
1DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

DISSECTING ALIENFOX |
THE CLOUD SPAMMER’S
SWISS ARMY KNIFE

Authors: Alex Delamotte March 2023 SentinelLABS Research Team

2DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

TABLE OF
CONTENTS

3 EXECUTIVE SUMMARY

4 DISTRIBUTION

5 TARGETING

6 OVERVIEW

6 ALIENFOX VERSIONING

21 ANDROXGH0ST

23 MAINTANCE
(AKA GREENBOT)

27 LARAVEL

33 CONCLUSION

34 APPENDIX:
INDICATORS OF COMPROMISE

38 APPENDIX II:
HUNTING YARA RULES

39 ABOUT SENTINELLABS

SentinelLabs has identified a new toolkit dubbed AlienFox that attackers are using to compromise

email and web hosting services. AlienFox is highly modular and evolves regularly. Most of the

tools are open-source, meaning that actors can readily adapt and modify to suit their needs.

Many developers take credit on different iterations of the tools. The evolution of recurring

features suggests the developers are becoming increasingly sophisticated, with performance

considerations at the forefront in more recent versions.

Actors use AlienFox to collect lists of misconfigured hosts from security scanning platforms,

including LeakIX and SecurityTrails. They use scripts in the toolset to extract sensitive

information–including API keys and secrets–from configuration files exposed on victims’ web

servers. Later versions of the toolset added scripts that automate malicious actions using the

stolen credentials, including:

EXECUTIVE SUMMARY

S e n t i n e l L a b s Te a m

• SentinelLabs analyzed several iterations of “AlienFox,” a comprehensive toolset for
harvesting credentials for multiple cloud service providers.

• Attackers use AlienFox to harvest API keys & secrets from popular services including
AWS SES & Microsoft Office 365.

• AlienFox is a modular toolset primarily distributed on Telegram in the form of source
code archives. Some modules are available on GitHub for any would-be attacker to adopt.

• The spread of AlienFox represents an unreported trend towards attacking more
minimal cloud services, unsuitable for cryptomining, in order to enable and expand
subsequent campaigns.

• Along with our thorough analysis of different AlienFox iterations, we provide a full list
of indicators of compromise, YARA rules, and recommendations in the appendix.

• Establishing AWS account persistence and privilege escalation

• Collecting send quotas and automating spam campaigns through victim accounts or services

4DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

DISTRIBUTION

Scripts in the AlienFox toolset often cite a Telegram URL; these URLs
occur immediately after the ASCII art logo section, where the author takes
credit and occasionally provides contact or purchase details.

We identified the following Telegram URLs embedded in AlienFox files,
followed by the number of scripts each channel was found as “Frequency”:

One sample we analyzed contains error handling strings in Malay (“Send Error
Biar Lanjut Ke Wxception :v”). Many samples have variable names matching
Indonesian words; for example, lengkap, is Indonesian for “complete.”

Channel URL Frequency

https://t.me/xxyz4 10

https://t.me/DailyTools 3

https://t.me/official_xcatze 2

https://t.me/toxiarc 2

https://t.me/exploi7 1

https://t.me/FoxCyberSecurity 1

https://t.me/inscamwetrust0 1

https://t.me/Pegasus_Hub 1

https://t.me/sendgrid_aws_smtp 1

https://t.me/spamworldpro 1

https://t.me/tutorials_zone 1

https://t.me/xcatzechat 1

http://t.me/xMarvel_official 1

5DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

TARGETING

Current observations indicate that AlienFox targeting is primarily opportunistic, relying on
misconfigurations on servers hosting various web frameworks, including Laravel, Drupal, Joomla,
Magento, Opencart, Prestashop, and WordPress. When a susceptible server is identified, the actor
dumps configuration files that store sensitive information, such as services enabled and the associated
API keys and secrets. We found scripts targeting tokens and secrets from the following web services:

Platform Targeted Feature Script/Tool

AWS IAM, SES, Email aws.py, awses.py, lar.py,
Maintance, s3lr.py, ssh-smtp.py

Google Workspace Email env.py

Office365 Email env.py, lar.py

Exotel SMS env.py, ssh-smtp.py

Nexmo SMS env.py, lara.py, ssh-smtp.py

OneSignal Push Notifications via Android applications env.py, ssh-smtp.py

Plivo SMS lara.py, ssh-smtp.py

Tokbox Deprecated, acquired by Vonage; API
documentation unavailable env.py

Twilio Chat, SMS, Voice env.py, lar.py, ssh-smtp.py

1and1 Email lar.py

Bluemail Email env.py, Maintance

Mandrill Email lar.py

Mailgun Email env.py, lar.py

Sendgrid Email env.py, Maintance

Sendinblue Email env.py

Sparkpostmail Email env.py

Zimbra Email env.py

Zoho Email env.py, lar.py

6DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

OVERVIEW

AlienFox is a framework of tools that target a variety of web services. Primarily, the toolset focuses on
cloud-based email services.

Several of the AlienFox archives have directories named “Private Course”. It is unclear if this is an
“educational” course, or if the word does not translate literally into English. The Private Course folders
contain various web server hack tools. The tools and organizational structure vary across versions.
To date, we have identified AlienFox versions 2 through 4, which date from February 2022 onward.

ALIENFOX VERSIONING

AlienFox V2

The oldest of the toolsets analyzed had file creation dates ranging sporadically from February 2021
through January 2022.

