

ProxyShell exploitation leads to
BlackByte ransomware
The BlackByte ransomware operators leverage ProxyShell Microsoft Exchange vulnerabilities
for initial access along with Cobalt Strike for lateral movement. Here’s what to look out for.

HARRISON VAN RIPER

Originally published November 30, 2021. Last modified December 2, 2021.

As law enforcement arrests continue to put a dent in the plague of ransomware, new variants continue to pop up week

after week. BlackByte ransomware was first publicly identified in a July 2021 BleepingComputer forum post from a user

seeking help decrypting their encrypted files. Since then, there’s been a slow trickle of information regarding this new

variant, with interest in it peaking in early October when operators attacked an Iowa grain cooperative.

Red Canary came across BlackByte working a short-term incident response engagement in conjunction with our partners

at Kroll. Trustwave SpiderLabs released two excellent blogs analyzing a BlackByte sample they observed, and we wanted

to take a look at the operation more broadly by analyzing the initial access, post-exploitation, and exfiltration phases prior

to BlackByte encryption. While we don’t have all of the answers, we wanted to provide the community with our analysis with

hopes we can continue the BlackByte discussion.

Initial access
In the campaign we observed, BlackByte operators gained initial access by exploiting the ProxyShell vulnerabilities (CVE-

2021-34473, CVE-2021-34523, CVE-2021-31207) present on the customer’s Microsoft Exchange server (T1190 Exploit Public-

Facing Application). Widely reported and acknowledged by Microsoft in August 2021, ProxyShell exploitation allows an

adversary to gain pre-authentication remote code execution. Here’s a quick primer on the ProxyShell exploitation

process that we observed:

1. An adversary remotely created a draft email with an attachment saved in the user’s Drafts folder. The attachment

contained the encoded web shell.

2. The adversary exported the entire mailbox (malicious draft email included) to an ASPX file, which is a type of personal

storage table (PST) file format. The process of writing the ASPX file decodes the encoded web shell.

From an endpoint perspective, we observed the service MSExchangeMailboxReplication.exe writing an ASPX file to the

folder \\127.0.0.1\c$\program files\microsoft\exchange

server\v15\frontend\httpproxy\owa\auth\current\themes (T1505.003 Server Software Component: Web Shell):

Since this service should not normally write ASPX files, this presents a detection opportunity.

Detection opportunity: Microsoft Exchange Mailbox
Replication service writing Active Server Pages

process == msexchangemailboxreplication.exe

&&

create_filename_extension == .aspx

||

modify_filename_extension == .aspx

Though we don’t know the adversary’s source IP address from log sources, we observed 185.93.6[.]31 making a network

connection in a later stage of execution. We assess that it likely conducted the initial ProxyShell exploitation in this incident.

Security researcher Kevin Beaumont observed the same IP address exploiting the ProxyShell vulnerabilities to drop web

shells on vulnerable servers in early September 2021, one month prior to this intrusion. We also directly observed several

inbound connections to customer Exchange servers, which we assess was likely vulnerability scanning (T1595.002 Active

Scanning: Vulnerability Scanning).

Post-exploitation

Operators used their web shell to drop a Cobalt Strike beacon (c84d4ead6c5a2afa9e844806de549dcf) on the compromised

Exchange server to allow more functionality directly on the compromised system (T1105 Ingress Tool Transfer). Based on

the beacon’s configuration file, Cobalt Strike injected into the wuauclt.exe (Windows Update Agent) process. We detected

this process launching with no command-line parameters. This is somewhat unusual (and presents a detection opportunity),

as wuauclt.exe (Windows Update Agent) typically launches with a parameter (T1055 Process Injection).

Detection opportunity: Wuauclt.exe executing with no
command line argument
process == wuauclt.exe

&&

process_command_line_contains != “”

Note: Double quotes (“”) within the command line means null.

Operators then used Cobalt Strike to dump credentials for a service account on the compromised system (T1003 OS

Credential Dumping). After gaining access to a service account, the adversaries installed the remote desktop

application AnyDesk to access multiple systems (T1105 Ingress Tool Transfer). In addition to lateral movement through

AnyDesk, the operators created additional Cobalt Strike beacons within the Admin$ share folders on compromised domain

controllers (T1021.002 Remote Services: SMB/Windows Admin Shares).

BlackByte execution
Cobalt Strike introduced and executed BlackByte (9344afc63753cd5e2ee0ff9aed43dc56) in the environment. BlackByte

launched with a command-line parameter of -single with a SHA-256 hash. We assess this parameter may be a unique

identifier for the infected system, but it’s still unclear exactly what this parameter does. As a precaution, we have redacted

this value from our screenshots. If anyone in the community has insight into this, please email intel@redcanary.com.

