

Black Basta Ransomware Operators Expand Their Attack Arsenal With QakBot Trojan and PrintNightmare Exploit

We look into a recent attack orchestrated by the Black Basta ransomware group that used the banking trojan QakBot as a means of entry and movement and took advantage of the PrintNightmare vulnerability to perform privileged file operations.

June 30, 2022

By: Kenneth Adrian Apostol, Paolo Ronniel Labrador, Mirah Manlapig, James Panlilio, Emmanuel Panopio, John Kenneth Reyes, Melvin Singwa Read time: 4 min (955 words)

In the case of a Trend Micro customer, its system was infected with Black Basta ransomware that was deployed by QakBot (Figure 1). This behavior is typical of the QakBot malware family, which has served as a key enabler of ransomware families like MegaCortex, PwndLockerm, Egregor, ProLock, and REvil (aka Sodinokibi). QakBot, which was discovered in 2007, is known for its infiltration capabilities and has been used as a "malware-installation-as-a-service" for various campaigns. Over the years, this banking trojan has become increasingly sophisticated, as evidenced by its exploitation of a newly disclosed Microsoft zero-day vulnerability known as Follina (CVE-2022-30190).

Since it became operational in April, Black Basta has garnered notoriety for its recent attacks on 50 organizations around the world and its use of double extortion, a modern ransomware tactic in which attackers encrypt confidential data and threaten to leak it if their demands are not met. The emerging ransomware group has continued to improve its attacks: We recently caught it using the banking trojan QakBot as a means of entry and movement, and taking advantage of the PrintNightmare vulnerability (CVE-2021-34527) to perform privileged file operations.

5/2/2022	C:\Users\	\Downloads\c_3855059153.xlsb	Trojan.X97M.QAKBOT.YXCFH
	c:\	\beunsea.oooooocccccccxxxxxxxxx	
	c:\	\beunseb.oooooocccccccxxxxxxx	TrojanSpy.Win32.QAKBOT.YACEJT
5/2/2022	c:\	\beunse.oooooocccccccxxxxxxxx	
5/2/2022	c:\Users\Pub	lic\spider.dll	Trojan.Win64.QUAKNIGHTMARE.YACEJ
	-nop -w hidd	len -encodedcommand	
5/2/2022	JABzADOATge	IAHcALQBPAGIAagBIAGMAdAAgAEkATwAuAE0A	FILELESS COBEACON
5/2/2022	C:\Windows	150f1e6.exe	Trojan.Win32.COBEACON.SMYXBE2.hp
5/4/2022	c:\users\pub	lic\runtimelisten.exe	Backdoor.Win32.COROXY.YACEKT
5/4/2022	c:\windows\	cps1.dll	Trojan.Win32.BLACKBASTA.YXCEJ
5/4/2022	c:\windows\	cps.exe	Ransom.Win32.BLACKBASTA.YACEJ
5/4/2022	C:\\Users\\va	admin\\Downloads\\nmap-7.91-setup.exe	PUA.Win32.Netcat.B
5/5/2022	C:\Program F	iles\Broadcom\BACS\readme.txt	Ransom.Win32.BLACKBASTA.A.note

Figure 1. A timeline of the files detected on the infected machine

QakBot's infection chain

QakBot is distributed using spear-phishing emails (Figure 2) that contain Excel files with Excel 4.0 macros. The emails entice the recipient to enable macros, which download and execute the QakBot DLL files (Figures 3 and 4). The downloaded QakBot DLL is dropped onto a specific file path and file name, and is executed via regsvr32.exe (Figure 5). The QakBot DLL performs process injection using explorer.exe (Figure 6), after which the injected Explorer process creates a scheduled task to maintain the malware's initial foothold in the infected system (Figure 7).

