
 TLP: AMBER

2

LockBit 3 Decryptors analysis

In this analysis we take in consideration the decryptor tools of LockBit 3.0 ransomware

(Windows version) and LockBit (ESXi variant).

Generally, a decryptor tool permits to decrypt the files encrypted by a ransomware threat; this

type of tool could be delivered directly by the ransomware gang, who developed the threat

(after the payment of the requested ransom) or is developed ad-hoc from the global

cybersecurity community to be distributed to help the victims to decrypt their files without the

need to actually pay the ransom. Unfortunately, this is not always possible, however the

cybersecurity community constantly work to develop new decryptors for the ransomware

threats and the related variants. For this reason, it is not recommended to remove the

encrypted files, because it is not excluded that, in a future, they can effectively be decrypted.

Usually, the decryptors developed by the cybersecurity community take in consideration the

ransomware threats (and the possible variants) which use an offline encryption key. In this case

the analyzed decryptors have been downloaded from the Web.

The executable LBB_Decryptor.exe doesn’t have a high level of entropy, which would indicate

a “packed” state, in the imports we can see that the mpr.dll library is used to execute network

checking functions, SHLWAPI.dll to manage filesystem items, search the paths of files to

decrypt, check the existence of the files, if some directories are empty, etc.

AdvAPI32.dll library is used to call functions to manage the MD5 contained in the README

file and manipulate (restore) registry keys related to the infection (Create, Delete, SetValue

operations). The library SHELL32.dll, instead, is imported to execute the function

SHGetSpecialFolderPathW to access to the settings of the file NTUSER.dat; there are also

evidences associated to the creation and management of threads to execute decryption

functions in a more efficient way.

3

4

5

Here are the details of the import of mpr.dll for the functions WNetAddConnection2W and

WNetGetUniversalNameW:

6

7

8

Contextually to the access to the file NTUSER.dat with the function sub_4012E0 is possible to

see how execution parameters have been set, included “-log” option:

9

By analyzing the extractable strings from the executable is possible to highlight the peculiarity

to stop a timer (through the KillTimer function), the enumeration of the encrypted files through

cycles and the use of the functions FindFirstFileExW, FindNextFileW, GetLogicalDrivesW and

GetDriveTypeW which are called to manage the drives of the machine on which the decryptor

is executed. Furthermore, some modifications of the files attribute are performed through the

execution of the function SetFileAttributesW and, for efficiency, to point to the files that are

managed, it is executed the function SetFilePointerEx.

10

11

Here the extraction of the string related to the function GetLogicalDriveStringsW, which fills a

strings buffer with the detected drives on the host:

12

13

14

Following, the evidence of use of the library AdvAPI32.dll for the reasons mentioned before.

It is fundamental to highlight the presence of the three main functions of the MD5 digest

phase for the README file:

MD5Init -> Initialize the MD5 digesting context

MD5Update -> Partially generate the digest by taking in consideration some bytes pointed

from the input and it updates the hashing digest context

MD5Final -> Concludes the MD5 digesting generation

15

16

Desktop wallpaper and the icons are restored by manipulating the registry keys associated to

them:

17

18

A loop on 4 elements is performed for the RGB settings and the function SetSysColors is called.

This function can be executed to do the colour change of a graphic element:

19

The analyzed decryptor performs, after creating the thread for efficiency scope, the subroutine

of decryption checking if the RSA key is invalid or corrupted. The debugging string “file rsa

key not valid” is indeed present in this case.

20

When the MD5Init function is executed, an empty buffer is used as parameter to be filled with

the hash digest when it is actually executed.

Subsequently, the general register ECX is used for the execution content and also the EAX

register to perform push instructions for the output data of the digest operation:

21

Then, the MD5Final function is used to fill the general ID and the output of the MD5 hash

digest:

So, it is observable that during the decryption phase, the decryptor tool reads the

%s.README.txt file: our tests in lab show that also in absence of the README.txt file, the

decryptor manages anyway to decrypt encrypted files. This indicates how in the decryptor tool

there are all the information needed to decrypt encrypted files. Each decryptor in fact is

generated contextually to its ransomware, starting from a couple of public and private key: the

ransomware uses the public key to encrypt, meanwhile the decryptor tool will use the related

private key for the decryption.

Continuing the decryptor analysis, it is noteable that the execution of the decryption tool is

traced also with a log file: trial_dec.log:

22

23

It seems that during the execution the verdicts are written on files for the various operations,

with “True” or “False” depending on the specific cases.

Following are the details of the execution flow which is related to the function sub_402688 for

the phase of README.TXT ID hashing.

