~Dissectin
Malwa.re

Quick revs: Pandora
Ransomware - The Box has been
open for a while...

e Marius 'fOwL' Genheimer

e 16 March 2022

& 5565086347164 5571 cB6 dbTSb1535eae6b070f edefedb6b01£79a33b7h - PID: 2780 - Module: 5b56¢5486347 16462571 cBEdbfSb1535eaebba79fedebedbbb01 e79¢a33bTb - Thread: Main Thread 2784 - Bddbg

™ Threads

B scylle 62098 '®

File Imports Trace Misc Help

Attach to an active process
2780 - 5bS6C5d86347e 164c6e 57 1c86dbfD15 b 1793337 - C:\user v [PickDL]

Hey, it's me - Pandora - [

7 kernel32.dl (111) FThurk: 00047040
v mpr.dl (3) FThunk: 00047300
« RstriMge.dl (<) FThunk: 000473E0
¢ shel32.dl (2) FThunk: 00047408
2 (1) FThunk: 00047420

Show Invaid | [Show Suspect

IAT Info

rog welcome to my new malwa e OEP 00000001400355A5 XATAumsexch‘
- UNEaging =

Log

IAT Search Adv: Possble IAT first 0000000140047000 last 0000000 140047420 entry.
IAT Search Adv: IAT VA 0000000 140047000 RVA 0000000000047000 Size 0x0428 (1064)
IAT Search Nor: IAT VA 0000000140046 1E8 RVA 0000000000046 1E8 Size 0x 1258 (4696)

Imports: 128 ® Invalid: 1 Imagebase: 0000000140000000 5b56c5d86347¢164c6e571

Hey there, I'm finally getting around to introducing the new post category
“Quick revs”, which will feature short write-ups of various malware analysis
and reverse engineering topics. This will allow me to post more frequently,
since | don’t always have to time to write deep-dive reports in my limited free
time.

Today we are going to be looking at “Pandora Ransomware”, a novel
Ransomware strain that has been monitored for a couple of days, e.g.
by MalwareHunterTeam, but at first no sample was available.

At the time of writing Pandora is claiming on their Leak site to have
compromised four companies, one of which is the japanese automotive OEM
Denso, which has been covered extensively in the media. I'm bringing up
Denso here, because they were compromised by Rook Ransomware a few
months earlier, which beggs the question if the attackers somehow were able
to maintain access and just rebranded from Rook to Pandora. Of course this is
just speculation on my part and | don’t consider signifficant similarities in the
ransomware samples of both strains as sufficient proof either, but in my
opinion one could shed light on this relation by investigating their TTPs and
other details of the intrusions.

= Pandora Data Leak X ar

& -> C © vbfgeh5nugm6r2u2qvghsdxm3fotfSwbxb5Iitv6vw7 7vus5frdpuaiid.onion ke O . =

@ Pandora Data Leak

On the 14th of March 2022 the Pandora sample below was obtained by vx-
underground:

Pandora Ransomware (packed)

Original file names: "1lvfrkljrt.dll", "M3D02.exe"
File size: 223232 bytes

Architecture: x64

MD5: 0c4a84b66832a08dccc42b478d9d5elb

SHA-1: 160320b920a5ef22ac17b48146152ffbef60461f

SHA-256:
5b56¢c5d86347e164c6e571c86dbf5b1535eae6b979fedebedb6b@1e79ea33b7b

Download: vx-underground | Malware Bazaar | VirusTotal

| already tweeted about this sample, but since | got a few questions regarding
the unpacking process and similarities to other ransomware strains
(specifically Rook and NightSky) I thought | should write it down in a blog post.

Unpacking

After the initial assessment of the sample with Detect it Easy a signature for
UPX Version 3 was found. Packer detections in Detect it Easy should always
be taken with a grain of salt, but it gives us a first hint as to what to look for in
the next steps.

