

Page 1 of 12 2024-08-06

External Technical Root Cause Analysis — Channel File 291

INTRODUCTION

This report elaborates on the information previously shared in our preliminary Post Incident

Review, going into further depth on the findings, mitigations, technical details and root cause

analysis of the incident. As of July 29 at 5 p.m. PT, using a week-over-week comparison,

~99% of Windows sensors are online compared to before the content update. We typically

see a variance of ~1% week-over-week in sensor connections.

Throughout this RCA, we have used generalized terminology to describe the CrowdStrike

Falcon platform for improved readability. Terminology in other documentation may be more

specific and technical.

WHAT HAPPENED

The CrowdStrike Falcon sensor delivers powerful on-sensor AI and machine learning

models to protect customer systems by identifying and remediating the latest advanced

threats. These models are kept up-to-date and strengthened with learnings from the latest

threat telemetry from the sensor and human intelligence from Falcon Adversary OverWatch,

Falcon Complete and CrowdStrike threat detection engineers. This rich set of security

telemetry begins as data filtered and aggregated on each sensor into a local graph store.

Each sensor correlates context from its local graph store with live system activity into

behaviors and indicators of attack (IOAs) in an ongoing process of refinement. This

refinement process includes a Sensor Detection Engine combining built-in Sensor Content

with Rapid Response Content delivered from the cloud. Rapid Response Content is used to

gather telemetry, identify indicators of adversary behavior, and augment novel detections

and preventions on the sensor without requiring sensor code changes. Rapid Response

Content is behavioral heuristics, separate and distinct from CrowdStrike’s on-sensor AI

prevention and detection capabilities.

Rapid Response Content is delivered through Channel Files and interpreted by the sensor’s

Content Interpreter, using a regular-expression based engine. Each Rapid Response

Content channel file is associated with a specific Template Type built into a sensor release.

The Template Type provides the Content Interpreter with activity data and graph context to

be matched against the Rapid Response Content.

With the release of sensor version 7.11 in February 2024, CrowdStrike introduced a new

Template Type to enable visibility into and detection of novel attack techniques that abuse

named pipes and other Windows interprocess communication (“IPC”) mechanisms. As

outlined in the PIR, the new IPC Template Type was developed and tested according to our

https://www.crowdstrike.com/blog/falcon-content-update-preliminary-post-incident-report/
https://www.crowdstrike.com/blog/falcon-content-update-preliminary-post-incident-report/

Page 2 of 12 2024-08-06

standard Sensor Content development processes and was integrated into the sensor to

prepare for utilization in the field. IPC Template Instances are delivered as Rapid Response

Content to sensors via a corresponding Channel File numbered 291.

The new IPC Template Type defined 21 input parameter fields, but the integration code that

invoked the Content Interpreter with Channel File 291’s Template Instances supplied only 20

input values to match against. This parameter count mismatch evaded multiple layers of

build validation and testing, as it was not discovered during the sensor release testing

process, the Template Type (using a test Template Instance) stress testing or the first

several successful deployments of IPC Template Instances in the field. In part, this was due

to the use of wildcard matching criteria for the 21st input during testing and in the initial IPC

Template Instances.

On July 19, 2024, two additional IPC Template Instances were deployed. One of these

introduced a non-wildcard matching criterion for the 21st input parameter. These new

Template Instances resulted in a new version of Channel File 291 that would now require

the sensor to inspect the 21st input parameter. Until this channel file was delivered to

sensors, no IPC Template Instances in previous channel versions had made use of the 21st

input parameter field. The Content Validator evaluated the new Template Instances, but

based its assessment on the expectation that the IPC Template Type would be provided

with 21 inputs.

Sensors that received the new version of Channel File 291 carrying the problematic content

were exposed to a latent out-of-bounds read issue in the Content Interpreter. At the next IPC

notification from the operating system, the new IPC Template Instances were evaluated,

specifying a comparison against the 21st input value. The Content Interpreter expected only

20 values. Therefore, the attempt to access the 21st value produced an out-of-bounds

memory read beyond the end of the input data array and resulted in a system crash.