BlackByte (which had a file name of complex.exe) executing with a SHA-256 command line argument (which we have redacted

in this screenshot)

Once executed, BlackByte deletes Task Manager (taskmgr) and Resource Monitor (resmon), and issues an

obfuscated PowerShell command to stop the Windows Defender service (WinDefend) (T1562.001 Impair Defenses: Disable

or Modify Tools). This is likely done to avoid detection and keep Windows Defender at bay while BlackByte continues

execution. BlackByte also creates a TMP copy of itself, which we assess may have been used during its worming phase.

Base-64-encoded PowerShell command to disable the WinDefend service

Next, BlackByte injected into the regedit.exe process, which executed with the same -single command line parameter as

the original BlackByte binary. Regedit initiated a connection to the same IP address mentioned previously, 185.93.6[.]31.

BlackByte was possibly communicating back to the adversary’s command and control (C2) server via this Regedit

connection, though this remains an intelligence gap.

Preparing to worm
Typically, we would expect Cobalt Strike to be the main driver behind privilege escalation and lateral movement within a

compromised environment. However, BlackByte handles both of those on its own. In the sample we observed, BlackByte set

three different registry values to escalate privileges and begin setting the stage for lateral movement and encryption (special

thanks to Trustwave’s Spiderlabs for filling in this intelligence gap in their breakdown of BlackByte) (T1112 Modify

Registry):

• Elevate local privileges: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v

LocalAccountTokenFilterPolicy /t REG_DWORD /d 1 /f

• Enable OS to share network connections between different privilege

levels: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLinkedConnections /t REG_DWORD /d

1 /f
• Enable long path values for file paths, names, and namespaces to ensure encryption of all file names and

paths: HKLM\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f

Detection opportunity: Privilege escalation and encryption
preparation via registry modifications
Process == regedit.exe

&&

Reg_key ==

(“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System”|| “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Po

licies\System” || “HKLM\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled”)

&&

command_line_contains == (REG_DWORD&& 1)

BlackByte then conducted network reconnaissance and system preparation prior to lateral movement within the

environment.

1. BlackByte executed two netsh advfirewall firewall commands to enable the “Network Discovery” and “File and

Printer Sharing” rule groups (T1562.004 Impair Defenses: Disable or Modify System Firewall).

2. BlackByte executed a PowerShell command to query Active Directory for all of the computer hostnames and installed

the Remote Server Admin Tools package (T1059.001 Command and Scripting Interpreter: PowerShell).

3. BlackByte executed hundreds of reconnaissance and system discovery commands including net view and arp -a (T1018

Remote System Discovery, T1016 System Network Configuration Discovery).

4. BlackByte created a temporary copy of itself before deleting the original complex.exe binary (T1070.004 Indicator

Removal on Host: File Deletion). We assess this temporary file, rather than the original complex.exe file, was used to

propagate to the next system.

5. BlackByte then made a connection to the 185.93.6[.]31 address mentioned above.

Preparing for ransom
BlackByte issued several precursor commands prior to conducting the encryption cycle. The vssadmin resize

shadowstorage command was used to resize shadow copy storage in two different ways, setting the /MaxSize parameter to

either “unbounded” or “401MB.” Additionally, BlackByte issued an obfuscated PowerShell command to delete shadow

copies directly through WMI objects (T1490 Inhibit System Recovery).

Detection opportunity: Vssadmin Resizing shadowstorage
process == vssadmin.exe

&&

process_command_line_contains == resize shadowstorage&& (unbounded || 401MB)

Next, BlackByte issued commands to delete the scheduled task “Raccine Rules Updater ” disable the SQLTELEMETRY service

(T1562.001 Impair Defenses: Disable or Modify Tools). Raccine is a so-called “ransomware vaccine” created by security

researcher Florian Roth, designed to intercept and prevent precursors and active ransomware behavior.

Detection opportunity: Raccine scheduled task deletion

Process_name == schtasks.exe

&&

command_line_contains == (delete&& Raccine)

Deletion of the Raccine Rules Updater scheduled task

Exfiltration
Using WinRAR, the adversary compressed local data from compromised endpoints and uploaded the archives to the

anonymous file-sharing sites anonymfiles[.]com and file[.]io (T1560.001 Archive Collected Data: Archive via

Utility, T1567.002 Exfiltration Over Web Service: Exfiltration to Cloud Storage). The operators then attempt to further

extort the customer by threatening to release this data publicly through the BlackByte Tor leak site, an all too common

tactic among ransomware operators.