Detect It Easy v3.00

Lo][5

File name

C:/Usersfjack/Desktop/5b56c5d86347e 164c6e 57 1c86dbf5b 1535eae6b979fedebed6ebl 18 79ea33b7b

File type Entry point Base address Hash

PE64 000000014007bc40 > Disasm 0000000140000000 Memory map Strings

PE Export Import Resources NET TLS Overlay Entropy
Sections TimeDateStamp SizeOfImage Hex
0003 2022-03-10 01:39:27 0007d000 g Version

Scan Endianness Mode Architecture Type
Detect It Easy(DiE) LE 64 AMD&4 Console

packer UPX(3.00)[-]
linker Microsoft Linker(14.0, Visual Studio 2015 14.0*)[DLL64, console]

Signatures Deep scan

100% > 89 msec

Looking at the Entropy graph we can see that we have one section (cccc)
with a very high value, which indicates it contains packed code and
a . rsrc section with a significantly lower value.

Entropy [E@

Type Total Offset

O
PE64 7.89019 00000000 00036800

Entropy Bytes

Regions

Offset Size Entropy Status
PE Header 0000000000000000 0000000000001000 107643 packed

Section(1)['ccec'] 0000000000000400 0000000000036000 189850 packed
Section(2)['.rsrc'] 0000000000036400 0000000000000400 441359 not packed

100,000 150,000 200,000 250,000

Save

Close

Switching over to pestudio Pro since its section layout is a lot cleaner than the
one in Detect it easy we can see that there is another section

called pppp which is virtualized and therefore has a raw-size of 0 bytes. This
section layout closely resembles the one used by UPX. UPXO0 (pppp in this
case) is the empty section where the compressed contents of UPX1 (cccc)
will be decompressed to by the unpacking program stub. At this point | am
fairly confident to say that is packer is based on UPX, but looking at the
section names they likely messed around with their UPX version.

property

name

md5

entropy

file-ratio (99.54%
raw-address
raw-size (222208 bytes)
virtual-address
virtual-size (507904 bytes)
entry-point
characteristics
writable
executable
shareable
discardable
initialized-data
uninitialized-data
unreadable
self-modifying
virtualized

file

value

PPPP

0x00000400
0x00000000 (0 bytes)
0x0000000040001000

0x00045000 (282624 bytes)

0xE0000080
x

X

value value

ccec JIsrc

29FE31 CEC867A1 AS7006F5C... 492EA09DI08FE2C21EB468D...
7.898 4412

99.08 % 0.46 %

000000400 000036400

0x00036000 (221184 bytes) 0x00000400 (1024 bytes)
0x0000000040046000 0x000000004007C000
0x00036000 (221184 bytes) 0x00001000 (4096 bytes)
0x0007BC40

0xE0000040 0xC0000040

x x

X

x

A very simple way to test if we are dealing with a modified version of UPX is to
just try to decompress the sample with the vanilla UPX utility. As you can see
below it does not decompress! UPX is even telling us that the file was likely
messed with. | was able to identify the following modifications to the UPX

packer:

« altered section names (as we noticed before)

« old version of UPX / altered version number in the leading header

« missing/overwritten 12-byte trailing header

Iigh, the simple approach does not work and retdec also falls through for

now, we’ll have to unpack it manually. First of all I'll switch to the Memory

Map view and Follow in Dump on the pppp section (UPXO0)

000000007EFEOO00O | 0000000000005000

000000007EFE5000 | 00000000000FB0O00 |[Reserved (000000007EFEQ000)
000000007F0OEQO0O0O | 0O00000000F00000 ed

000000007FFEOQOO0 | 0000000000001000 | K
000000007FFE1000 | 000000000000F000
0000000140000000 | 0000000000001000

SHARED_DATA

0000000140001000 0000000000045000

0000000140046000 | 0000000000036000

000000014007C000 | 0000000000001000
000007FF2D2E0Q000 | 0000000000001000 | S
000007FF2D2E1000 | 0000000000018000
000007FF2D2F9000 | 0000000000003000
000007FF2D2FC0O00 | 0000000000001000

served (000000007FFE0000)
5b56c5d86347e164c6e571c86dbf5b1s

: Follow in Disassembler

ces

able code
k 1ized data
ion information

tor it.

to moni

Up next I'm placing a Hardware Breakpoint on Access on the pppp section, so
we can see when the data is decompressed into it. Hit this breakpoint once or
twice to check that it is working and we’ll continue onto the next step.

/ Modify Value Space

,,,,,,

EB 20
48:C74424 30 206CFBFE mov qw FFFFFFFFFFFB6C20

Breakpoint , Hardware, Access 4 Byte
Find Pattern... Hardware, Write » Word
Find References Hardware, Execute Dword k
Sync with expression ", Memory, Access Qword

M2 Allocate Memory "4 Memory, Read I
Go to ", Memory, Write ‘
Hex "4 Memory, Executs

Text éé |

Integer
000000007

. text: 000 #ASFB1

W pump ' M Dump 4 MM Dump 5 @ watch1 7 Struct

ASCII
U UU UU|UU UU UU UU|00 00 00 OO|00 00 00 OO0 | .evenennnnnnnns
00 00|00 00 00 00|00 00 OO0 OD|00 00 00 00| ..vvvvnnnnnnnnnn
00 00|00 00 00 00|00 OO0 OO0 ODO|0O0 00 00 OO | ..vvvvnnnnnnnnnn

Scroll down until you see the end of the stub with the two jumps followed by
junk instructions for padding. The last jump instruction is the so-called tail
Jjump, which will transfer to the Original Entrypoint (OEP). I'll place a
breakpoint on the tail jump to make sure Pandora doesn’t run away and
potentially encrypt the VM :D Once we hit this breakpoint we can check in the
dump of pppp that the section should be filled now, so let’s jump in!

, eax
byte ptr
byrelptr
bytg pth

0000

,-': W
0000 yte ptriods: x] \ =
< b.
Y '
’ ’ O \}A

After following the tail jump we can scroll down a bit again to find the OEI5
(push rbp) and place a breakpoint there. Get ready to dump it like it's hot O

% 5b56c5d86347€164 6571 B6dbf5b1535eacbb97ofedebed66b01e79€a33b7h - PID: 2780 - Module: 5b56c5d86347¢164c6e571 86 dbf5b1535eaebb70fedebed66b01e79a33bTh - Thread: Main Thread 2784 - ¥64dbg
File View Debug Tradng Plugins Favourites Options Help

® o0& 1% Q= § |+ = 7 =

nts 7" Memory Map W c

9120000

M 5b565d86347€164c6€571 cB6dbfSb1535eaebb979fedebed66b01e79ea33b7b - PID: 2780 - Module: 5b56c5d86347€164c6€571cB6dbf5b1535eae6b079fedebed66b01e79€a33b7b - Thread: Main Thread 2784 - x64dbg
Fle View Debug Tradng Plugins Favourtes Options Help
. O = - " r N > B -~

B o B B ca 2 Source efe » Threads s Handles

B soyila 64 098
File Imports Trace Misc Help

Attach to an active process
(2780 - sbsecsdss347e 164cse571c86dbfSh 1535eae6b 1e75ea3307 - C:\ser v [PickDLL |

Imports .

[advapi32.dl (7) FThunk: 00047000
7 kernel32.dl (111) FThunk: 00047040
- mpr.dl (3) FThunk: 000473C0

[RstrtMgr.dll (4) FThunk: 000473€0
(- shell32.dl (2) FThunk: 00047408
[-38 2 (1) FThunk: 00047420

Show Invalid Show Suspect

IAT Info 2 Actions
.