In summary, it was the confluence of these issues that resulted in a system crash: the

mismatch between the 21 inputs validated by the Content Validator versus the 20 provided

to the Content Interpreter, the latent out-of-bounds read issue in the Content Interpreter, and

the lack of a specific test for non-wildcard matching criteria in the 21st field. While this

scenario with Channel File 291 is now incapable of recurring, it also informs process

improvements and mitigation steps that CrowdStrike is deploying to ensure further enhanced

resilience.

Page 3 of 12 2024-08-06

FINDINGS AND MITIGATIONS

1. The number of fields in the IPC Template Type was not validated

at sensor compile time

Findings: At the time of the incident, the sensor code for the IPC Template Type described

20 different input sources for use by the Template Instance. This means that when the

sensor wanted to make a detection decision based on the IPC Template Type, the sensor

code would supply 20 different input sources to the Content Interpreter. However, the

definition of the IPC Template Type in the Template Type Definitions file stated that it

expected 21 input fields. This definition resulted in Template Instances in Channel File 291

that expected to operate on 21 inputs. This mismatch was not detected during development

of the IPC Template Type. The test cases and Rapid Response Content used to test the IPC

Template Type did not trigger a fault during feature development or during testing of the

sensor 7.11 release.

Mitigation: Validate the number of input fields in the Template Type at sensor compile

time

A patch for the Sensor Content Compiler that validates the number of inputs provided by a

Template Type was developed on July 19, 2024, and went into production on July 27, 2024,

as part of CrowdStrike’s internal build tooling. The Sensor Content Compiler patch also

verified that no other Template Types were providing an incorrect number of inputs, on any

platform.

2. A runtime array bounds check was missing for Content

Interpreter input fields on Channel File 291

Findings: The Rapid Response Content for Channel File 291 instructed the Content

Interpreter to read the 21st entry of the input pointer array. However, the IPC Template Type

only generates 20 inputs. As a result, once Rapid Response Content was delivered that

used a non-wildcard matching criterion for the 21st input, the Content Interpreter performed

an out-of-bounds read of the input array. This is not an arbitrary memory write

issue and has been independently reviewed.

Mitigation: Add runtime input array bounds checks to the Content Interpreter for

Rapid Response Content in Channel File 291

Bounds checking was added to the Content Interpreter function that retrieves input strings

on July 25, 2024. An additional check that the size of the input array matches the number of

inputs expected by the Rapid Response Content was added at the same time. These fixes

Page 4 of 12 2024-08-06

are being backported to all Windows sensor versions 7.11 and above through a sensor

software hotfix release. This release will be generally available by August 9, 2024.

The added bounds check prevents the Content Interpreter from performing an out-of-bounds

access of the input array and crashing the system. The additional check adds an extra layer

of runtime validation that the size of the input array matches the number of inputs expected

by the Rapid Response Content.

We have completed fuzz testing of the Channel 291 Template Type and are expanding it to

additional Rapid Response Content handlers in the sensor.

Mitigation: Correct the number of inputs provided by the IPC Template Type

The sensor code defining the IPC Template Type was updated to provide the correct

number of inputs (21). This fix is being backported to all Windows sensor versions 7.11 and

above through a sensor software hotfix release. This release will be generally available by

August 9, 2024.

3. Template Type testing should cover a wider variety of matching

criteria

Findings: Both manual and automated testing were performed during the development of

the IPC Template Type. This testing was focused on functional validation of the Template

Type including the correct flow of security-relevant data through it, and evaluation of that

data to generate appropriate detection alerts based on criteria created in development test

cases.

Automated testing leveraged internal and external tooling to create the required security-

relevant data needed to exercise the IPC Template Type under all supported Windows

versions within a broad subset of the expected operational use cases. For automated

testing, a static set of 12 test cases was selected to be representative of broader operational

expectations and to validate the creation of telemetry and detection alerts. Part of this testing

included defining a channel file for use within the test cases. The selection of data in the

channel file was done manually and included a regex wildcard matching criterion in the 21st

field for all Template Instances, meaning that execution of these tests during development

and release builds did not expose the latent out-of-bounds read in the Content Interpreter

when provided with 20 rather than 21 inputs.

Mitigation: Increase test coverage during Template Type development

To confirm that we are validating all fields in each Template Type, automated tests have

been created that test with non-wildcard matching criteria for each field. This step has been

done for all existing Template Types and is required for all future Template Types.

Page 5 of 12 2024-08-06

Additionally, all future Template Types include test cases with additional scenarios that

better reflect production usage.

4. The Content Validator contained a logic error

Findings: The Content Validator evaluated the new Template Instances. However, it based

its assessment on the expectation that the IPC Template Type would be provided with 21

inputs. This resulted in the problematic Template Instance being sent to the Content

Interpreter.

Mitigation: Create additional checks in the Content Validator

The Content Validator is being modified to add new checks to ensure that content in

Template Instances does not include matching criteria that match over more fields than are

being provided as input to the Content Interpreter. This fix will be released to production by

August 19, 2024.

Mitigation: Prevent the creation of problematic Channel 291 files

The Content Validator was modified to only allow wildcard matching criteria in the 21st field,

which prevents the out-of-bounds access in the sensors that only provide 20 inputs.

5. Template Instance validation should expand to include testing

within the Content Interpreter

Findings: Newly released Template Types are stress tested across many aspects, such as

resource utilization, system performance impact and detection volume. For many Template

Types, including the IPC Template Type, a specific Template Instance is used to stress test

the Template Type by matching against any possible value of the associated data fields to

identify adverse system interactions.

A stress test of the IPC Template Type with a test Template Instance was executed in our

test environment, which consists of a variety of operating systems and workloads. The IPC

Template Type passed the stress test and was validated for use, and a Template Instance

was released to production as part of a Rapid Response Content update.

However, the Content Validator-tested Template Instance did not observe that the

mismatched number of inputs would cause a system crash when provided to the Content

Interpreter by the IPC Template Type.

Page 6 of 12 2024-08-06

Mitigation: Update Content Configuration System test procedures

The Content Configuration System has been updated with new test procedures to ensure

that every new Template Instance is tested, regardless of the fact that the initial Template

Instance is tested with the Template Type at creation. This provides Template Instances with

additional testing prior to production deployment.

6. Template Instances should have staged deployment

Findings: Each Template Instance should be deployed in a staged rollout.

Mitigation: The Content Configuration System has been updated with additional

deployment layers and acceptance checks

Staged deployment mitigates impact if a new Template Instance causes failures such as

system crashes, false-positive detection volume spikes or performance issues. New

Template Instances that have passed canary testing are to be successively promoted to

wider deployment rings or rolled back if problems are detected. Each ring is designed to

identify and mitigate potential issues before wider deployment. Promoting a Template

Instance to the next successive ring is followed by additional bake-in time, where telemetry

is gathered to determine the overall impact of the Template Instance on the endpoint.

Mitigation: Provide customer control over the deployment of Rapid Response Content

updates

The Falcon platform has been updated to provide customers with increased control over the

delivery of Rapid Response Content. Customers can choose where and when Rapid

Response Content updates are deployed. We are continuing to enhance this capability to

provide more granular control over Rapid Response Content deployments together with

content update details via release notes, to which customers can subscribe.

INDEPENDENT THIRD-PARTY REVIEW

CrowdStrike has engaged two independent third-party software security vendors to conduct

further review of the Falcon sensor code for both security and quality assurance.

Additionally, we are conducting an independent review of the end-to-end quality process

from development through deployment. Both vendors have started reviews with an

immediate focus on the July 19 impacted code and process.

Page 7 of 12 2024-08-06

TECHNICAL DETAILS

Background and Terminology
CrowdStrike delivers security content configuration updates to our sensors in two ways:

Sensor Content that is shipped with our sensor directly, and Rapid Response Content that is

designed to respond to the changing threat landscape at operational speed.