24

Here are the instances of the creation of the contexts to proceed with the MD5 hashing digest

in the context of disassemblying:

Subsequently it seems that some compare, checking and validation execution are performed:

25

Following, instead, the initial juncture of the execution in which the phase of files search and

decryption of them begins (please note that in the files enumeration loop the wildcard * is

used):

26

27

Based on the verdict of the searching of the files encrypted by LockBit Black is executed the

push of the offset “aFoundUFileS_0” or “aFoundUFileS”:

Here are the details of the logging in the trial_dec.log file:

28

In case the executable doesn’t detect network connectivity the debugging tag ”[ERROR]” is

written:

29

Following, the details of the most suspicious indicators of the executable in question:

Here’s the Portable Executable sections, where it is highlight how the entropy of the .text

section is 6.143: this coefficient is quite low, so the analyzed decryptor doesn’t present

particular occultation techniques of the executable .text section.

Here are further details:

30

Here further details related to the imports performed and the number of functions associated

to them:

31

32

Here’s how the decryptor is in a debugging instance:

33

Curiously, the executable has two .data sections. In the second section there are details related

to strings used as output during the “compare” instructions as verdicts of the decryption

threads:

34

After a series of checks (“compare”) and conceputal “if”, we arrive at the result “file rsa key not

found”:

Here’s the details of an extract of the hexadecimal code of the analyzed executable:

35

36

Following, the details related to the phase of the execution of the decryption thread where is

possible to notice references to the management of registry keys for their disinfection:

37

38

After the execution of the subroutines of the management of the files attributes, it is executed

a series of compare instructions.

 In the following case it doesn’t succeed the phase of the decryption of files (obtained through

enumeration), in fact the verdict is “false”. In case the results of the operations are true (so

succeded) a positive verdict of the execution is written in the log file trial_dec.log (then called

from the filepath trailing removing function PathRemoveFileSpecW):

39

Following some details of the dumping of the EBP register, which is used to perform the

compare instructions and execute the operation of switching through the various output

options:

40

Here’s a detail of debugging with the EIP pointed before the verdict “RSA key not valid”, so

it is simulated the read of the content of the registers (so the data related to the execution)

during the decryption and logging phase:

41

Following the evidence of breakpoint hitting where you can see that during the phase of

debugging it was intercepted the breakpoint previously set:

42

Following, the details of an attempt to modify a JE assembly instruction in the context of the

creation of the bulk decryption thread to modify the execution flow after the creation of it:

43

44

45

Here are, instead, details related to a session of breakpoint analysis when the buffer is filled

with the ID during the MD5 digest:

By performing a dump of the EBX register it is possible to see some embedded numeric

patterns which, with probability, are related to the digesting operation:

46

It is possible to highlight the presence of a security identifier. The decryptor tool performs

infact also OS settings and information gathering. Those evidences show, however, the trend

to customize those decryptor tools for the victims.

47

48

In the context of the analysis of the file %s.README.txt (where %s stands for string variable

which is related to a pattern contained the filename) by the decryptor, is called the function

RtlFreeHeap to free a memory block allocated from an heap.

49

It is important to underline that, in the context of files loop gathering to obtain the details of

the files to decrypt on the disks of the compromised machine, it is created an execution thread

50

which points to the function sub_403FA8, which calls the function sub_402EA4. After the

execution of the functions of the thread is present the instruction jz short loc_4041CE and the

“switch” is managed through the offsets aDecryptedUFile and aDecryptedUFile_0 based on

the result get from the thread execution:

51

The function sub_402EA4 is fundamental because a check operation is performed with a sort

of “execution key”, infact it is present a chain of cmp and jnz instructions that point to others

labels (for example loc_402F01).

52

53

After the execution of the check instructions and validation we arrive to the point of the

execution which calls the function sub_403CFC, which effectively starts the operations of files

gathering (note the function FindFirstFileExW and the wildcard “*”), and then continue with

the obtaining of the attributes of the encrypted files:

54

55

56

57

58

At the moment in which the content of the file README is read is possible to highlight how

the function sub_402688 is called, which consequently calls the function of hashing digest

(specifically the MD5 context is created) and, then, the function sub_4011DC is executed:

59

60

In this function there are insertions of plenty of hardcoded values which are added to the eax

register. Then various AND and OR operations are executed as follows, after a compare and

jnz construct to the label loc_401256. In particular the values are referred to a dictionary, in

hexadecimal:

61

62

63

Here are the details of the function calling in the context of files gathering for the setting of

the file pointer and the attributes of the files taken into consideration.

64

65

66

67

When the encrypted files in input are read, the function sub_403484 is executed, then a buffer

is called and inserted in the eax register. The function sub_403484 contains XOR operations

and calls for 3 times (intermittently to bswap operations) the function sub_401334. The bswap

instruction permits to perform the swap of bytes taken in input considered during the

execution.