OEP 00000001400366A5 T Autotrace PE Rebuild

VA 0000000140047000
003 SIShS gge347 =7 S6dbiob153s Set Iy =
W pump2 WM Dump3 W@ Dump4 M Dumps 3 5
. .
Log

IAT Search Adv: Possible IAT first 0000000 140047000 last 0000000140047420 entry.
IAT Search Adv: IAT VA 0000000 140047000 RVA 0000000000047000 Size 0x0428 (1064)
IAT Search Nor: IAT VA 0000000140046 1E8 RVA 0000000000046 1E8 Size 0x 1258 (4696)
getApiByVirtualAddress :: No Api found 00000001400379F4
IAT parsing finished, found 127 valid APIs, missed 1 APIs

Found direct imports wi ique

Imports: 128 % Invalid: 1 Imagebase: 0000000140000000 5b56c5d86347€164c6e571
FF

Fire up Scylla and make sure that the correct process is selected (1). After that
we’ll run the IAT Autosearch (2) and Get Imports (3) to show them in the
textbox above (notice that they significantly differ from the functions imported
by the UPX unpacking stub). Finally dump the process to disk (4) and fix the
dump (5) to complete the unpacking process. Congratulations to the ones
playing along at home, you are now able to manually unpack UPX (and it
works for x86 binaries as well).

If you want to skip this step of the analysis you can also download my
unpacked sample below:

Pandora Ransomware (unpacked)

File size: 509440 bytes

Architecture: x64

MD5: 511501033ca23754113686ac701629db

SHA-1: 26a02al49acaba8ad43e2dca5c75a6360cfe54c50

SHA-256:
2c940a35025dd384717c954a282f65€9c2312d2ada2868619d1dc73d1c500224
Download: Malshare | VirusTotal

Similarities with Rook Ransomware

According to the automated analysis by Intezer the Pandora sample from
above is related to Rook Ransomware. Since Rook is based on the leaked
source code of Babuk Ransomware so is Pandora probably.

10 Sb56c5d86347e164c6e571c86dbfSbl...

347e164c 1

As | already mentioned I'm not planning to do a deep-dive analysis of the
features of Pandora, so we'll just try to do a high-level comparison between
Pandora and Rook. If you are looking for a very in-depth analysis of Rook
Ransomware, check out Chuong Dong’s post about it.

Rook Ransomware

Original file names: "“unknown", "7NM2J.txt"
File size: 174080 bytes

Architecture: x64

MD5: bec9b3480934ce3d30c25e1272f60d02

SHA-1: 104d9e31e34ba8517f701552594f1fc167550964

SHA-256:
f87be226e26e873275bde549539170210ffe5e3a129448ae807a319cbdct7789

Download: vx-underground | Malware Bazaar | VirusTotal

Since this sample of Rook Ransomware is also packed with a modified version
of UPX (which differs from the one used for Pandora though) | manually
unpacked this sample as well using the process described above. You can
download the unpacked sample here:

Rook Ransomware (unpacked)

File size: 415744 bytes

Architecture: x64

MD5: afdf739eb186e2ec8088b008797d1f6d

SHA-1: f611c2976ebb080214eddd905d3062823012280d

SHA-256:
ebfdeebe5fe2aa5699280248a5e7b714cal8e5bfd284cacObadfb88ccbcec5b6

Download: Malshare | VirusTotal

Comparing the imported Windows functions of Pandora and Rook we can see
the following changes in Pandora (+ = added, - = removed):

advapi32.dll:

— EnumDependentServicesA

CloseServiceHandle

OpenSCManagerA

ControlService

QueryServiceStatusEx

OpenServiceA

kernel32.d1l1l:
+ GetQueuedCompletionStatus
+ PostQueuedCompletionStatus
+ SetPriorityClass
+ CreateIoCompletionPort
+ SetThreadAffinityMask
+ ResumeThread
+ VirtualFree
+ CreateFileMappingW
+ MapViewOfFile
+ VirtualAlloc
+ UnmapViewOfFile
+ LoadLibraryW
+ VirtualProtect
+ VirtualProtectEx
+ WriteProcessMemory
- GetTickCount
- GetModuleFileNameW
— ExitThread
- SetFileInformationByHandle
— ReleaseSemaphore
— CreateSemaphoreA

- RaiseException

Process32FirstW
Process32NextW

Sleep
CreateToolhelp32Snapshot

mpr.dll:
— WNetGetConnectionW

shell32.d11:

— CommandLineToArgvW

shlwapi.dll:
— PathFileExistsW

user32.dll:

- wsprintfA
From this comparison we can deduct that there have been changes in file
handling and thread/process control.

Comparing the strings in both samples | found that Pandora removed the
debug messages which are present in the Babuk source and the Rook
sample. Additionally the Ransomnote of Pandora Ransomware has been
obfuscated whereas the Rook contained it in plain text.

Of course | can’t wrap this post up before trying out a new tool, which kind of
has become a tradition here. Since the code similarities detected by Intezer
are a black box for us we can try and replicate this analysis with binlex:
Binlex allows us to extract basic blocks and functions from to samples we feed
it as so-called traits. In the case of Pandora and Rook these traits contain the
re-used code and, with some careful filtering, we can use some of them to
build a Pandora-Rook Yara rule. Unfortunately | currently don’t have the time
to sift through all the extracted traits manually (I don’t have a
Goodware/Malware Traits Corpus yet to discard traits based on that), but | will
get back to this in a few weeks. The long-boi bash command below shows my
testing approach in this case, which extracted over 1700 unique (but
unfiltered) shared traits from the Pandora and Rook samples.

find sim/ —type f | while read i; do binlex -m pe:x86_64 -i $i | jq

.[1 | select(.type == "block" and .size < 32 and .size > 8) |
uniq; done sort —-rn

One example were | successfully used binlex for a Yara rule a couple of weeks
earlier is for my BlackMatter Ransomware ESXi rule, which you can find here.

If you would like to give binlex a try | recommend to watch the excellent demo
below, which is a recording of a live cooperation between c3rb3ru5d3d53c and
OALabs. binlex is very easy to install and well documented, so you should
definitely give it a try.

Alright, that should conclude this first look into Pandora Ransomware. I'm sure
there will be more in-depth reports about the ransomware itself and the modus
operandi of the attackers in the coing days and weeks. As | already mentioned
| do not consider the relation “Pandora == Rook” proven based on the findings
of this post, but a connection is certainly plausible. Also Pandora will most
likely not be the last Ransomware variant based on the Babuk source, since
with the leak the metaphorical box cannot be closed again.

| included a small Yara rule for the modified UPX packer below, happy hunting!

Thanks for reading this post and if you have any questions feel free to send
me a message :)

Modified UPX Hunting rule

import "pe"

rule upx_packer_modified_pandora : Packer {
meta:

author = "Marius 'fOwL' Genheimer <hello@dissectingmalwa.re>"

description = "Detects modified UPX packer used by Pandora
Ransomware"

reference = "https://dissectingmalwa.re/blog/pandora/"

date = '"2022-03-16"

tlp = "WHITE"

hash =

"5b56c5d86347e164c6e571c86dbT5b1535eaeb6b979fedebed66b@1le79ea33b7b"

strings:
$header = {33 2E 30 30 00 55 50 58 21} // 3.00.UPX!

condition:
uint16(0) == 0x5a4d

and
and

and

and

and

pe.imphash() == "51a8b4c9f41b0@c@ca57db63e21505b0d"
$header

for any i in (0..pe.number_of_sections):(
pe.sections[i].name == "pppp" and
pe.sections[i+1].name == "cccc")

filesize > 112KB // Size on Disk/2

filesize < IMB // Size of Imagex*2

Written By

Marius fOwL' Genheimer

I’'m a Computer Science / IT-Security student (about to finish my B.Sc) from
Germany. As you can probably tell | like to analyse malware (especially
Ransomware) in my spare time.