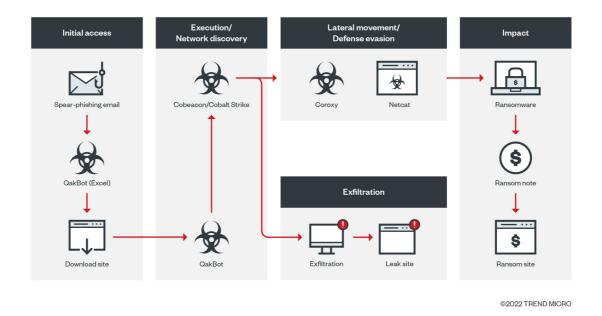


Figure 2. The infection chain from the point of entry to the Black Basta ransomware payload

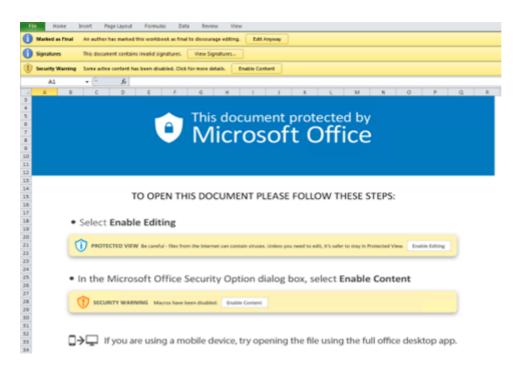


Figure 3. Instructions in the Excel file used by QakBot to lure a potential victim into enabling Excel 4.0 macros

-							
A s	404	HTTPS	lalualex.com	/ApUU8p1ccd/Ophn.png	315	text/html; c	excel:2244

Figure 4. The malicious URL used to download the QakBot malware

C:\Program Files\Microsoft Office\Office14\EXCEL.EXE	new process	regsvr32 C:	Beunse.0000000ccccccccxxxxxxx
C:\Windows\System32\regsvr32.exe	new process	C:\Windows\explorer.exe	
C:\Program Files\Microsoft Office\Office14\EXCEL.EXE	new process	regsvr32 C:	Beunsea.cocococcccccccxxxxxxxxxx
C:\Program Files\Microsoft Office\Office14\EXCEL.EXE	new process	regsvr32 C:	Beunseb.oooooooccccccccxxxxxxx

Figure 5. The downloaded QakBot malware dropped onto a specific file path and file name

	1744	Microsoft Excel
regsvr32.exe	3648	Microsoft(C) Register Server
regsvr32.exe	3852	Microsoft(C) Register Server
explorer.exe	3672	Windows Explorer

Figure 6. The explorer.exe process used in process injection

C/Windowlexplore.exe new process "C:/Windowlexplore/22/chlasks.exe" /Croter /RU "NT AUTHORITY/SITSTOM" /to gallipi /tr "regurs22.exe 4 \

Figure 7. The scheduled task created by QakBot

Once QakBot is installed in a system, it proceeds to download and drop the other components in the infection chain, beginning with the Cobeacon backdoor. We have observed the execution of Cobeacon using a fileless PowerShell script with multiple layers of obfuscation (Figures 8 to 11). The Base64-encoded shellcode of the installed Cobeacon establishes and names a pipe for communication (Figure 12) that is possibly used for exfiltration purposes once information has been collected from a targeted system. The Black Basta ransomware group posts this information on its leak sites if the victim does not pay the ransom.

Figure 8. Cobeacon's first layer of obfuscation, a Base64-encoded PowerShell command

Figure 9. Cobeacon's second layer of obfuscation, the loading and reading of an archive file in memory

Figure 10. Cobeacon's third layer of obfuscation, the decoded script for running the Base64encoded shellcode