The processing of regex-based Rapid Response Content on the sensor involves several

components:

● Content Interpreter: Part of the sensor C++ code, which can test input strings

against regexes.

● Template Types: Contain predefined fields for threat detection engineers to

leverage in Rapid Response Content. Template Types are expressed in code and

compiled into the sensor at build time.

● Template Type Definitions file: Defines the parameters of each Template Type.

Definitions in this file include information about which Channel File will deliver the

Rapid Response Content for each Template Type, how many inputs the Template

Type is meant to use and what kind of data is required for each input.

● Sensor Content: Determines how to combine security-relevant data with Rapid

Response Content in order to make certain detection decisions. Sensor Content

includes on-sensor AI and machine learning models as well as Template Types. It is

compiled as part of the sensor release.

● Template Instances: Matching criteria developed by detection engineers. Template

Instances consist of regex content intended for use with a specific Template Type.

Template Instances identify specific data for use in security operations. Template

Instances are defined using a UI driven by the Template Type Definitions file.

● Rapid Response Content: Consists of multiple Template Instances bundled

together. Rapid Response Content is delivered by channel file.

● Content Validator: Checks the validity of channel files against their definition in the

Template Type Definitions file.

● Content Configuration System: Used to create Template Instances, which are

validated and deployed to the sensor through a mechanism called Channel Files.

Kernel Driver Usage in a Security Product

As outlined by David Weston on the Microsoft Security blog, security products in the

Windows ecosystem, including the Falcon sensor, commonly leverage kernel drivers as core

components of a robust security offering.

Presence in the kernel offers rich visibility into system wide security-relevant activities, such

as process and thread creation, or files being written, deleted and modified on disk. The

https://www.microsoft.com/en-us/security/blog/2024/07/27/windows-security-best-practices-for-integrating-and-managing-security-tools/#why-do-security-solutions-leverage-kernel-drivers

Page 8 of 12 2024-08-06

interfaces exposed by the kernel allow CrowdStrike’s drivers to enforce critical controls for a

security product, such as inline prevention of malicious processes or blocking of malware

files being written to disk.

CrowdStrike’s kernel driver is loaded from an early phase of system boot to allow the sensor

to observe and defend against malware that launches prior to user mode processes starting.

Providing up-to-date security content (e.g., CrowdStrike’s Rapid Response Content) to these

kernel capabilities enables the sensor to defend systems against a rapidly evolving threat

landscape without making changes to kernel code. Rapid Response Content is configuration

data; it is not code or a kernel driver.

CrowdStrike certifies each new Windows sensor release through the Windows Hardware

Quality Labs (WHQL) program, which includes extensive testing through all required tests in

Microsoft’s Windows Hardware Lab Kit (HLK) and Windows Hardware Certification Kit

(HCK). The WHQL certification process marks the end of a comprehensive internal testing

gauntlet involving functional tests, longevity tests, stress tests with fault injection, fuzzing

and performance tests. During the testing required for the WHQL program, the sensors use

the latest versions of channel files at the time of certification.

As new versions of Windows introduce support for performing more of these security

functions in user space, CrowdStrike updates its agent to utilize this support. Significant

work remains for the Windows ecosystem to support a robust security product that doesn’t

rely on a kernel driver for at least some of its functionality. We are committed to working

directly with Microsoft on an ongoing basis as Windows continues to add more support for

security product needs in userspace.

Crash Dump Analysis
To illustrate how the new Template Instances in Channel File 291 led to a system crash, we

briefly examine a kernel crash dump from a system impacted by the problematic content.

This expands on the crash analysis shared by David Weston on the Microsoft Security blog.

Opening the crash dump in the Windows kernel debugger and using the standard !analyze -

v command for a quick summary, we see that a memory fault (also known as an “access

violation”) bugcheck has occurred. (Note: Unrelated debugging details are omitted for

brevity, and a representative crash dump is analyzed here. Variations of the dump exist,

depending on the details of the machine state.)