Encryption
We observed the use of print bombing to deploy physical ransom notes. BlackByte has the typical text-based note

titled BlackByte_restoremyfiles.hta. However, it also sets a scheduled task to perform a print bombing technique, which

causes all connected printers to physically print ransom notes upon execution of the task (T1053.005 Scheduled Task/Job:

Scheduled Task). At the top of every hour following an initial scheduled task setting, a note would be printed that says

“Your[sic] HACKED by BlackByte team. Connect us to restore your system.”

Execution of the print bombing scheduled task

Detection opportunity: Print bombing technique
Process == cmd.exe

&&

Command_line_contains ==wordpad|| (notepad && /p)

Several other ransomware variants use the print bombing technique, such as Egregor and LockBit, but it’s another reminder

that the intent of ransomware is to cause fear and disruption among users.

For more detailed information about the encryption process, read Trustwave’s blog, which breaks down this routine in

great detail (T1486 Data Encrypted for Impact). Interestingly, it relies on a downloaded file (forest.png, in Trustwave’s

case) that contains the encryption key. Without this, the encryption will fail. Additionally, Trustwave developed a decryptor

based on this key, which can also be found in their blog.

Malware analysis notes
BlackByte has extensive obfuscation and some anti-debugging features that made analyzing the sample difficult. The

sample was UPX-packed, and initially, we observed several Golang strings making us think this could be a Go version of

BlackByte (T1027.002 Obfuscated Files or Information: Software Packing). However, after further analysis, the sample

appears to be written in a combination of C and Go. Additionally, we noted the sample dynamically loaded API components,

increasing the difficulty of analysis. Our sample also differed slightly from Trustwave’s analysis, potentially indicating

multiple variants of BlackByte in the wild, though we could not confirm this. We continue to analyze our sample and will

provide updates if we find anything noteworthy.

Conclusion
Not that anyone needs to be reminded of the prevalence of both Cobalt Strike and ransomware, but hopefully this intrusion

gives some insight into an ever-evolving ransomware threat landscape. As we stated in our October Intelligence Insights

blog, the best way to prevent a widespread ransomware infection after an adversary has already entered your environment

is to identify precursor activity, such as shadow copy deletion, suspicious registry modification, or unusual process behavior.

Note: If you’ve been impacted by BlackByte, Trustwave has released a decryption tool. The tool relies on an encryption key

found within a downloaded PNG (or other) file during the intrusion. Following Trustwave’s publication, BlackByte operators

called out the decryptor and questioned its capability. As such, the group’s tactics may change and the tool may become

unreliable.

IOCS

Cobalt Strike beacon c84d4ead6c5a2afa9e844806

de549dcf

829751cfdc2376e916244f94baf839ce4491ccb75f0a89778c092bde79b

d8643

BlackByte ransomware 9344afc63753cd5e2ee0ff9ae

d43dc56

1df11bc19aa52b623bdf15380e3fded56d8eb6fb7b53a2240779864b1a

6474ad

Print bombing ransom note DLL e2eb5b57a8765856be897b4

f6dadca18

91f8592c7e8a3091273f0ccbfe34b2586c5998f7de63130050cb8ed36b4

eec3e

Cobalt Strike server 185.93.6.31

OBSERVABLES

Technique Description Observable

BlackByte execution C:\Users\Public\complex.exe -single

Print bombing command

line

C:\Windows\System32\cmd.exe /c for /l %x in (1,1,75)

do start wordpad.exe /p C:\Users\tree.dll

T1059.001 Command and Scripting

Interpreter: PowerShell

T1027 Obfuscated Files of Information

T1562.001 Impair Defenses: Disable or

Modify Tools

EXE deletion and encoded

PowerShell command to

disable Windows Defender

cmd /c del C:\Windows\System32\Taskmgr.exe /f /q &

del C:\Windows\System32\resmon.exe /f /q &

powershell -command “$x

=[System.Text.Encoding]::Unicode.GetString([System.

Convert]::FromBase64String(‘Vw’+’BpA’+’G4ARAB’+’lA

GYA’+’ZQB’+’uAG’+’QA’));Stop-Service -Name $x;Set-

Service -StartupType Disabled $x”

Technique Description Observable

T1059.001 Command and Scripting

Interpreter: PowerShell

T1562.001 Impair Defenses: Disable or

Modify Tools

Decoded PowerShell for

disabling Windows

Defender

cmd /c del C:\Windows\System32\Taskmgr.exe /f /q &

del C:\Windows\System32\resmon.exe /f /q &

powershell -command “$x =

[System.Text.Encoding]::Unicode.GetString([System.C

onvert]::FromBase64String(WinDefend));

Stop-Service -Name $x;Set-Service -StartupType

Disabled $x”

T1490 Inhibit System Recovery ShadowStorage resize to

unbounded

cmd.exe /c vssadmin resize shadowstorage /for=e:

/on=e: /maxsize=unbounded

Technique Description Observable

T1490 Inhibit System Recovery ShadowStorage resize to

401MB

cmd.exe /c vssadmin resize shadowstorage /for=h:

/on=h: /maxsize=401MB

T1059.001 Command and Scripting

Interpreter: PowerShell

PowerShell command to

install Remote Server

Admin Tools package

C:\Windows\System32\WindowsPowerShell\v1.0\pow

ershell.exe Install-WindowsFeature -Name

\”RSAT-AD-PowerShell\” –IncludeAllSubFeature

Technique Description Observable

T1059.001 Command and Scripting

Interpreter: PowerShell

PowerShell command to

query Active Directory for

computer names

powershell -command “Import-Module

ActiveDirectory;Get-ADComputer -Filter * -Properties *

| FT Name”

T1562.001 Impair Defenses: Disable or

Modify Tools

Scheduled task deletion schtasks.exe /DELETE /TN “\”Raccine Rules Updater\””

/F

Technique Description Observable

Web shell location \\127.0.0.1\c$\program files\microsoft\exchange

server\v15\frontend\httpproxy\owa\auth\current\the

mes\ukbse.aspx

T1059.001 Command and Scripting

Interpreter: PowerShell

T1027 Obfuscated Files of Information

Encoded PowerShell for

deleting shadow copies via

Get-WmiObject

C:\Windows\System32\WindowsPowerShell\v1.0\pow

ershell.exe -command “$x =

[System.Text.Encoding]::Unicode.GetString([System.C

onvert]::FromBase64String(‘RwBlAHQALQBXAG0AaQB

PAGIAagBlAGMAdAAg’+

‘AFcAaQBuADMAMgBfAFMAaABhAGQAbwB3AGMAbwB

wAHkAIAB8AC’+

‘AARgBvAHIARQBhAGMAaAAtAE8AYgBqAGUAYwB0ACA

AewAkA’+

‘F8ALgBEAGUAbABlAHQAZQAoACkAOwB9AA==’));Invo

ke-Expression $x”

Technique Description Observable

T1059.001 Command and Scripting

Interpreter: PowerShell

T1490 Inhibit System Recovery

Decoded PowerShell for

deleting shadow copies via

Get-WmiObject

C:\Windows\System32\WindowsPowerShell\v1.0\pow

ershell.exe -command “$x =

[System.Text.Encoding]::Unicode.GetString([System.C

onvert]::FromBase64String(Get-WmiObject

Win32_Shadowcopy |

ForEach-Object {$_.Delete();}));Invoke-Expression $x”

Technique Description Observable

T1112 Modify Registry Commands to add registry

values

reg add

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\

Policies\System /v EnableLinkedConnections /t

REG_DWORD /d 1 /f

reg add

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\

Policies\System /v LocalAccountTokenFilterPolicy /t

REG_DWORD /d 1 /f

reg add

HKLM\SYSTEM\CurrentControlSet\Control\FileSystem

/v LongPathsEnabled /t REG_DWORD /d 1 /f

Technique Description Observable

T1562.004 Impair Defenses: Disable or

Modify System Firewall

Netsh firewall rule

additions

netsh advfirewall firewall set rule group=”Network

Discovery” new enable=Yes

netsh advfirewall firewall set rule group=”File and

Printer Sharing” new enable=Yes

References
https://www.bleepingcomputer.com/forums/t/755181/blackbyte-ransomware-blackbyte-support-topic/

https://www.linkedin.com/pulse/english-blackbyte-ransomware-misterious-dropper-encoder-fasolo

https://www.desmoinesregister.com/story/money/agriculture/2021/10/06/iowa-grain-cooperative-recovering-

cyberattack-remains-mum-ransom/6007123001/

https://www.sentinelone.com/blog/the-good-the-bad-and-the-ugly-in-cybersecurity-week-40-3/

https://mcit.gov.ws/2021/08/06/cs-advisory-ca003-blackbyte-ransomware/

https://www.reddit.com/r/sysadmin/comments/q0b8ra/blackbyte_ransomware/

https://community.spiceworks.com/topic/2330823-suspicious-draft-email

https://www.mandiant.com/resources/pst-want-shell-proxyshell-exploiting-microsoft-exchange-servers

https://docs.microsoft.com/en-us/answers/questions/545608/unexpected-spam-email-in-outlook-draft-folder.html

https://www.reddit.com/r/sysadmin/comments/ppk6di/mysterious_email_in_exchange_users_drafts/

https://twitter.com/cyb3rops/status/1448209631331954693?s=20

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/blackbyte-ransomware-pt-1-in-depth-analysis/

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/blackbyte-ransomware-pt-2-code-obfuscation-

analysis/

https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd

