
 
Threat Alert: First Python Ransomware 
Attack Targeting Jupyter Notebooks 

Team Nautilus has uncovered a Python-based ransomware attack that, for the first 
time, was targeting Jupyter Notebook, a popular tool used by data practitioners. The 
attackers gained initial access via misconfigured environments, then ran a 
ransomware script that encrypts every file on a given path on the server and deletes 
itself after execution to conceal the attack. Since Jupyter notebooks are used to 
analyze data and build data models, this attack can lead to significant damage to 
organizations if these environments aren’t properly backed up. 

What is Jupyter Notebook? 

The Jupyter Notebook is an open source web application used by data professionals 
to work with data, write and execute code, and visualize the results. Normally, access 
to the online application should be restricted, either with a token or password or by 
limiting ingress traffic. However, sometimes these notebooks are left exposed to the 
internet with no authentication means, allowing anyone to easily access the notebook 
via a web browser. On top of this, a built-in feature of Jupyter notebooks enables the 
user to open a shell terminal with further access to the server. 

Breaking down the Jupyter Notebook ransomware attack 

We set up a honeypot with a Jupyter notebook application exposed to the internet. 
Below is the kill chain of the attacks we observed: 



 

To conduct the attack, the adversary accessed the server via a misconfigured 
application, downloaded the libraries and tools that support the attack (for example, 
encryptors), and then manually created a ransomware script by pasting the Python 
code and executing the script. 

Below, you can see the actual code that was used during the attack on our honeypot: 



 

Our honeypot was designed to simulate a real-life enterprise environment, so it 
included actual Jupyter notebooks and raw data files that the attacker could encrypt. 
The attack stopped before it could cause more damage. We decided to simulate and 
investigate the attack in our lab. In the screenshot below, you can see the execution 
of the encryptor. Note that the Python file (cpt.py) was designed to delete itself 
after execution to conceal the attack. 



 

No ransom note was presented in this attack. We assume that either the adversary 
was experimenting with the attack on our machine, or the honeypot timed out before 
the attack was completed. 

Overall, this attack is simple and straightforward, as opposed to more sophisticated 
ransomware that uses advanced techniques, such as Locky, Ryuk, WannaCry, or 
ransomware-as-a-service such as GandCrab. 

We also suspect that we might be familiar with the attacker due to the unique 
trademark that was used. In the beginning of the attack, the adversary checked if the 
server was vulnerable by downloading to /tmp directory a text file 
named f1gl6i6z. This file contains the word ‘bl*t’, which might indicate that 
the threat actor has Russian origin. We’ve seen this file used before in many 
cryptomining attacks that target Jupyter notebooks and JupyterLab environments. 

A quick Shodan query shows that there are about 200 internet-facing Jupyter 
notebooks with no authentication. Naturally, some of them can be honeypots, but not 
all. We think that this attack can indicate a campaign that executes ransomware on 
these servers. 



Using Tracee to detect the attack 

Our honeypots are continually monitored by Tracee of Aqua Security, an open source 
runtime security and forensics tool for Linux, built to address common Linux security 
issues. On GitHub, you can find Tracee-eBPF, a Linux tracing and forensics tool 
based on eBPF technology, and Tracee-rules, a runtime security detection engine 
that allows to detect malicious events. 

In this attack, Tracee detected two drift events: dropping and execution on the fly of a 
binary and a Python file. Although a “living off the land” approach — using the 
existing tools in a target environment — is common, attackers are often looking to 
bring in and apply their own tools. Tracee was designed to detect these kinds of 
events. In this case, the attacker downloaded a nano binary to create the 
file cpt.py and executed this binary along with the cpt.py script. 



 



 

These specific detections aren’t available in the open source Tracee-rules, but are 
included in Aqua's Cloud Native Detection and Response (CNDR) solution that 
allows to detect and prevent attacks in runtime. Read more about CNDR’s detection 
capabilities and how CNDR stopped a DeamBus botnet attack. 

Mapping the attack to the MITRE ATT&CK framework 

Here we map each component of the attack to the corresponding techniques of 
the MITRE ATT&CK framework: 

 

What actions you should take 

There are a few recommendations you can follow to mitigate these risks and protect 
your data applications. 



Jupyter Notebook recommendations 

• Use token or another authentication method to control access to your data 
development application. 

• Ensure that you’re using SSL to protect data in transit. 
• Limit inbound traffic to the application either by blocking the internet access 

completely or, if the environment requires internet access, by using network 
rules or VPN to control inbound traffic. It’s also recommended to limit 
outbound access. For instance, in the Aqua platform, you can set network 
rules to limit access to your resources. 

• Run your applications with a non-privileged user or one with limited privileges. 
• Make sure you know all the Jupyter notebook users. You can query the users 

in an Sqlite3 database, which should be found in this 
path: ‘./root/.local/share/jupyter/nbsignatures.db’. If 
SSH access to the server is enabled, you can also inspect the SSH authorized 
keys files to verify that you're familiar with all the keys and that there are no 
unknown users or keys. 

General security recommendations 

• Back up critical business systems regularly and consistently to avoid data loss. 
• Apply the least-privilege access principle throughout your environment. 
• Follow basic cybersecurity hygiene, which is fundamental to avoiding security 

gaps that employees might accidentally leave — for example, missing patches 
and default passwords. 

• Make sure your IT and security staff are staying vigilant and keeping watch, 
and that they're prepared to work diligently to protect customers, processes, 
and systems. 

Recommendations for cloud native environments 

• Identify exposures, vulnerabilities, and misconfigurations that can provide 
entry points for attackers to gain access and compromise networks. 

• Scan all your running workloads for critical vulnerabilities with known exploits 
to conduct focused patching and mitigation. You can use trusted open source 
scanners such as Trivy. 

• Scan for vulnerabilities in CI/CD pipelines to ensure that no new vulnerabilities 
are introduced. 

• Scan your workloads for suspicious and malicious behavior in runtime with 
open source tools such as Tracee. 