1: kd> !analyze -v

* *
* Bugcheck Analysis *
* *

https://www.microsoft.com/en-us/security/blog/2024/07/27/windows-security-best-practices-for-integrating-and-managing-security-tools/
https://www.microsoft.com/en-us/security/blog/2024/07/27/windows-security-best-practices-for-integrating-and-managing-security-tools/

Page 9 of 12 2024-08-06

PAGE_FAULT_IN_NONPAGED_AREA (50)
Invalid system memory was referenced. This cannot be protected by try-except.
Typically the address is just plain bad or it is pointing at freed memory.
Arguments:
Arg1: ffffd6030000006a, memory referenced.
Arg2: 0000000000000000, X64: bit 0 set if the fault was due to a not-present PTE.
 bit 1 is set if the fault was due to a write, clear if a read.
 bit 3 is set if the processor decided the fault was due to a corrupted PTE.
 bit 4 is set if the fault was due to attempted execute of a no-execute PTE.
 - ARM64: bit 1 is set if the fault was due to a write, clear if a read.
 bit 3 is set if the fault was due to attempted execute of a no-execute PTE.
Arg3: fffff8020ebc14ed, If non-zero, the instruction address which referenced the bad memory
 address.
Arg4: 0000000000000002, (reserved)

READ_ADDRESS: ffffd6030000006a Paged pool

MM_INTERNAL_CODE: 2

IMAGE_NAME: csagent.sys

MODULE_NAME: csagent

FAULTING_MODULE: fffff8020eae0000 csagent

PROCESS_NAME: System

TRAP_FRAME: ffffae035f57eca0 -- (.trap 0xffffae035f57eca0)
NOTE: The trap frame does not contain all registers.
Some register values may be zeroed or incorrect.
rax=ffffae035f57f280 rbx=0000000000000000 rcx=0000000000000003
rdx=ffffae035f57f250 rsi=0000000000000000 rdi=0000000000000000
rip=fffff8020ebc14ed rsp=ffffae035f57ee30 rbp=ffffae035f57ef30
 r8=ffffd6030000006a r9=0000000000000000 r10=0000000000000000
r11=0000000000000014 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0 nv up ei ng nz na po nc
csagent+0xe14ed:
fffff802`0ebc14ed 458b08 mov r9d,dword ptr [r8] ds:ffffd603`0000006a=????????
Resetting default scope

STACK_TEXT:
ffffae03`5f57ea78 fffff802`05add2da : 00000000`00000050 ffffd603`0000006a 00000000`00000000
ffffae03`5f57eca0 : nt!KeBugCheckEx
ffffae03`5f57ea80 fffff802`05947efc : ffffd603`000ed454 00000000`00000000 00000000`00000000
ffffd603`0000006a : nt!MiSystemFault+0x1bc19a
ffffae03`5f57eb80 fffff802`05a2707e : 00000000`00000000 ffffd603`e33a019e ffffae03`5f57f0a0
ffffae03`5f57f0a0 : nt!MmAccessFault+0x29c
ffffae03`5f57eca0 fffff802`0ebc14ed : 00000000`00000000 ffffae03`5f57ef30 ffffd603`f208200c
ffffd603`f207a05c : nt!KiPageFault+0x37e
ffffae03`5f57ee30 fffff802`0eb9709e : 00000000`00000000 00000000`e01f008d ffffae03`5f57f202
fffff802`0ed6aaf8 : csagent+0xe14ed
ffffae03`5f57efd0 fffff802`0eb98335 : 00000000`00000000 00000000`00000010 00000000`00000002
ffffd603`f207a01c : csagent+0xb709e
ffffae03`5f57f100 fffff802`0edd20c7 : 00000000`00000000 00000000`00000000 ffffae03`5f57f402
00000000`00000000 : csagent+0xb8335
ffffae03`5f57f230 fffff802`0edcec44 : ffffae03`5f57f6e8 fffff802`060abae0 ffffd603`ed408580
00000000`00000003 : csagent+0x2f20c7

Page 10 of 12 2024-08-06

ffffae03`5f57f4b0 fffff802`0eb47a31 : 00000000`0000303b ffffae03`5f57f770 ffffd603`edc908a0
ffffc189`7fcd4098 : csagent+0x2eec44
ffffae03`5f57f670 fffff802`0eb46aee : ffffd603`edc908a0 fffff802`0ebf1e7e 00000000`00006820
fffff802`0ed3f8f0 : csagent+0x67a31
ffffae03`5f57f7e0 fffff802`0eb4685b : ffffae03`5f57fa58 ffffd603`edc97830 ffffd603`edc908a0
ffffc189`7f90f4b8 : csagent+0x66aee
ffffae03`5f57f850 fffff802`0ebe99ea : 00000000`f047f4ef ffff49ac`ca0f55d4 00000000`00000000
ffffd603`ec18fc30 : csagent+0x6685b
ffffae03`5f57f8d0 fffff802`0eb3efbb : 00000000`00000000 ffffae03`5f57fad9 ffffc189`7f90f010
ffffc189`7f7ea470 : csagent+0x1099ea
ffffae03`5f57fa00 fffff802`0eb3edd7 : ffffc189`7ab79000 00000000`00000000 ffffc189`7f90f010
ffffc189`00000001 : csagent+0x5efbb
ffffae03`5f57fb40 fffff802`0ebde681 : 00000000`00000000 00000000`00000000 ffffc189`7f5a97d0
ffffc189`7f7ea470 : csagent+0x5edd7
ffffae03`5f57fb70 fffff802`05879ca7 : ffffc189`7faa8040 00000000`00000080 fffff802`0ebde510
00000000`00000000 : csagent+0xfe681
ffffae03`5f57fbb0 fffff802`05a1af64 : ffffe601`bcf51180 ffffc189`7faa8040 fffff802`05879c50
00000000`00000000 : nt!PspSystemThreadStartup+0x57
ffffae03`5f57fc00 00000000`00000000 : ffffae03`5f580000 ffffae03`5f579000 00000000`00000000
00000000`00000000 : nt!KiStartSystemThread+0x34

This automated triage command identifies csagent.sys as the driver performing the out-

of-bounds memory access. csagent.sys is CrowdStrike’s file system filter driver, a type of

kernel driver that registers with components of the Windows operating system to receive

notifications of security-relevant system activities in real time.

Among the notifications that CrowdStrike’s driver registers for is a notification for the creation

of named pipes. When the driver receives a named pipe notification, this data is combined

with other contextual information about the system. This combined data is presented for

evaluation against the Template Instances conveyed in Channel File 291.

To look more closely at this process, we view the register state at the point of the out-of-

bounds memory read by restoring the trap frame and disassembling the preceding

instructions to orient ourselves. (Note: This disassembly listing has been modified from the

standard debugger output in order to annotate the code with illustrative symbol names.)

1: kd> .trap 0xffffae035f57eca0
NOTE: The trap frame does not contain all registers.
Some register values may be zeroed or incorrect.
rax=ffffae035f57f280 rbx=0000000000000000 rcx=0000000000000003
rdx=ffffae035f57f250 rsi=0000000000000000 rdi=0000000000000000
rip=fffff8020ebc14ed rsp=ffffae035f57ee30 rbp=ffffae035f57ef30
 r8=ffffd6030000006a r9=0000000000000000 r10=0000000000000000
r11=0000000000000014 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0 nv up ei ng nz na po nc
csagent+0xe14ed:

Page 11 of 12 2024-08-06

fffff802`0ebc14ed 458b08 mov r9d,dword ptr [r8]
ds:ffffd603`0000006a=????????