000000000000000000000000000000000000000	FC	CLD
000000000000000000000000000000000000000	E889000000	CALL 0000000-FFFFFF71
00000000000000006	60	222
00000000000000007	8925	MOV EBP, ESP
0000000000000000000	31D2	XOR EDX, EDX
000000000000000B	64885230	MOV EDX, DWORD PTR FS: [RDX+30]
0000000000000000	88520C	MOV EDX, DWORD PTR [RDX+0C]
00000000000000012	885214	MOV EDX, DWORD PTR [RDX+14]
0000000000000015	887228	MOV ESI, DWORD PTR [RDX+28]
0000000000000018	0FB74A26	MOVZX ECX, WORD PTR [RDX+26]
0000000000000001C	31FF	XOR EDI,EDI
000000000000001E	31C0	XOR EAX, EAX
000000000000000000000000000000000000000	AC	LODS AL, BYTE PTR [RSI]
00000000000000021	3C61	CMP AL, 61
0000000000000023	7002	JL 000000000000027
0000000000000025	2020	SUB AL,20
00000000000000027	CICFOD	ROR EDI, OD
0000000000000002A	01C7	ADD EDI, EAX
0000000000000002C	E2F0	LCOP 00000000000001E
000000000000002E	52	PUSH RDX
000000000000002F	57	PUSH RDI
000000000000000000000000000000000000000	885210	MOV EDX, DWORD PTR [RDX+10]
0000000000000033	8B423C	MOV EAX, DWORD PTR [RDX+3C]
0000000000000036	01D0	ADD EAX, EDX
0000000000000038	884078	MOV EAX, DWORD PTR [RAX+78]
000000000000003B	8500	TEST EAX, EAX
000000000000003D	744A	JE 00000000000089
000000000000003F	01D0	ADD EAX, EDX
0000000000000041	50	PUSH RAX
0000000000000042	884818	MOV ECX, DWORD PTR [RAX+18]
0000000000000045	885820	MOV EBX, DWORD PTR [RAX+20]
0000000000000048	01D3	ADD EBX, EDX
000000000000004A	E33C	JRCXZ 00000000000088
000000000000004C	498B348B	MOV RSI, QWORD PTR [R11+RCX*4]
******	A152	SED BOT BOU

Figure 11. Disassembly of the decoded shellcode

Figure 12. Shellcode containing the named pipe for communication

PrintNightmare and Coroxy

Upon further analysis of the system that was affected by Black Basta, we found evidence that points to the ransomware group's exploitation of the PrintNightmare vulnerability. Exploiting this vulnerability, Black Basta abused the Windows Print Spooler Service or spoolsv.exe to drop its payload, spider.dll, and perform privileged file operations. It also exploited the vulnerability to execute another file in the affected system, but samples of this file were no longer available in the system.

Additionally, our investigation found that the ransomware actors used the Coroxy backdoor. They used Coroxy in conjunction with the abuse of the computer networking utility tool Netcat to move laterally across the network. Once the attackers gained a wide foothold in the network, they executed the Black Basta ransomware, whose infection process we explained in more detail in a previous blog post.

Thwarting phishing attempts

Spear phishing is a common precursor to ransomware infection. Organizations can protect their data from threats that spread through emails by adhering to best practices such as:

- Ensuring that macros are disabled in Microsoft Office applications.
- Verifying an email's sender and content before opening or downloading any attachments.
- Hovering the pointer over embedded links to show the links' full addresses.

• Being wary of telltale signs of malicious intent, including unfamiliar email addresses, mismatched email and sender names, and spoofed company emails.

Businesses and their employees can safeguard sensitive company data from email-borne ransomware threats like Black Basta by turning to endpoint solutions such as Trend Micro's Smart Protection Suites and Worry-Free Business Security solutions, which are equipped with behavior-monitoring capabilities that are able to detect malicious files, scripts, and messages, and block all related malicious URLs. Trend MicroTM Deep DiscoveryTM also has a layer for email inspection that protects businesses by detecting any malicious attachments and URLs. Multilayered detection and response solutions like the Trend Micro Vision OneTM platform provides companies with greater visibility across multiple layers — like email, endpoints, servers, cloud workloads, and networks — to look out for suspicious behavior in their systems and block malicious components early, mitigating the risk of ransomware infection.