The AlienFox 02 readme credits “#No_Identity - Xploitsec @xxyz4.” The tool also notes,
“Don’t Spread The Tools. And Many Modified Tools too.”

One of the archives we analyzed contains output from when an actor ran the tools, which included
AWS access & secret keys. In this version of the AlienFox toolset, the core utility is housed in a
script named s3lr.py, which is similar to env.py outlined in later versions.

Awses.py is a Python script that automates several activities related to AWS Simple Email Service
(SES), including sending & receiving messages and applying a persistence profile to the AWS
account. The variable names in the script are frequently Javanese/Indonesian words. This script
operates similarly to the Androxgh0st behaviors outlined by Lacework. However, there are some
notable differences:

• Instead of hardcoding the username in the script, the actor supplies the username at
runtime. This implies awses.py is a hands-on-keyboard tool or that the arguments are
supplied through a separate file that launches awses.py.

• awses.py does not delete the compromised access key (DeleteAccessKey AWS API Action)
after establishing persistence, which Lacework noted as an Anrdoxgh0st behavior. As a
result, awses.py is stealthier: CloudTrail logs access key delete activities; such activities
likely trigger security alerts.

https://www.lacework.com/blog/androxghost-the-python-malware-exploiting-your-aws-keys/
https://www.gorillastack.com/blog/real-time-events/cloudtrail-event-names/
https://github.com/davidclin/cloudcustodian-policies

7DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The kirimawsses function creates an SES request using the AWS Boto3 Python client call to ‘ses’;
this call accepts parameters for sender, recipient, AWS_ACCESS_KEY, AWS_SECRET_KEY, and
AWS_REGION. If successful, the result is appended to can_send_smtp_ses.txt. Otherwise, Boto3
logs an error to the local console.

The atsmtp function accepts parameters for user, password, region, email, and “su”. It generates an
HMAC object of the base64-encoded “pwd” argument. This function calls the kirimismtp function.

The kirimismtp function takes a host as an argument and tests SMTP authentication using Python
smtplib methods. The test message content says, “This email was sent with Amazon SES”, and
the script initiates a mail server ehlo exchange. The outcome is logged to can_send_smtp.txt or
can’t_send_smtp.txt.

Fig 1: The AWSes.py logo.

8DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The goblok function creates a new profile for persistence and privilege escalation. The term
“goblok” translates from Indonesian to “idiot”.

• The goblok function parameters are usere (ACCESS_KEY), anune (ACCESS_SECRET),
and dadine (AWS_REGION). This is the core function of the script.

• Goblok sends the values for parameters to variable iam where they are parsed by
 the boto3 client. The variable created_user calls iam.create_user(UserName=noob).
The noob variable creates a new user in the victim’s AWS account.

• If successful, the next section attaches the global IAM policy PolicyArn =
‘arn:aws:iam::aws:policy/AdministratorAccess’ to give Admin privileges to that user.

• The script sets a login profile for the new Admin user, establishing privilege escalation
and persistence.

Fig 2: The <i>goblok</i> function in <i>awses.py</i> uses the
target’s AWS credentials to create a new user.

9DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The kirimi function, which translates to “send it”, takes the same parameters as goblok.

• The client variable sets the ses client using the three arguments passed in the parameters.

• The asu variable is set to client.get_send_quota(). As Lacework detailed, actors can
call the GetSendQuota AWS API Action to check for valid credentials. If the API request
returns an AccessDenied response, the credentials are valid; invalid credentials
generate a token error on the client side, meaning authentication failures are not logged
by CloudTrail. This also means defenders lack visibility into AWS authentication failures,
which are a valuable detection mechanism on other platforms.

• A conditional If/Else statement checks for the string “Max24HourSend” in the
GetSendQuota response JSON; if the string is not present, the AWS Keys and AWS
Region are logged to the console as “=> BAD”.

• If the string “Max24HourSend” is present, the AWS credentials and the 24 hour send
limit are written to goodaws.txt.

• The script calls the goblok function and sets a new variable named response to call
the SES Action client.list_identities with arguments: IdentityType=’EmailAddress’,
MaxItems=123,NextToken=’’. This requests up to 123 email addresses registered in the
targeted account’s SES configuration.

• The script then sets a for loop to parse through the list of email addresses in the
response to client.list_identities call. The script logs to console and writes a line
containing the AWS mail server address, the AWS credentials, and the individual email
address to text file smtpses.txt.

• The script calls the kirimawsses func to check if the email address is configured to send
using SES and logs the result to can_send_smtp_ses.txt. The atsmtp function is called
with the AWS credentials, AWS region, email address, and the 24 hour sending limit
as the su parameter. This writes the result to autocreatesmtp.txt as well as passes the
result to the kirimismtp function.

• The kirimismtp function constructs a test message via SES using the line above. One of the
parameters specifies the recipient address.

email-smtp+region+amazonaws.com|587|ACCESS_KEY|{Base64-encoded_HMAC_

SECRET_KEY}|{email_address}|{send_limit}

https://www.lacework.com/blog/androxghost-the-python-malware-exploiting-your-aws-keys/
https://www.socinvestigation.com/threat-hunting-with-windows-event-ids-4625-4624/

1 0DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Awses.py uses several global variables similar to a main function: these variables establish several
key arguments including the username and password (noob and dog variables), which are used to
create the administrative user account.

Fig 3: The <i>kirimi</i> function checks for SES send quotas and retrieves
email addresses in the targeted account’s SES configuration.

Fig 4: Global variables in awses.py.