68

69

Follows, instead, the execution of the XOR instructions for the value 20039FEFh:

70

71

72

Following is the identification of the same execution context in debugging environment:

73

By decompiling in native C++ is possible to have the evidence of bit shifting performed on the

attributes of the files taken in input:

74

75

Here’s an example of assembly modification related to the execution context in which is

performed the call to XOR and bitswapping function.

76

Here are the details of an attempt to modify a jump instruction in the context of files gathering

to redirect the execution to the modification of attributes of the encrypted files:

77

78

To generate the couple of public and private keys (where the public key is used by the

ransomware and the private key by the decryptor) is called the executable keygen.exe, which

creates the variables of the couple of keys respectively as follows:

Public key -> ebx+14h

Private key -> ebx+0Ch

Subsequently it is called the function sub_401000 to call the execution of the cryptography

79

library and the randomic generation with MIRACL module. Furthermore, there are rdrand

instructions for the generation of randomic numbers. The functions involved in the MIRACL

execution are also sub_4022C0 and sub_401A90.

80

81

The function sub_401D10 is called recurrently and by having as attribute the variable

associated to the public key. This function performs AND operations on the variable Block:

82

About the ELF file decrypt_ESXI_Linux is possible to verify that the given score by ELF Parser

is 34, so a quite “low” value which is an index that the file in question is heuristically known as

little suspicious. There are evidences related to antidebugging (through ptrace) and some

references that seem to be part of the phase of identification of the victim ID (also in this case

there are details related to hashing functions).

83

Following some details extractable from the Read Only of the file, in which is possible to

identify references to BLAKE2B_BLOCKBYTES, crypt_generichash_blake2b_final, similarly to

the Portable Executable version for Windows also in this case it is performed a call to hashing

functionalities.

84

Following the classification of various patterns identified in the ELF file, for example references

to system and sysinfo(), randomic generation functions, manipulation of the processes (for

example fork()) and antidebugging:

85

Here are the details of the magic number of the ELF analyzed, so 7f 45 4c 46 which identifies

the typology of the ELF file:

86

87

Physiological, instead, is the presence of the call to a fgets function, so the ability to read the

streams. In this specific case the possibility to read data and bytes to submit to the decryption

phase:

88

Also in this case is possible to have the evidence of the creation of concurrential executions

through threads (for example the functionality pthread_cond_wait can be used to put a

block on a conditional variable):

Here are some references to randomic generations, for example

randombytes_sysrandom_implementation

89

90

The call to a chdir function could permit to refer to different folders containing the files to

manage:

91

92

Following are the details of the hexadecimal of the ELF file in question, where is possible to

identify the references to cryptography and Blake2B hash generation.

93

94

95

CONCLUSIONS:

The decryption tools analyzed perform a dynamic recognition of the cryptography context

used on the compromised machine, in which the files were encrypted. It is present also an

environment information gathering by the tool, in particular also of the user’s settings

NTUSER.dat. Some “cleaning” evidences related to some artifacts caused by the LockBit 3.0

infections, for example the restore of the Wallpaper and the icons, but also the remanipulation

of some registry keys and some security identifiers. It is possible also to note that similarly to

what happens with the encryption phase, one of the points that majorly characterizes the tool

is the efficiency: specific threads are created for the execution of the decryption subroutine

and to “point” to files obtained with an enumeration loop that will have to decrypt, by using

the more efficient function SetFilePointerEx, instead of SetFilePointer.

Two fundamental evidences are securely related to the executions of bitswapping the files read

in input by calling recurrently the function sub_401334, which includes also the XOR operations

execution. The second evidence is instead related to the comparison between the value of eax

register containing the MD5 hashing digest with hardcoded values in the decryptor with also

the adding of AND and OR operations.

From the analysis of keygen.exe was possible to understand how, at the moment of the

contextual creation of the ransomware and the decryptor, two keys are created: priv.key and

pub.key.

The public key is used in the ransomware to encrypt the files of the victim. The private key,

encoded in the decryptor, is used to decrypt the encrypted files only with the ransomware

“linked” to the decryptor.

The decryptors are not “universal” but they are strictly related to the couple of public and

private keys generated by keygen.exe

96

Technical Contributors:

Fabio Pensa
SoC Team Swascan

Contact Info

Milano
+39 0278620700
www.swascan.com
info@swascan.com
Via Fabio Filzi, 2b, 20063, Cernusco sul Naviglio, MI

	LockBit 3 Decryptors analysis
	CONCLUSIONS:
	Technical Contributors:
	Contact Info