Indicators of compromise

Hashes

SHA-256	Trend Micro detection
01fafd51bb42f032b08b1c30130b963843fea0493500e871d6a6	Ransom.Win32.BLACKBASTA.YX
a87e555c7bac	CEP
72a48f8592d89eb53a18821a54fd791298fcc0b3fc6bf9397fd7 1498527e7c0e	Trojan.X97M.QAKBOT.YXCFH
580ce8b7f5a373d5d7fbfbfef5204d18b8f9407b0c2cbf3bcae80	Backdoor.Win32.COROXY.YACEK
8f4d642076a	T
130af6a91aa9ecbf70456a0bee87f947bf4ddc2d2775459e3feac	Trojan.Win64.QUAKNIGHTMARE.
563007e1aed	YACEJT
c7eb0facf612dbf76f5e3fe665fe0c4bfed48d94edc872952a065	TrojanSpy.Win32.QAKBOT.YXCE
139720e3166	EZ
ffa7f0e7a2bb0edf4b7785b99aa39c96d1fe891eb6f89a65d76a5	TrojanSpy.Win32.QAKBOT.YACEJ
7ff04ef17ab	T
2083e4c80ade0ac39365365d55b243dbac2a1b5c3a700aad383	TrojanSpy.Win32.QAKBOT.YACEJ
c110db073f2d9	T
1e7174f3d815c12562c5c1978af6abbf2d81df16a8724d2a1cf5	TrojanSpy.Win32.QAKBOT.YACEJ
96065f3f15a2	T
2d906ed670b24ebc3f6c54e7be5a32096058388886737b1541d	TrojanSpy.Win32.QAKBOT.YACEJ
793ff5d134ccb	T
72fde47d3895b134784b19d664897b36ea6b9b8e19a602a0aaf	TrojanSpy.Win32.QAKBOT.YACEJ
f5183c4ec7d24	T
2e890fd02c3e0d85d69c698853494c1bab381c38d5272baa2a3	TrojanSpy.Win32.QAKBOT.YACEJ
c2bc0387684c1	T
c9df12fbfcae3ac0894c1234e376945bc8268acdc20de72c8dd1	Ransom.Win32.BLACKBASTA.YA
6bf1fab6bb70	CEJ
8882186bace198be59147bcabae6643d2a7a490ad08298a4428	Trojan.Win32.BLACKBASTA.YXC
a8e64e24907ad	EJ

0e2b951ae07183c44416ff6fa8d7b8924348701efa75dd3cb14c	Trojan.Win32.BLACKBASTA.YXC
708537471d27	EJ
0d3af630c03350935a902d0cce4dc64c5cfff8012b2ffc2f4ce50	Trojan.Win32.BLACKBASTA.YXC
40fdec524ed	EJ
df35b45ed34eaca32cda6089acbfe638d2d1a3593d74019b671	Trojan.Win32.BLACKBASTA.YXC
7afed90dbd5f8	EJ
3fe73707c2042fefe56d0f277a3c91b5c943393cf42c2a4c6838	Trojan.Win32.BLACKBASTA.YXC
67d6866116fc	EJ
433e572e880c40c7b73f9b4befbe81a5dca1185ba2b2c58b59a5 a10a501d4236	Ransom.Win32.BLACKBASTA.A.n ote
c4683097a2615252eeddab06c54872efb14c2ee2da8997b1c73 844e582081a79	PUA.Win32.Netcat.B

URLs

24[.]178[.]196[.]44:2222 37[.]186[.]54[.]185:995 39[.]44[.]144[.]182:995 45[.]63[.]1[.]88:443 46[.]176[.]222[.]241:995 47[.]23[.]89[.]126:995 72[.]12[.]115[.]15:22 72[.]76[.]94[.]52:443 72[.]252[.]157[.]37:995 72[.]252[.]157[.]212:990 73[.]67[.]152[.]122:2222 75[.]99[.]168[.]46:61201 103[.]246[.]242[.]230:443 113[.]89[.]5[.]177:995 148[.]0[.]57[.]82:443 167[.]86[.]165[.]191:443 173[.]174[.]216[.]185:443 180[.]129[.]20[.]53:995 190[.]252[.]242[.]214:443 217[.]128[.]122[.]16:2222 elblogdeloscachanillas[.]com[.]mx/S3sY8RQ10/Ophn[.]png lalualex[.]com/ApUUBp1ccd/Ophn[.]png lizety[.]com/mJYvpo2xhx/Ophn[.]png