1 1DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Another AlienFox V2 script, ssh-smtp.py (SHA1: 1d57da2be62ae4ab16d4
780166fb0ae9083f10ff), parses configuration files for credentials and
uses the Paramiko Python library to validate SSH configurations on the
targeted web server. This script is attributed to ICQ handle “Greatzcode’’
with an internal name “Cannabis.” The script refers to a GitHub repository
that we were unable to access during analysis.

The get_appkey function takes the parameters url and text. The function
has two variables–pay1 and pay–that contain Base64-encoded blobs.
These decode to commands targeting the Illuminate\Broadcasting\
PendingBroadcast Laravel PHP framework API (see below).

PendingBroadcast potentially relates to CVE-2022-31279, a CVEID
assigned to a rejected Laravel deserialization vulnerability. The CVE
was revoked because it does not affect a known software version. The
vulnerable PendingBroadcast feature was forked to the Illuminate project
and out of Laravel core. As a result, Laravel refuted the vulnerability and
Laravel was deemed not impacted. While we are unable to confirm the
nature of these references, SentinelOne notes that we discovered web
application researchers using Illuminate\Broadcasting to build POP chain
gadgets. It is plausible that actors are exploiting systems that still run the
vulnerable feature.

In the get_appkey function:

• The pay1 variable contains encoded or serialized data followed
by uname -a, a Unix shell command that displays the version of
the OS that is running, then echoes the string “Con7ext”.

• The gen variable executes the pay1 encoded command and
parses the response for any character of any length that is
nested between two separate sets of double hashes (##). Based
on subsequent code, we can infer this is the XSRF token.

• The gen2 variable then does the same against the pay2 encoded
data. The result is used next by the njir variable, which makes an
HTTP POST request using the contents of the code variable as
the request’s XSRF token value.

• If the “Con7ext” string is echoed back to the script, the shel
variable initiates an HTTP GET request to the /payload.php URI.

• The script parses the response for “>>”, which was the file
content of the /payload.php file downloaded from GitHub. If
successful, the script logs the result to /Resultz/SHELL.txt in the
format: {targeted_URL}+/payload.php.

https://www.virustotal.com/gui/file/b75914beb1840d2aef7a193df1881c86c66444861beccf12e5acfcafb6c2db49/details
https://www.virustotal.com/gui/file/b75914beb1840d2aef7a193df1881c86c66444861beccf12e5acfcafb6c2db49/details
https://www.paramiko.org/
https://github.com/boters/Cannabis/
https://laravel.com/api/9.x/Illuminate/Broadcasting/PendingBroadcast.html
https://security.snyk.io/vuln/SNYK-PHP-LARAVELFRAMEWORK-2863117
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-30778
https://github.com/1nhann/vulns/issues/3
https://github.com/1nhann/vulns/issues/3

1 2DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The get_aws2 function accepts arguments for the url and text parameters. This function parses
HTML code for regular expression (regex) matches on MAIL_USERNAME, AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY, AWS_DEFAULT_REGION. The regex checks for HTML tags <td> &
<pre.*> on the boundary.

• The commented code on the regex lines is shared with the original get_aws function,
which suggests this function is potentially under development by the actor.

• If AKIA is found in the mailhost (AWS_ACCESS_KEY_ID) variable, the script builds all
previous variables into a string that is logged to Resultz/{AWS_REGION}.txt. In AWS, the
AKIA prefix represents long-term (non-ephemeral) credentials.

The get_aws function searches for params outlined in get_aws2, but with a regex designed for raw
text using newline (\n) characters as the boundary instead of HTML tags.

Fig 5: Code from <i>get_appkey</i> function, including the decoded payloads.

1 3DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

AlienFox V3.x | Of the three known major versions of AlienFox, we identified the most unique
archives labeled as Version 3. We observed the following name variations and respective file
creation dates:

• ALIEN-FOX AFV 3.0 Izmir - February 2022
• ALIENFOX III V3.0 AFV.EXE - February 2022
• ALIEN-FOX AFV 3.5 JAGAUR - April 2022
• ALIEN-FOX AFV 3.5 rondrickmadeit - February 2022

AlienFoxV4 | The most recent of the known toolsets, this set is organized much differently, with
each tool assigned a numerical identifier (e.g., Tool1, Tool2). There is a core script in the AlienFox
root directory named ALIENFOXV4.py that serves as a bootstrap for the numbered tool scripts in
the child folders.

Fig 6: The <i>get_aws2</i> function of ssh-smtp.py.

1 4DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Tools 5, 6, 7, & 8| Collect a list of sites to target. For full details, please see the Target Collection
section below.ALIEN-FOX AFV 3.0 Izmir - February 2022

Tool12 | Contains sc.py, which takes a list of URLs, makes a GET request, checks for the presence
of “type=file” in the response and writes affirmative results to working_shells.txt. The sc.py script
references a Pastebin page that has been removed.

Tool13 | Contains a script named aws.py which imports the Boto3 client. The script is largely the
same as AlienFoxV02’s awses.py.

• Similar to awses.py, this script does not contain any Delete calls, making it stealthier,
signaling an evolution of the tool.

• The variable for the AWS UserName is called pubg, which was noted as an indicator in
Permiso’s recent blog post. However, this tool prompts the attacker for input and the pubg
variable is set at runtime, which makes “pubg” an unreliable indicator.

