137E315BC26EAEF791CCAB52938FD809 mod_dir.so Linux/HelimodProxy .A Helimod Apache module .

0B91C3C2627F9948B8F3446822F99FAF88081267 mod_dir.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

580E6075C65D867667D507E2B00C8EEF79C907A1 mod_auth_basic.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

3988D1A743E83D532130BC8090A7BC7001FE1BB0 mod_authn_file.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

429A81BBD18A35C3C4D1DCB8BC76F5A7D9724A79 mod_authz_host.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

16EE09926A2109262686D58974079ADC25E31AA1 mod_authz_user.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

EC4941BDD9FFB241968FD59A28B70BCE288ED261 mod_dir.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

A64D6C7444FC2404A589ED7F8527E698682A3E68 mod_env.so Linux/HelimodRedirect .A HelimodRedirect Apache module .

15560B44286122FA0679C6C2368817CE2DC747E6 mod_auth_basic.so Linux/HelimodSteal .A HelimodSteal Apache module .

94532111459E024BCB7E2025A6C145876A46F829 mod_authn_file.so Linux/HelimodSteal .A HelimodSteal Apache module .

AD350D7DA4BF1F7080026B683F93401CD735E974 mod_authz_host.so Linux/HelimodSteal .A HelimodSteal Apache module .

75E8A197B6A9A7903CA43782BDD77CD9611FEFE0 mod_authz_user.so Linux/HelimodSteal .A HelimodSteal Apache module .

CFB48909B978E91CFC6FFCAF2E4B04F27F503B34 mod_dir.so Linux/HelimodSteal .A HelimodSteal Apache module .

D39959356283DB4B3184BDB15E890E74CF1EA65C mod_env.so Linux/HelimodSteal .A HelimodSteal Apache module .

ESET | EBURY IS ALIVE BUT UNSEEN WHITEPAPER | 46

070F85BF02AD3FB0978785B3272D7B08F5C47A1A iptables-multi-1.4.7 Linux/IptablesPatch .A Modified iptables executable .

10F94157365E6A1BBB101B3222EE3C3C675B9829 iptables-multi-1.4.7 Linux/IptablesPatch .A Modified iptables executable .

12666F2FBEFC55F1DDB4BA86B5D85DB733889162 iptables-multi Linux/IptablesPatch .A Modified iptables executable .

22BB2E0D1E1B0B009464E2919A381C4951D7D90D iptables-multi Linux/IptablesPatch .A Modified iptables executable .

2DBF91347FA987E6199DAE5141641D04D0C963FF iptables-multi-1.4.7 Linux/IptablesPatch .A Modified iptables executable .

535C5588ED2EF9A4E960882C23E3104E81F2C079 iptables-multi-1.4.7 Linux/IptablesPatch .A Modified iptables executable .

AA0EC27C26E5484B4EB23D8424B2412221D5C7FC iptables-multi Linux/IptablesPatch .A Modified iptables executable .

12EA4595C6F38E60C23F09B2F08D78BA6EB0C1B3 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

1918E40580291D0299A78DDFB9123923F832CEB3 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

20599D89E4F648CF0F6EB46DEE67DB63984A8C36 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

6FF132E50EFA5ABF534A005CB58C9C5B5FC39BEC nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

9569A8411477305FACA78E1C944D479EFA028DFB nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

BCC3B83CFADBD58256FC41AF9F0BFF50AC1F148B nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

D392022D8B72BCDDB849A94829C87731874E94AC nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

D3D6567862B4B7811BEA76BE117E901B2B6B8399 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

D901D65F7A7A49296A501420F6D32BBF968F5BDE nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

ED5662F3CF80B8108D2172FBCA6119E403205EAA nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

EDD2DE0FAFE84EA51029FFDE38ACBB5918108DF5 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

FD6709AF6A8DC384B101A8E9ED36C1092533C404 nf_conntrack6.ko Linux/KernelRedirect .A KernelRedirect Netfilter kernel module .

04FF6202534A394586D826B320645AEC24CE7AA5 libcurl.so.4.6.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

32BB38D7D6B03DB4779E7A7183E7FA42DFBAFFC2 libcurl.so.4.4.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

59F238DA1FD822AAD6FA7DF78D823854EAF8762E libcurl.so.4.4.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

6369AD38D39562DD9D6D3E2612496A5357FFC09B libcurl.so.4.5.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

67C1905EF4D0422DBDFAC41DC80F9C4D5C69E288 libcurl.so.4.5.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

6BEE8F88F3F145170CEF58D9F790DDD99CDFA547 libcurl.so.4.6.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

72048DEABE7F37BBECBFDA1570E1AB6B366B72BD libcurl.so.4.4.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

907822012D6A970D676B634903F099587ED9C335 libcurl.so.4.6.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

9209D757770AAFCA0B84B9F63B8769DF8CAC3F1A libcurl.so.4.5.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

4F92498FB8C1BFED97F18CFB7B36AF899F70F582 iptables-multi Linux/IptablesPatch .A Modified iptables executable .

D8647E825EFE74BF1726C0C494E3C2588FFF2262 libcurl.so.4.5.0 Linux/SmallCuteCat .A libcurl with the SmallCuteCat payload .

(eset):research
© 2023 ESET, spol. s r.o. - All rights reserved.

Trademarks used herein are trademarks or registered trademarks of ESET, spol. s r.o.

All other names and brands are registered trademarks of their respective companies.

WHITEPAPER | 47ESET | EBURY IS ALIVE BUT UNSEEN

About ESET
For more than 30 years, ESET has been developing
industry-leading IT security software and services to
deliver comprehensive, multilayered protection against
cybersecurity threats for businesses and consumers
worldwide. ESET has long pioneered machine learning
and cloud technologies that prevent, detect and respond
to malware. ESET is a privately owned company that
promotes scientific research and development worldwide.

WeLiveSecurity.com

@ESETresearch

ESET GitHub

ESET Threat Reports and APT Activity Reports

https://www.welivesecurity.com/research/?utm_source=pdf&utm_medium=referral&utm_campaign=eset_ebury_paper
https://twitter.com/ESETresearch
https://github.com/eset
https://www.welivesecurity.com/en/threat-reports/?utm_source=pdf&utm_medium=referral&utm_campaign=eset_threat_report_h22023

	Propagation
	Credential stuffing
	Hypervisor or container host
	Compromise of hosting providers
	Exploitation of vulnerabilities
	SSH adversary-in-the-middle

	Victimology
	Notable compromises

	An Update
to Ebury
	Ebury basics
	Persistence
	IPC mechanisms
	libcurl hooking for HTTP request exfiltration
	Userland rootkit
	Typical post-exploitation usage
	Credential exfiltration

	Monetization: Multiple New Components
	Malicious Apache and nginx modules
	KernelRedirect
	FrizzySteal
	Hiding traffic from system administrators
	Performing AitM attacks

	Cleaning
	Payment details
	Detection
	MITRE ATT&CK Techniques
	IoCs
	Host-based indicators
	Network
	YARA rules
	Files