1: kd> u @rip-16 L0n10
csagent!TemplateGetString+0xe:
fffff802`0ebc14d7 4e8b04d8 mov r8,qword ptr [rax+r11*8]
fffff802`0ebc14db 750b jne csagent!TemplateGetString+0x1f
(fffff802`0ebc14e8)
fffff802`0ebc14dd 4d85c0 test r8,r8
fffff802`0ebc14e0 7412 je csagent!TemplateGetString+0x2b
(fffff802`0ebc14f4)
fffff802`0ebc14e2 450fb708 movzx r9d,word ptr [r8]
fffff802`0ebc14e6 eb08 jmp csagent!TemplateGetString+0x27
(fffff802`0ebc14f0)
fffff802`0ebc14e8 4d85c0 test r8,r8
fffff802`0ebc14eb 7407 je csagent!TemplateGetString+0x2b
(fffff802`0ebc14f4)
fffff802`0ebc14ed 458b08 mov r9d,dword ptr [r8]
fffff802`0ebc14f0 4d8b5008 mov r10,qword ptr [r8+8]

Prior to this code snippet, the context data from the named pipe notification has been

prepared for the IPC Template Type as an array of 20 input pointers, each pointing to a

string structure that holds a buffer address and a size value. This snippet intends to select

one of the inputs to return its buffer address and size, according to an index specified by

Channel File 291.

As we enter this code, the address of the 20-input pointer array is held in register rax, and

register r11 indicates that the input to be retrieved is at index 0x14, i.e., the 21st element.

Examining the input array, we indeed find an array of 20 pointers to input string structures,

followed by a 21st value which does not point to valid memory:

1: kd> dp @rax l0n21
ffffae03`5f57f280 ffffae03`5f57f320 ffffae03`5f57f330
ffffae03`5f57f290 ffffae03`5f57f340 ffffae03`5f57f350
ffffae03`5f57f2a0 ffffae03`5f57f360 ffffae03`5f57f370
ffffae03`5f57f2b0 ffffae03`5f57f380 ffffae03`5f57f390
ffffae03`5f57f2c0 ffffae03`5f57f3a0 ffffae03`5f57f3b0
ffffae03`5f57f2d0 ffffae03`5f57f3c0 ffffae03`5f57f3d0
ffffae03`5f57f2e0 ffffae03`5f57f3e0 ffffae03`5f57f3f0
ffffae03`5f57f2f0 ffffae03`5f57f400 ffffae03`5f57f410
ffffae03`5f57f300 ffffae03`5f57f420 ffffae03`5f57f430
ffffae03`5f57f310 ffffae03`5f57f440 ffffae03`5f57f450
ffffae03`5f57f320 ffffd603`0000006a

Page 12 of 12 2024-08-06

1: kd> !pte ffffd603`0000006a
 VA ffffd6030000006a
PXE at FFFFFE7F3F9FCD60 PPE at FFFFFE7F3F9AC060 PDE at FFFFFE7F3580C000
PTE at FFFFFE6B01800000
contains 0A00000107A00863 contains 0000000000000000
pfn 107a00 ---DA--KWEV contains 0000000000000000
not valid

After reading this invalid pointer into register r8, the control flow in the snippet above takes

the first jump to address fffff802`0ebc14e8, performs a NULL pointer check, and then

attempts a read through the invalid pointer, resulting in an out-of-bounds read and a

subsequent bugcheck.

ADDITIONAL RESOURCES

Remediation and Guidance Hub: Falcon Content Update for Windows Hosts

Blog: Technical Details: Falcon Content Update for Windows Hosts

Remediation Hub — Glossary of Terms

https://www.crowdstrike.com/falcon-content-update-remediation-and-guidance-hub/
https://www.crowdstrike.com/blog/falcon-update-for-windows-hosts-technical-details/
https://www.crowdstrike.com/wp-content/uploads/2024/07/GlossaryOFTerms.pdf

	Introduction
	What Happened
	Findings and Mitigations
	1. The number of fields in the IPC Template Type was not validated at sensor compile time
	2. A runtime array bounds check was missing for Content Interpreter input fields on Channel File 291
	Mitigation: Add runtime input array bounds checks to the Content Interpreter for Rapid Response Content in Channel File 291
	3. Template Type testing should cover a wider variety of matching criteria
	4. The Content Validator contained a logic error
	5. Template Instance validation should expand to include testing within the Content Interpreter
	6. Template Instances should have staged deployment

	Independent Third-Party Review
	Technical Details
	Background and Terminology
	Crash Dump Analysis

	Additional Resources