Fig 7: AlienFox V4 menu.

https://permiso.io/blog/s/approach-to-detection-androxgh0st-greenbot-persistence/

1 5DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Tool16 | This tool is an Amazon.com retail account checker that polls
the Amazon registration page and registers a new account if one doesn’t
already exist with that email address.

• The script amaz.py checks if an email address has a
registered Amazon.com account. The script credits
“NoobBilla” as the author.

Tool17 | Contains cms.py which checks sites for the presence of
Wordpress, Joomla, Drupal, Prestashop, Magento, Opencart. This
script is coded well: it has a main function and & uses threading for
performance improvement.

• The script reads lines from a text file that contains one ‘host’
per line, which is a domain or IP prepended with “http://”.

• Then, it creates URLs from the host by appending a
URI related to one of the targeted services, such as
xmlrpc.php?rsd, a known WordPress URI.

• The script initiates a GET request to the crafted URL.
If the server response is HTTP status code 200 (successful
request), the response is transformed to UTF-8 and parsed
for strings related to the targeted service. For example,
when the response is from a request to the WordPress
XML URI above, the script parses the response for
the string “WordPress”.

• When the string is found, the URL is written to a local
text file. If there are no matches for any of the
fingerprinted services, the console logs message,
“#[-DEAD SITE-]=========>” + {hostname}.

1 6DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Tool19 | BTC wallet mnemonic generator (imports from hdwallet): generates mnemonic seeds
(aka seed phrase) for cryptocurrency wallets.

Tool20 | ETH wallet mnemonic generator: the same as the BTC mnemonic generator, but for
Ethereum wallets.

• In the archive we analyzed, the actor had used this script and results were saved.
Each of the generated wallets were valid, but empty and no money transfer activity
had occurred on the blockchain.

It is currently unclear how Tools 19 & 20 tie into the AlienFox ecosystem. The AlienFox V4
core script’s menu calls these tools BTC & ETH “Wallet Cracker”s, respectively .

However, the scripts work to generate new wallets by stringing together 12 randomly selected
words from a list of the 2,048 words utilized in the BIP44 standard, then write the resulting
wallet to a text file.

Fig 8: cms.py Opencart function and other function calls.

https://hdwallet.readthedocs.io/en/latest/
https://www.blockplate.com/blogs/blockplate/list-of-bip39-wallets-mnemonic-seed
https://vault12.com/securemycrypto/crypto-security-basics/what-is-bip39/

1 7DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The script contains many commented-out lines, which may suggest the feature is under development
or depends on other features to integrate with other AlienFox activities.

On creation, the public address for the wallet could plausibly be used in place of an existing
cryptocurrency wallet for cryptojacking an existing mining resource. Actors could potentially use
the address in ‘ransom’ notes left on servers they took control of, demanding a ransom from
victims to regain access to the server. Both of these use cases would be new for the AlienFox
toolset. Alternatively, the author could simply still be working on getting the ETH wallet cracker to
work as described.

Fig 9: Seed generation in ETH.py.

1 8DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Target Collection

The AlienFox toolsets contain scripts designed to target web servers–primarily Laravel–
through bespoke scripts such as lar.py, lara.py, cms.py, etc. To run, these scripts require a list
of targets. The target lists are created using scripts housed a level up in the AlienFox directory:
grabip.py and grabsite.py.

Grabip.py establishes a connection to leakix.net. Despite having the .py extension, this script was
compiled for Windows (.pyc) which is rare among the samples we analyzed. Nevertheless, the
script decompiled nicely into Python source code using uncompyle6. The script sets a for loop to
request the first 500 pages of LeakIX for items categorized as “leaks.”

Fig 10: Commented-out lines in ETH.py.

1 9DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

LeakIX is a platform that aggregates crowdsourced information about vulnerable or misconfigured
websites. Researchers run an open-source client that scans the internet for vulnerable web
services and reports them to LeakIX for aggregation. Once identified, LeakIX gives an impacted
website 30 days to remediate before posting the target’s information to the site.

LeakIX was highlighted by SANS ISC in a post about SFTP leaks through a VSCode extension as
well as in a PenTest Magazine article. In the latter, the author noted their discovery of LeakIX
in a Chinese language data source.

The script grabsite.py makes a request to cubdomains.com/domains-registered-by-date.
Writes output to file hasil-grab.txt.

Fig 11: ecompiled code from AlienFox V3.5 grabip.py.

https://isc.sans.edu/diary/29610
https://pentestmag.com/looking-at-active-cyber-threats-with-leakix/

2 0DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

In AlienFoxV4, these scripts were broken into Tools 5, 6, 7, 8. Tool 5 replaces the LeakIX
query with a POST request to the SecurityTrails API with an object interchangeably referred
to in variables called url and ips in the script. The script has hardcoded cookies in the request
headers, which is inelegant and unsustainable. Some of these cookies are ephemeral, such as
the sid (session ID).

The ‘list_new/ip’ endpoint is not documented in the SecurityTrails’ API documentation, so it
is unclear what type of information is in the response. It is notable that a low skilled actor is
using a legitimate security tool for malicious purposes.

The script then parses the response for the presence of various web service-related strings,
such as ‘cpanel.’ and ‘mail.’, which are likely subdomains associated with abusable services.
When identified, the script replaces the web service string with an empty string, then writes
the result to file _Reversed.txt.

Fig 12: AlienFox V4’s ip.py request headers.

Fig 13: AlienFox V4’s ip.py SecurityTrails request function.

2 1DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

ANDROXGH0ST

Androxgh0st is the most ubiquitous module in the AlienFox framework.
Code snippets referencing an Androxgh0st function can be found all over
GitHub and Pastebin, with the oldest posted in March 2021.

We analyzed a file named env.py (SHA1: 7848e53133f4470c29e33ee
6dd87f8f326c5fa38) that parses a configuration file for specified variables
and automates extracting the values into text files for an actor to abuse.
The script was partially compiled. Some sections have Python bytecode
that failed to fully compile, though much of the script is standard Python
source. It is unclear why several samples are in this state. The script is
designed to run with targets stored in an .ini configuration file for the tool;
.ini files are more commonly found on Windows systems.

Configuration Parsing & Persistence

In env.py, the variable Targetssaaa is set to a local file: settings.ini. The file
is opened with read privileges in ip_listx, and the script parses this object
for configuration values.

Fig 14: Configuration parsing function for Sendgrid and Office365.

https://www.virustotal.com/gui/file/70f35dfd9650437229453570f53969fb1644b1d07f282645c27a3877752a68bd/details
https://www.virustotal.com/gui/file/70f35dfd9650437229453570f53969fb1644b1d07f282645c27a3877752a68bd/details

2 2DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The code steps through the functions with a default value for services set to “off” unless
the settings.ini file explicitly toggles to “on.” These values are passed into functions related
to testing email sending services. There are several send test functions specific to targeted
services, including sendtestaws, sendtestnexmo, and sendtesttwillio. There is also a general
sendtest function nested in a Python bytecode segment that failed to compile properly; this is
an unusual find, as most scripts were compiled or source code, not a combination of the two.

Function autocreateses takes arguments for url, ACCESS_KEY, SECRET_KEY, and REGION. This
function creates a user; in this sample, the username is a hardcoded string ‘ses_xcatze’. The
login profile is set with the same name, with password ‘ses_xcatze123’. The script also creates
a group named ‘AdminsDDefault’, which attaches the AdministratorAccess policy to the group.

Fig 15: autocreateses() function in env.py.

2 3DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

MAINTANCE (AKA GREENBOT)

We analyzed several samples labeled as “Maintance.” One of these samples had an ASCII art logo for
both Maintance and GreenBot. Although GreenBot was outlined by Permiso in their recent SES abuse
post, our research yielded more results similarly named “Maintance”, so we will refer to these under
the common name Maintance for the remainder of this report.

Fig 16: Maintance / GreenBot Logos side-by-side

https://permiso.io/blog/s/approach-to-detection-androxgh0st-greenbot-persistence/

2 4DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

We analyzed several Maintance samples, one of which was uploaded
to VirusTotal with the filename VIOLENT-DECRYPTED2.py (SHA1:
45a0675088afdcf2ec059510fc2a4905957c2a69).

VIOLENT-DECRYPTED2 aka “Maintance” Highlights

• This sprawling, 1500-line script is highly modular.
The script often imports libraries directly to the function,
which is uncommon among the analyzed samples.

• Contains an AWS persistence script that creates a new
administrator account and deletes the hijacked legitimate account.

• The developer implemented licensing checks, suggesting
the script has been commercially distributed.

• Requires that the operator execute on a Windows system.

Reconnaissance Features

VIOLENT-DECRYPTED2.py performs recon on web services so the actor
can identify new targets. The sample takes an input list of hosts (IP
or domain), forms a new URL by appending a URI suffix to the host,
and makes a GET request to the URL. If the response from the target
contains strings that suggest a vulnerable component, the script saves
the URL to one of several local files in the vres/ path.

The vulnerable web server responses indicate the actor may:

• Have file write privileges
• Be able to upload files
• Brute force a login page (username/password prompt)

https://www.virustotal.com/gui/file/b9dab7c2ce9c779b3eba4946660839b1e689fde66f1dbd4d9e3968327a8a5f84/details

2 5DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Licensing Check

The hardwarecheck function identifies whether the script is connecting from a system associated
with a licensed user. This is notable because it indicates an AlienFox developer has commercialized a
version of the tool.

In the hwlists variable, the script makes a GET request to https://rentry.co/3cii9/raw, which hosts the JSON
content in the image below. The hwid variable uses subprocess to call “wmic csproduct get uuid” which
provides the user’s Windows installation UUID. The output of that command matches the structure of the
keys in the hwlists JSON. The cdt variable then makes a request to worldclockapi.com to collect the date
and time. Then, the function checks the hwlists keys for the hwid to find the user; compares the value from
cdt and the expiration datetime value stored on the server; the script continues execution if affirmative.

Fig 17: Licensing check function in VIOLENT-DECRYPTED.py version of Maintance.

Fig 18: The Maintance menu options

2 6DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

AwsUser Function

The AwsUser function is described in the master automation list as “Mass Change User+Pass Aws +
Send In Your Mail”. This is a persistence and privilege escalation function. Imports boto3 locally. The
script uses a stolen AWS access key specified in variable user to create a new login profile for a user
named “system” with a hardcoded, 123 character-length password stored in the pws variable. The
function then attaches the AdministratorAccess profile to the user account. Lastly, the function deletes
the access key for the original user account, effectively locking out would-be defenders.

Fig 19: AWSUser function in the VIOLENT-DECRYPTED2.py variant of Maintance.

2 7DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

LARAVEL

Why Laravel?

Each of the SES-abusing toolsets we analyzed targets servers using
the Laravel PHP framework. Introduced in 2011, Laravel is one of few
frameworks where OWASP has dedicated a cheatsheet exclusively to
securing Laravel systems. It is unclear whether this attention from OWASP
is driven by Laravel’s popularity or propensity to high-severity bugs, or
some combination of factors.

Lar.py & Lara.py

Lar.py is a script found in the AlienFox 3.5 archive we analyzed. There is
also a variant in AlienFox V4 named lara.py. This is a script that automates
extraction of keys and secrets from compromised Laravel .env files.
Lar.py was uploaded to VirusTotal along with the script’s output, providing us
with a glimpse into its use in-the-wild.

Like many others, this script refers to Androxgh0st in some functions.
However, the developer who wrote this script demonstrates higher
coding skill than the other versions we analyzed. The script applies
threading, Python classes with modular functions and initialization
variables. The author also adds tags to the stolen data output that
logs whether the data was harvested using a configuration parser
(.env method) or through a regular expression (debug method),
demonstrating an awareness of efficacy metrics.

Fig 20: A Lar.py class that implements threading for performance.

https://cheatsheetseries.owasp.org/cheatsheets/Laravel_Cheat_Sheet.html

2 8DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Lar.py Classes & Methods

The class androxgh0st collects data from targeted services that the script
parses configuration.

• paypal(self, text, url): Looks for string “PAYPAL_” in the text
argument; when found, saves the result to Result/paypal_
sandbox.txt.

• get_aws_region(self, text): References the global variable
list_region to check if any of the 21 AWS regions are identified
in the input text argument.

• get_aws_data(self, text, url): A complex function based on
if/else conditions.

• Parses text for “AWS_ACCESS_KEY_ID” and “AWS_SECRET_
ACCESS_KEY” strings.

• Has regex to parse both raw and HTML-formatted text.
• If the result is found in the raw text search, the output line

logs that the METHOD key’s value is /.env
• If the result is found using regex, output line logs the

METHOD key’s value is debug.

• Looks for AWS_BUCKET and SES_KEY & SES_SECRET in the text

• Writes results to one of three text files:
• aws_access_key_secret.txt
• {aws_region[:-2]}.txt

Fig 21: Output written to aws_access_key_secret.txt.

2 9DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

• get_twilio(self, text, url): searches for Twilio-related env
variables and saves matches to Result/TWILIO.txt, including:

• TWILIO_ACCOUNT_SID
• TWILIO_API_KEY
• TWILIO_API_SECRET
• TWILIO_CHAT_SERVICE_SID
• TWILIO_NUMBER
• TWILIO_AUTH_TOKEN

• get_smtp(self, text, url): parses env file for SMTP server details

• Saves output to a text file name based on the type of SMTP
service, e.g., office.txt for Microsoft email services, 1and1.txt
for 1and1, smtp_aws.txt for AWS-based SMTP (NOT SES)

• Victims of the Office365 function included organizations in
the electronics manufacturing, marketing, public services
(firefighters), real estate, and software development sectors
in Belgium, Chile, Colombia, Cameroon, India, and Sri Lanka

Fig 22: Output written to TWILLIO.txt.

Fig 23: Output from lar.py to Result/office.txt.

3 0DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The Global function main(url):

• Runs via try/except statement

• Creates a request to the targeted webserver URL + “/.env” to download the Laravel
environment configuration file

• These configuration files often have API keys & secrets that the server uses to connect
to external services

• Creates requests to the respective APIs to validate results collected for some services

• User-agent string in variable headers: Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.129 Safari/537.36’

• At this time, this is an uncommon user-agent string; the Chrome versioning is circa 4/27/2020.

Fig 24: The main function in Lar.py.

https://laravel.com/docs/10.x/configuration
https://chromereleases.googleblog.com/2020/04/stable-channel-update-for-desktop_27.html

3 1DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

The main function initializes some of the variables and data
accessed at runtime.

• Attempts to restore an existing session, if found, in the
pid_restore variable. In this example, the variable was set to
the string “.nero_swallowtail”

• Try statement uses ConfigParser class to:
• Parse the pid_restore variable with read privileges
• Look for strings “DB”, “FILES”, “THREAD”, “SESSION”
• Initialize the related variables in the script

• The Except statement parses for arguments to initialize the
same variables

• The lists variable holds a string to a web server that the script
will target

• In the toolset analyzed, the actor used a text file named
ip.txt to house the targeted hosts, which notably contains
both IPV4 and IPV6 addresses

• For each item in lists, the script parses the text and formats it
into a URL by adding an http:// prefix and removing any trailing
forward slashes from the end

Fig 25: The lar.py logo.

https://docs.python.org/3/library/configparser.html

3 2DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Circa September 2022, AlienFox Version 4 contained an updated version
of the script named Lara.py. The logging format is the most significant
change: the V4 logs are less human-readable, but they likely feed into
an automation for another tool in the V4 set, which is an improvement
in sophistication for the toolset. Other changes to the script include:

• A new ASCII art logo that refers to the script as
‘ALIENFOX Logs Stealer/Grabber ’

• Added Nexmo and Plivo functions, which are new
targeted service

Fig 26: AlienFox V4 lara.py logo.

3 3DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

CONCLUSION

The AlienFox toolset demonstrates another stage in the evolution of cybercrime in the cloud.
Cloud services have well-documented, powerful APIs, enabling developers of all skill levels to
readily write tooling for the service. The toolset has gradually improved through improved coding
practices as well as the addition of new modules and capabilities.

Opportunistic cloud attacks are no longer confined to cryptomining. AlienFox tools facilitate attacks
on minimal services that lack the resources needed for mining. By analyzing the tools along with
their output, we found that actors use AlienFox to identify and collect service credentials from
misconfigured or exposed services. For victims, compromise can lead to additional service costs,
loss in customer trust, and remediation costs.

To defend against AlienFox tools, organizations should use configuration management best
practices and adhere to the principle of least privilege. Consider using a Cloud Workload Protection
Platform (CWPP) on virtual machines and containers to detect interactive activity with the OS.
Because activities like brute-force or password spray attempts may not be logged by certain service
providers, we recommend monitoring for follow-on actions, including the creation of new accounts
or service profiles–particularly those with high privilege. Additionally, consider monitoring for
newly added email addresses in platforms where your organization conducts email campaigns.

3 4DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

APPENDIX: INDICATORS OF COMPROMISE

Indicator Where From? Context/Notes

showdenwashere@hotmail.com Hardcoded recipient email address
in sendtest* functions of Permiso’s
Androxgh0st sample,

Presumably an account
controlled by actor; func sends
message to this address to see
if email sends successfully

whm@sending.today Hardcoded sender email address
in sendtest* functions of Permiso’s
Androxgh0st sample

Used to authenticate to smtp-
relay.gmail.com mail server
throughout each send function.

root@youez String hardcoded in grabip.py and
grabsite.py, scripts used to collect
targeted websites

'User-agent':'Mozilla/5.0
(X11; Linux x86_64)
AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/81.0.4044.129
Safari/537.36'

Hardcoded user-agent string
associated with web requests
from ALIENFOX tools

Consistent across multiple
versions of ALIENFOX.
Defenders should check
against baseline of user-agents
observed in their environment.
This is a very outdated Linux
Chrome browser user-agent
(circa 2020) so it should
not be prevalent in
most environments.

https://rtvsmkqfa3clrvgj6f-
9fd73c.ingress-daribow.easywp.
com/wp-admin/v1/1.php

URL hardcoded in a Maintance
sample where data was sent
via HTTP POST

The POST function was not
configured to work in the state
we analyzed this script; code
flow went around this block

https://rentry.co/3cii9/raw URL hardcoded in a
Maintance sample

The URL is used by a licensing
check function to identify if
the computer is licensed to use
that version of Maintance

3 5DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Indicator Where From?

c0184407dcbec911a325d41e9a9ef1dbed524fe5 SHA-1 hash of an Androxgh0st-related sample

41a2cab42a08adf93b5ada1eafb75d5b4f496853 SHA-1 hash of an Androxgh0st-related sample

3cb5b4182ef6e8174f87c8ed3551f91b72c47370 SHA-1 hash of an Androxgh0st-related sample

17592a2fdb8dae9c4c88f1fbf7e9c632129f98df SHA-1 hash of an Androxgh0st-related sample

ab8d480c090ab8be0cdb0ff5bc0f59972845b125 SHA-1 hash of an Androxgh0st-related sample

15ade0df5b4e6a82ceec429a2673fd1ed011eb93 SHA-1 hash of an Androxgh0st-related sample

aa8be80db30c4f5a49c3e75254ef6d0101c37987 SHA-1 hash of an Androxgh0st-related sample

064734bc43ee2d83e8a275293d17fc925620bba1 SHA-1 hash of an Androxgh0st-related sample

9381c30e29089639249e67b62f61c6df4869c6c1 SHA-1 hash of an Androxgh0st-related sample

fd5228889cd12f343236f7d51c98fab4db6c4763 SHA-1 hash of an Androxgh0st-related sample

fd3375553dda2347c0b383d8e800bfe4f93d3af0 SHA-1 hash of an Androxgh0st-related sample

f4ef68d3d2b58a58a82e00ebeaaed556e03328af SHA-1 hash of an Androxgh0st-related sample

23abd146befe761337e5155a116138acf81331d9 SHA-1 hash of an Androxgh0st-related sample

f5af939480fc86a086bc589047444b1c448ebb09 SHA-1 hash of an Androxgh0st-related sample

ac265c12a4f08378e2519e290b0c45a1adc7156f SHA-1 hash of an Androxgh0st-related sample

0f1583b56dd02fc200c7dae0d3c9b32b4278846b SHA-1 hash of an Androxgh0st-related sample

74c4cfa0edae5e87001c901214789cb0f0087031 SHA-1 hash of an Androxgh0st-related sample

ec5b2efe8eadfac7ceca545e25f06240bbf16960 SHA-1 hash of an Androxgh0st-related sample

9eb13d9a678cd2e78da41563b7461887ce5997b6 SHA-1 hash of an Androxgh0st-related sample

25bbda606c72e81fac9abe76e0f00f9cd12770e4 SHA-1 hash of an Androxgh0st-related sample

3 6DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Indicator Where From?

e786fc1fdfcb7be28650383eb33cdf6c90f1d033 SHA-1 hash of an Androxgh0st-related sample

8e6e18ba7e251d31b46d17535010a8c583345b23 SHA-1 hash of an Androxgh0st-related sample

b3559eeac9a9caa840cc96980fe0bbd1c7da37d3 SHA-1 hash of an Androxgh0st-related sample

40df29a738fd5cab0face169d8a8426dff7d2d10 SHA-1 hash of an Androxgh0st-related sample

e663e24fc6aadbaae5bbf722a84097a6127f4066 SHA-1 hash of an Androxgh0st-related sample

c2f51b44e26e4aca40beb887ac4d36f3e091e26a SHA-1 hash of an Androxgh0st-related sample

4266bdb139ae6d22ddf98501cc3af280aa488b42 SHA-1 hash of an Androxgh0st-related sample

329328dc57acece8c47ab5c73f7b9c7e4e09981a SHA-1 hash of an Androxgh0st-related sample

fc08c15dfd6074d80e1f8d777fb49f8c14b4af20 SHA-1 hash of an Androxgh0st-related sample

aa4672621f81f601882ad13f26d37dc8218bb06a SHA-1 hash of an Androxgh0st-related sample

07289c56e65a98a85bc794374949aae98b819823 SHA-1 hash of an Androxgh0st-related sample

4ab401d4c490460fd457151f643b5ec7e594cd41 SHA-1 hash of an Androxgh0st-related sample

7848e53133f4470c29e33ee6dd87f8f326c5fa38 SHA-1 hash of an Androxgh0st-related sample

7d7bad6282531521b9103817a38bff3a34b89428 SHA-1 hash of an Androxgh0st-related sample

15129436f5bab6c3eea9b2dfc4d0f0043438e013 SHA-1 hash of an Androxgh0st-related sample

15aec55e56225700766d79b6fb9d212cced21951 SHA-1 hash of an Androxgh0st-related sample

ebdc60f33d22c4256ca6ab4058059db1d618ec11 SHA-1 hash of a sample setting an AWS admin
persistence profile

894fd799168f9ff11e74ee37d5bec35387feef24 SHA-1 hash of a sample setting an AWS admin
persistence profile

28de7d7fcd18471f53737fd8a3df3a23a34cf758 SHA-1 hash of a sample setting an AWS admin
persistence profile

3ddb8dc53b6151ea036db3d2a5f34e5f5b39e044 SHA-1 hash of a sample setting an AWS admin
persistence profile

3 7DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

Indicator Where From?

ceda47dd1aacc515d8bdda04299ab1ebf1ba0d73 SHA-1 hash of a sample setting an AWS admin
persistence profile

23abd146befe761337e5155a116138acf81331d9 SHA-1 hash of a sample setting an AWS admin
persistence profile

ac265c12a4f08378e2519e290b0c45a1adc7156f SHA-1 hash of a sample setting an AWS admin
persistence profile

b8dc12cc600aced9d34c463c5bf5edb53db605fb SHA-1 hash of a sample setting an AWS admin
persistence profile

45a0675088afdcf2ec059510fc2a4905957c2a69 SHA-1 hash of a sample setting an AWS admin
persistence profile

c3464926cf2075595c77dc5b3fbcf1f014c8046b SHA-1 hash of an AlienFox ZIP archive

fc0479a3d1188384613f437f28e28614a6118e94 SHA-1 hash of an AlienFox ZIP archive

5c9993e5d7468551c60e6dab488eccea7f4ef007 SHA-1 hash of an AlienFox ZIP archive

ece7e6727d2daa254e4d4a6be62744d6f3a2a2ef SHA-1 hash of an AlienFox ZIP archive

afb7b010bafb9f7faf2b528f128ff24da94e0190 SHA-1 hash of an AlienFox ZIP archive

959e377131762ccb879c36c53e3b71473d3b72fd SHA-1 hash of an AlienFox ZIP archive

48afb7ac8fdf6a8da47601806a8028c61dad2eb7 SHA-1 hash of an AlienFox ZIP archive

3 8DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

rule cw_androxgh0st_strings
{
 meta:
 author = “Alex Delamotte @ SentinelLabs”
 description = “Rule based on Androxgh0st file contents.”
 reference = “https://s1.ai/AlienFox”

strings:
 $a = “asu = androxgh0st().get_aws_region(text)” ascii wide
 $b = “nam = input(‘\x1b[1;37;40mInput Your List : ‘)” ascii wide
 $c = “def jembotngw2(sites):” ascii wide
 $d = “def nowayngntd():” ascii wide
 $e = “def makethread(jumlah):” ascii wide

 condition:
 any of them
}

rule cw_boto_broad_persistence
{
 meta:
 author = “Alex Delamotte @ SentinelLabs”
 description = “Detect (Boto3 OR samples referencing Telegram channels) AND AWS persistence login
profile.”
 reference = “https://s1.ai/AlienFox”
strings:
 $a = “boto3.client(‘ses’”
 $a1 = “https://t.me”
 $b = “arn:aws:iam::aws:policy/AdministratorAccess”
 $c = “iam.create_login_profile(UserName=”
 condition:
 ($a or $a1) and ($b or $c)
}

APPENDIX II: HUNTING YARA RULES

3 9DISSECTING ALIENFOX | THE CLOUD SPAMMER’S SWISS ARMY KNIFE

InfoSec works on a rapid iterative cycle where new discoveries occur daily and authoritative sources are
easily drowned in the noise of partial information. SentinelLabs is an open venue for our threat researchers

and vetted contributors to reliably share their latest findings with a wider community of defenders. No
sales pitches, no nonsense. We are hunters, reversers, exploit developers, and tinkerers shedding light

on the world of malware, exploits, APTs, and cybercrime across all platforms. SentinelLabs embodies our
commitment to sharing openly –providing tools, context, and insights to strengthen our collective mission of
a safer digital life for all. In addition to Microsoft operating systems, we also provide coverage and guidance

on the evolving landscape that lives on Apple and macOS devices. https://labs.sentinelone.com/

ABOUT SENTINELLABS

https://labs.sentinelone.com/

